
Citation: Lee, K.; Kim, J.; Kwon, I.-H.;

Park, H.; Hong, C.-H. Impact of

Secure Container Runtimes on File

I/O Performance in Edge Computing.

Appl. Sci. 2023, 13, 13329. https://

doi.org/10.3390/app132413329

Academic Editor: Christos Bouras

Received: 21 November 2023

Revised: 8 December 2023

Accepted: 9 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Impact of Secure Container Runