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Abstract: In mathematical analysis, the q-analogue of a function refers to a modified version of
the function that is derived from q-series expansions. This paper is focused on the q-analogue of
the exponential function and investigates a class of convex functions associated with it. The main
objective is to derive precise inequalities that bound the coefficients of these convex functions. In this
research, the initial coefficient bounds, Fekete–Szegő problem, second and third Hankel determinant
have been determined. These coefficient bounds provide valuable information about the behavior
and properties of the functions within the considered class.
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1. Introduction and Preliminaries

In the area of mathematical analysis and functional inequalities, the study of q-analogues
has emerged as a fascinating and powerful area of research. These q-analogues, inspired by
the theory of special functions and their properties, extend the classical notions of various
mathematical functions. Among the many q-analogues, the q-analogue of the exponential
function holds a special place, primarily due to its widespread applications in areas such as
physics, combinatorics, and number theory.

The q-analogue of the exponential function is a significant generalization of the tra-
ditional exponential function and has been intensively investigated in recent years. One
of the essential aspects of this study involves exploring the properties of a class of convex
functions associated with the q-exponential function. These functions not only showcase
intriguing behavior but also find relevance in various mathematical contexts, making their
analysis of paramount importance. The motivation behind establishing coefficient bounds
for the class of q-convex functions associated with the q-analog of the exponential func-
tion lies in understanding the properties and behavior of these functions in the context
of q-calculus. Some important mathematical terms related to this research article will
be discussed.

Suppose that A denotes the set of functions f represented by the power series

f (τ) = τ +
∞

∑
j=2

ajτ
j (1)
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and be defined in open unit disk

U = {τ : τ ∈ C and |τ| < 1}.

Clearly, f is univalent if

τ1 − τ2 ̸= 0 ⇒ f (τ1)− f (τ2) ̸= 0, where τ1, τ2 ∈ U.

The set of all such functions is denoted by S.
The term “starlike function” refers to any function that maps a domain U with a

starshaped domain, and the set of all such functions is represented by S∗, that is

S∗ =

{
f ∈ A : Re

(
τ f

′
(τ)

f (τ)

)
> 0, τ ∈ U

}
.

Similarly, a function f is said to be a convex function if it maps a domain U with a convex-
shaped domain, and all functions of this kind belong to the set C, that is

C =

{
f ∈ A : Re

(
1 +

τ f
′′
(τ)

f ′(τ)

)
> 0, τ ∈ U

}
. (2)

A function p, analytic in U, is said to be in the class P if it has the form

p(τ) = 1 +
∞

∑
n=1

dnτn (3)

and satisfies the conditions p(0) = 1 and Re{p(τ)} > 0, for details see [1].
A function w(τ) defined in an open unit disk is said to be a Schwarz function if it

satisfies the following conditions:

w(0) = 0 and |w(τ)| < 1 for τ ∈ U.

Subordination is an important tool to investigate the behavior of different subclasses of
univalent functions. The concept of subordination was introduced by Lindelof [2]. Further,
Rogosinski [3,4] and Littlewood [5] studied it in detail. Two functions, f1 and f2, which are
analytic in U, where it is known that f1 is subordinate to f2 (denoted by f1 ≺ f2), if there
exists a Schwarz function w such that

f2(τ) = f1(w(τ)). (4)

In particular, f1 ≺ f2 ⇔ f1(0) = f2(0) and f1(U) ⊂ f2(U).
In the year 1992, Ma and Minda [6] used the technique of subordination and defined

the general form of the family of univalent functions as follows:

S∗(φ) =

{
f ∈ A :

τ f
′
(τ)

f (τ)
≺ φ(τ)

}
(5)

and

C(φ) =

 f ∈ A :

(
τ f

′
(τ)
)′

f ′(τ)
≺ φ(τ)

. (6)

where, φ is an analytic function along with the conditions φ(0) > 0 and Re(φ(τ)) > 0 in U.
If φ(τ) = 1+τ

1−τ , in (5) and (6), then well-known classes of starlike and convex functions are
obtained. In recent years, a number of sub-families of the normalized analytic functions
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have been studied as a special case of S∗(φ) and C(φ). Recently, Cho et al. [7] chose
φ(τ) = 1 + sin τ and defined a class (S∗

sin) of starlike functions:

S∗
sin =

{
f ∈ A :

τ f
′
(τ)

f (τ)
≺ 1 + sin τ

}
.

Mediratta et al. [8] introduced the class of starlike functions associated with exponential
function as

S∗
e =

{
f ∈ A :

τ f ′(τ)
f (τ)

≺ eτ , (τ ∈ U)

}
.

They investigated the defined class and derived the relationship between the newly defined
class and different existing subclasses of the class S. Furthermore, in [8], by using the
Alexandar-type relation, the class of convex functions associated with exponential function
was defined as

Ce =

{
f ∈ A :

(τ( f ′(τ))′

f ′(τ)
≺ eτ , τ ∈ U

}
(7)

Pommerenke [9,10] defined the Hankel determinant for f ∈ S of the form (1). The tth
Hankel determinant is defined as

Ht,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+t−1

an+1 an+2 · · · an+t
...

...
. . .

...
an+t−1 an+t−2 . . . an+2t−2

∣∣∣∣∣∣∣∣∣, (8)

where, n, t belongs to the set of natural numbers and a1 = 1.
The following are three special cases of the Hankel determinant.
(i) A special case of Fekete–Szegő functional:

H2,1( f ) =
∣∣∣a3 − a2

2

∣∣∣,
where the famous Fekete–Szegő functional is defined by

H2,1( f ) =
∣∣∣a3 − µa2

2

∣∣∣,
where, µ is real or complex number.

(ii) Second Hankel determinant:

H2,2( f ) =
∣∣∣∣a2 a3
a3 a4

∣∣∣∣ = ∣∣∣a2a4 − a2
3

∣∣∣. (9)

(iii) The third Hankel determinant is defined as

H3,1( f ) =

∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = a3

(
a2a4 − a2

3

)
− a4(a4 − a2a3) + a5

(
a3 − a2

2

)
. (10)

For the details of the first two cases (see [11,12]), while Babalola [13] was the poinear
who found H3,1( f ) for the family of classes of convex and starlike functions. Later, many
researchers found |H3,1( f )| for different subclasses of S, for this see [14–19].

Quantum calculus, also known as q-calculus, is an extension of traditional calculus
that has gained significant interest in various fields of mathematics and physics, including
geometric function theory. The introduction of quantum calculus in geometric function
theory offers new insights into the behavior of complex functions and opens up exciting
avenues for exploring the geometry of complex domains. In this context, quantum calculus
allows us to investigate how q-analogues of derivative and integral operators affect the
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properties of complex functions, their zeros, critical points, and singularities, among other
aspects. For the detail (see [20–22]).

Jackson [23,24] defined the q-analogue of ordinary derivative, and further this operator
was utilized by Ismail et al. [25] to define a q-analogue of starlike functions. The extension
of Ismail et al.’s work associated with Janowski functions were given in [20]. Several
new subclasses of starlike and convex functions, as well as sharp bounds for second- and
third-order Hankal determinants, have been investigated recently by researchers using the
q-derivative. Srivastava, for example, achieved the same work for close-to-convex functions
in [26] and Mahmood et al. [27] did the same for the family of q-starlike functions and
investigated the third-order Hankel determinant. Cotîrla et al. [28] investigated certain
coefficient bounds for q-starlike functions based on a Ruscheweyh q-differential operator.
A unique subclass of starlike functions connected to the sine function was constructed by
Arif et al. [29] using the subordination technique, and the third Hankel determinant for this
class was eventually discovered. Concurrently, Srivastava et al. [30] explored the Hankel
and the Toeplitz determinants connected to the generalized conic domain and identified
a new subclass of q-starlike functions. Zhang and Tang [31] worked on the sine function
while Güney and Korfeci [32] created a new subclass of analytic functions and discovered
the fourth-order Hankel determinant. By deriving bounds on the coefficients, researchers
aim to gain insights into the growth and convergence properties of these functions, which
can have applications in various mathematical and scientific fields. These bounds help
elucidate the behavior of q-convex functions and their q-exponential analogs, contributing
to a deeper understanding of their mathematical properties and potential applications.
This article focuses on the q-analogue of the exponential function and investigate a class
of convex functions associated with it. The main objective is to derive precise inequali-
ties that bound the coefficients of these convex functions. This article contributes to the
broader mathematical understanding of q-convex functions and their association with the
q-analogue of the exponential function.

If f ∈ A, then the q-derivative or q-difference operator is defined as [23]:

Dq f (τ) =
f (τ)− f (qτ)

(1 − q)τ
, τ ̸= 0, q ∈ (0, 1) (11)

= 1 +
∞

∑
n=2

[n]qanτn−1,

where
[n]q =

1 − qn

1 − q
,

or

[n]q =
n−1

∑
j=0

qj.

This study continues the numerous investigations of various authors on the estimation
of Taylor–Maclaurin coefficients for a new subclass of class A of analytic functions on
the unit disc U with coefficients a0 = 0 and a1 = 1. Among many more, just a small
handful of investigations was highlighted in the aforementioned works. Using the notions
of the q-difference operator Dq and function subordination ≺, the new class C(q, e) of
q-convex functions connected to the q-analogue of the exponential function is defined;
see the definition below. The bounds for coefficients a2, a3, a4 and a5 of the function
f ∈ C(q, e) in terms of q, give inequalities for a2a3 − a4, a3 − a2

2, a2a4 − a2
3 for the Hankel

determinant. This covers the analogically known results for the class Ce (as q → 1−). All
the results obtained are new and quite interesting. Since q-calculus (quantum calculus) has
wide modern applications in various fields of function theory and physics, the considered
problems and results in the paper can be estimated as useful and significant, in particular,
with respect to using of q-exponential function.
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Definition 1. A function f ∈ A belongs to the class C(q, e), if it satisfies the following subordination
condition:

Dq
(
τDq f (τ)

)
Dq f (τ)

≺ eqτ , τ ∈ U. (12)

Remark 1. When q → 1−, then C(q, e) = Ce, defined in [33].

Remark 2. The image domain eqU is shown in the Figure 1. A function f belongs to the class

C(q, e) if and only if the function
Dq(τDq f (τ))

Dq f (τ) takes all values from the domain eqU .

 (a) For q = 0.2
 

(b) For q = 0.5

 

(c) For q = 0.7
 

(d) For q = 0.99
Figure 1. The images of eqU for different values of q.

Remark 3. A function f belongs to the class C(q, e) if and only if there exists an analytic function
h, h ≺ eqτ such that

f (z) =
z∫

0

eJ(t)dqt (13)

where

J(t) =
t∫

0

h(x)− 1
x

dqx.

In particular for h = eqz, we have

J(t) =
t∫

0

eqx − 1
x

dqx.

The function f defined in (13) plays the role of extremal function for many problems over the class
C(q, e).

The following set of lemmas will be used to investigate the coefficient problems for
the class C(q, e).
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Lemma 1 ([34]). Let the function p(τ) be of the form (3), then

|dn| ≤ 2, n ∈ N. (14)

Also,
|dn − µdidn−i| ≤ 2, n > i, µ ∈ [0, 1]. (15)

The equality holds for

f (τ) =
1 + τ

1 − τ
.

Lemma 2 ([29]). Let the function p ∈ P , be given by (3), then

|dn+t − νdndt| ≤ 2, for 0 ≤ ν ≤ 1 (16)∣∣∣dn+2t − νdnd2
t

∣∣∣ ≤ 2(1 + 2ν), for ν ∈ R (17)∣∣∣d2 − υd2
1

∣∣∣ ≤ max{2, 2|υ − 1|} (18)

where υ is any complex or real number.

2. Main Results

This article extends the class of functions defined in (7) to q-analogue of exponential
function with the help of q-differential operator (11) given in (12). The coefficient bounds,
Fekete–Szegő functional and second Hankel determinant are determined. Furthermore, the
third Hankel determinants will be found with the help of these results. Some well-known
corollaries have been proved as well. The following are some main results of this research.

Theorem 1. If f ∈ C(q, e), is of the form (12), then

|a2| ≤ 1
q[2]q

|a3| ≤ (2q + 1)

q2[3]q[2]
2
q

,

|a4| ≤
(
q4 + 5q3 + 6q2 + 4q + 1

)
q3[4]q[3]

2
q[2]

2
q

,

|a5| ≤
(
3q6 + 9q5 + 18q4 + 21q3 + 15q2 + 6q + 1

)
q4[2]3q[3]

2
q[4]q[5]q

.

Proof. Let f ∈ C(q, e), then by definition of C(q, e),

Dq
(
τDq f (τ)

)
Dq f (τ)

≺ eqτ . (19)

By the definition of subordination

Dq
(
τDq f (τ)

)
Dq f (τ)

= eq(ω(τ)), (20)

where
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ϖ(τ) =
p(τ)− 1
p(τ) + 1

=
d1

2
τ +

(
d2

2
−

d2
1

4

)
τ2 +

(
d3

1
8

+
d3

2
− d1d2

2

)
τ3 +

(
d4

2
− d1d3

2
−

d2
2

4
+

3d2
1d2

8
−

d4
1

16

)
τ4

=
1
2

d1τ +
1
2

(
d2 −

1
2

d2
1

)
τ2 +

1
2

(
d3 − d12 +

1
4

d3
1

)
τ3 + · · · . (21)

In the light of (20) and (21), the following series is obtained:

eq(ω(τ)) = 1 +
∞

∑
i=1

(ω(τ))i

[i]q!

= 1 +
d1

2
τ +

{
d2

2
−

qd2
1

4[2]q

}
τ2 +

{
d3

2
− qd1d2

2[2]q
+

qd3
1

8[3]q[2]q

}
τ3 +

+
1

16[3]q[2]q


(
−q3 + q2 + q − 1

)
d4

1 + 6q3d2
1d2 − 8q[3]qd1d3

−4q[3]qd2
2 + 8

(
q3 + 2q2 + 2q + 1

)
d4

τ4 + ....

Similarly,

Dq
(
τDq f (τ)

)
Dq f (τ)

= 1 + q[2]qa2τ +
{

q[2]q[3]qa3 − q[2]2qa2
2

}
τ2 +

{
q[3]q[4]qa4 − [2]q[3]q

(
[2]q + [3]q − 2

)
a2a3 + q[2]3qa3

2

}
τ3 +

 q[4]q[5]qa5 − q[2]q[3]
2
qa2

3 − [2]q[4]q
(
[2]q + [4]q − 2

)
a2a4+

[2]2q[3]q
(

2[2]q + [3]q − 3
)

a2
2a3 − q[2]4qa4

2

τ4... (22)

By comparing the corresponding coefficients of (21) and (22), obtain

a2 =
d1

2q[2]q
, (23)

a3 =
1

2q[2]q[3]q

{
d2 +

1 + q − q2

2q[2]q
d2

1

}
(24)

a4 =
1

2q[3]q[4]q

{
d3 −

2q2 − q − 2
2q[2]q

d1d2 +
q6 − 3q4 − 2q3 + 2q + 1

4q2[2]2q[3]q
d3

1

}
(25)
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a5 =
1

q[4]q[5]q




− (q−1)2

16[3]q
+

(q2−q−1)
2

16q3[2]3q
+

(q2+q+2)(q6−3q4−2q3+2q+1)
16q3[2]2q [3]

2
q

+
(q+3)(q2−q−1)

16q3[2]2q
+ 1

16q3

d4
1

+

{
q2+q+2

4q[3]q
− q

2[2]q

}
d1d3 +

{
1

4q[2]q
− q

4[2]q

}
d2

2

+


3q3

8[2]q [3]q
− (2q2−q−2)(q2+q+2)

8q2[2]q [3]q

− (q2−q−1)
4q2[2]2q

− q+3
8q2[2]q

d2
1d2 +

1
2 d4



. (26)

Using the Lemma 1 on (23) and (24), to obtain

|a2| ≤
1

q[2]q
,

|a3| ≤
2q + 1

2q2[2]q[3]q
.

Now taking the modulus of (25),

|a4| =
1

2q[3]q[4]q

∣∣∣∣∣d3 −
2q2 − q − 2

2q[2]q
d1d2 +

q6 − 3q4 − 2q3 + 2q + 1

4q2[2]2q[3]q
d3

1

∣∣∣∣∣.
By applying the triangle inequality, we reached the following result:

|a4| ≤
1

2q[3]q[4]q

{
|d3|+

2 + q − 2q2

2q[2]q
|d1d2|+

q6 − 3q4 − 2q3 + 2q + 1

4q2[2]2q[3]q
|d1|3

}
.

With the help of Lemma 1, arrived at

|a4| ≤
q4 + 5q3 + 6q2 + 4q + 1

q3[4]q[3]
2
q[2]

2
q

.

Now, from (26),

|a5| =
1

q[4]q[5]q

∣∣∣∣λd4
1 + αd1d3 + βd2

1d2 + κd2
1 +

1
2

d4

∣∣∣∣, (27)

where
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λ = − (q − 1)2

16[3]q
+

(
q2 − q − 1

)2

16q3[2]3q
+

(
q2 + q + 2

)(
q6 − 3q4 − 2q3 + 2q + 1

)
16q3[2]2q[3]

2
q

+

(q + 3)
(
q2 − q − 1

)
16q3[2]2q

+
1

16q3 ,

α =
q2 + q + 2

4q[3]q
− q

2[2]q
,

β =
3q3

8[2]q[3]q
−
(
q2 − q − 1

)
4q2[2]2q

−
(
2q2 − q − 2

)(
q2 + q + 2

)
8q2[2]q[3]q

− q + 3
8q2[2]q

,

κ =
1

4q[2]q
− q

4[2]q
.

Applying triangle inequality on (27),

|a5| ≤
1

q[4]q[5]q

{∣∣∣λd4
1

∣∣∣+ |αd1d3|+
∣∣∣κd2

1

∣∣∣+ 1
2
|d4|

}
Using values of λ, α, β, κ and applying Lemma 1, we obtain

|a5| ≤
(
3q6 + 9q5 + 18q4 + 21q3 + 15q2 + 6q + 1

)
q4[2]3q[3]

2
q[4]q[5]q

.

In Theorem 1, assume that q → 1−, then the following known consequence is.

Corollary 1 ([33]). If f ∈ C(e) has the series as given in (1), then

|a2| ≤ 1
2

, (28)

|a3| ≤ 1
4

,

|a4| ≤ 17
144

,

|a5| ≤ 73
1440

. (29)

Theorem 2. If f ∈ C(q, e) is of the form (1), then for a complex number γ

∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
q[2]q[3]q

max

{
1,

∣∣∣∣∣γ(q2 + q + 1)− 2q − 1
q[2]q

∣∣∣∣∣
}

. (30)

Proof. From (23) and (24), consider

∣∣∣a3 − γa2
2

∣∣∣ =
1

2q[2]q[3]q

∣∣∣∣∣d2 −
q2 − q − 1

2q[2]q
d2

1 −
γ

4q2[2]2q
d2

1

∣∣∣∣∣
=

1
2q[2]q[3]q

∣∣∣d2 − vd2
1

∣∣∣,
where

v =
1

2q[2]q

(
γ(1 + q + q2) + q2 − q − 1

2q[2]q

)
.
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Now, using Lemma 2, arrived at

∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
q[2]q[3]q

max

{
1,

∣∣∣∣∣γ(1 + q + q2) + q2 − q − 1
q[2]q

− 1

∣∣∣∣∣
}

,

After some simplification, result obtained is

∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
q[2]q[3]q

max

{
1,

∣∣∣∣∣γ(q2 + q + 1)− 2q − 1
q[2]q

∣∣∣∣∣
}

. (31)

In Theorem 2, assume that q → 1−, then the following known result is.

Corollary 2 ([33]). If f ∈ C(e) is of the form (1), then for a complex number γ∣∣∣a3 − γa2
2

∣∣∣ ≤ 1
6

max
{

1,
3
2
|γ − 1|

}
.

In Theorem 2, suppose γ = 1 and q → 1−,then the following known consequence is.

Corollary 3 ([33]). If f ∈ C(e) is of the form (1), then∣∣∣a3 − a2
2

∣∣∣ ≤ 1
6

. (32)

Theorem 3. If f ∈ C(q, e) is of the form (1), then

|a2a3 − a4| ≤
6q3 + 11q2 + 10q + 4

2q[2]2q[3]
2
q[4]q

.

Proof. By using (23)–(26),

|a2a3 − a4| =
∣∣∣∣∣ 3q2 − q − 1
4q2[2]q[3]q[4]q

d1d2 −
2q4 − 3q2 − 4q − 2

8q[2]2q[3]
2
q[4]q

d3
1 −

1
2q[3]q[4]q

d3

∣∣∣∣∣.
With the help of triangle inequality, we obtain

|a2a3 − a4| ≤
1

4q[3]q[4]q

{∣∣∣∣d3 −
3q2 − q − 1

q[2]q
d1d3

∣∣∣∣+
∣∣∣∣∣d3 −

(
2 + 4q + 3q2 − 2q4)

2[2]2q[3]q
d3

1

∣∣∣∣∣
}

≤ 1
4q[3]q[4]q

{Ψ1(q) + Ψ2(q)}. (33)

where

Ψ1(q) =
∣∣∣∣d3 −

3q2 − q − 1
q[2]q

d1d3

∣∣∣∣ (34)

and

Ψ2(q) =

∣∣∣∣∣d3 −
(
2 + 4q + 3q2 − 2q4)

2[2]2q[3]q
d3

1

∣∣∣∣∣. (35)

Using Lemma 2 on (34) and (35), we obtain

Ψ1(q) ≤ 2 and Ψ2(q) ≤
3 + 7q + 7q2 + 3q3 − q4

[2]2q[3]q
.
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Now, by applying these values on (33), we arrived at

|a2a3 − a4| ≤
6q3 + 11q2 + 10q + 4

2q[2]2q[3]
2
q[4]q

. (36)

In Theorem 3, let q → 1−, then following is the well-known result.

Corollary 4. If f ∈ C(e) is of the form (1), then

|a2a3 − a4| ≤
31

288
.

Theorem 4. If f ∈ C(q, e) is of the form (12), then∣∣∣a2a4 − a2
3

∣∣∣ ≤ 3q4 + 5q3 + 11q2 + 10q + 4

2q2[2]3q[3]
2
q[4]q

.

Proof. Using (23)–(25), for

∣∣∣a2a4 − a2
3

∣∣∣ =
∣∣∣∣∣∣∣

1
4q2[2]q [3]q [4]q

d1d3 − (2q+1)(2−q)
16q[2]3q [3]

2
q [4]q

d4
1−

(3q2−q−1)
8q2[2]2q [3]

2
q [4]q

d2
1d2 − 1

4q2[2]2q [3]
2
q
d2

2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
1

16q2[2]q [3]q [4]q
d1{d3 − 2(3q2−q−1)

[2]q [3]q
d1d2}+ 1

16q2[2]q [3]q [4]q

d1

{
d3 − q(2q+1)(2−q)

[2]2q [3]q
d3

1

}
+ 1

8q2[2]q [3]q [4]q

{
d1d3 − 2(q3+q2+q+1)

[2]q [3]q
d2

2

}
∣∣∣∣∣∣∣∣∣.

Applying the triangle inequality to obtain

|a2a3 − a4| ≤
|d1|

16q2[2]q[3]q[4]q
{Φ1(q) + Φ2(q)}+

1

8q2[2]3q[3]
2
q[4]q

Φ3(q), (37)

where

Φ1(q) =

∣∣∣∣∣d3 −
2(3q2 − q − 1)

[2]q[3]q
d1d2

∣∣∣∣∣, (38)

Φ2(q) =

∣∣∣∣∣d3 −
q(2q + 1)(2 − q)

[2]2q[3]q
d3

1

∣∣∣∣∣, (39)

and

Φ3(q) =

∣∣∣∣∣d1d3 −
2(q3 + q2 + q + 1)

[2]q[3]q
d2

2

∣∣∣∣∣. (40)

Now, using Lemma 2, we obtain

Φ1(q) = |d3 − λ1d1d2| ≤ 2, where λ1 =
2(3q2 − q − 1)

[2]q[3]q
∈ (0, 1) when q ∈

(
1 +

√
13

6
, 1

)
(41)

Φ2(q) =
∣∣∣d3 − λ2d3

1

∣∣∣ ≤ 2(1 + 2λ2), where λ2 =
q(2q + 1)(2 − q)

[2]2q[3]q
∈ R for q ∈ (0, 1).
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After some simplifications, this yields

Φ2(q) ≤
2
(
q4 − q3 + 10q2 + 7q + 1

)
[2]2q[3]q

. (42)

Applying the triangle inequality on (40), we obtain

Φ3(q) ≤
4 + 8(q3 + q2 + q + 1)

[2]q[3]q
. (43)

Using (41)–(43), the result is as follows:∣∣∣a2a4 − a2
3

∣∣∣ ≤ 3q4 + 5q3 + 11q2 + 10q + 4

2q2[2]3q[3]
2
q[4]q

.

Considering q → 1−, in Theorem 4, to obtain the corollary, which is an improvement
of the result proved in [33].

Corollary 5. If f ∈ C(e) has the series of the form as given in (1), then

|a4 − a2a3| ≤
11

192
.

Theorem 5. If f ∈ C(q, e) is the form (12), then

|H3,1( f )| ≤ 6{T1(q) + T2(q)}
4q6(q2 + 1)2

[2]6q[3]
4
q[5]q

,

where

T1(q) = 6q14 + 37q13 + 171q12 + 447q11 + 876q10 + 1412q9 + 1945q8

T2(q) = 2253q7 + 2129q6 + 1611q5 + 958q4 + 440q3 + 149q2 + 34q + 4

Proof. Since by (10)

|H3,1( f )| ≤ |a5|
∣∣∣a3 − a2

2

∣∣∣+ |a4||a4 − a2a3|+ |a3|
∣∣∣a2a4 − a2

3

∣∣∣.
Now, using Theorems 1–4, the result given in the statement is proved.

Considering q → 1−, in Theorem 5, we obtain the corollary, which is an improvement
of the result proved in [33].

Corollary 6. If f ∈ C(e) is the form (1), then

|H3,1( f )| ≤ 1559
8640

.

3. Discussion

This section acts as an introductory segment leading to the conclusion and aims to
present a comparative analysis between the existing categories and the newly introduced
class. Mathematician Lei Shi collaborated with H.M. Srivastava [33] to establish a cate-
gory of convex functions that incorporate the exponential function. Additionally, Srivas-
tava et al. [35] introduced a class of q-starlike functions connected to the q-exponential
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function. Since the coefficient inequalities for q-convex functions with respect to q-analogues
of functions, like the q-exponential, have applications in various areas of mathematics,
particularly in q-analysis, combinatorics, and special functions theory. They provide insights
into the behavior of q-convex functions and help establish relationships between these
functions and q-analogues of classical functions. Consequently, in this research article, an
essential category of convex functions linked to the q-analogue of the exponential function
is introduced, and the study explores its bounds and associated properties. Also, certain
specific instances of the category of convex functions linked to the exponential function
have been demonstrated and validated.

4. Conclusions

This article provides a rigorous analysis of a class of convex functions associated with
the q-analogue of the exponential function. The obtained coefficient bounds deepen our
understanding of these functions and their properties, making significant contributions
to the field of q-analogue theory and its applications. The Fekete–Szegő fractional and
the third-order Hankel determinant constraints are defined for this class. Some known
consequences of the main results were also highlighted.

It is worth mentioning that the q-analogues that have been considered in this article
as well as in a remarkably large number of other earlier q-investigations on the subject
for 0 < q < 1 can easily (and possibly trivially) be translated into the corresponding
(p, q)-analogues (with 0 < q < p ≦ 1) by applying some straightforward parametric
and argument variations, the additional parameter p being redundant (see, for example,
Srivastava [36]).

This study examined a new family that may stimulate additional investigation into
various topics, such as certain special families of univalent functions using the integro-
differential operator [37] and the fractional q-difference operator [38].
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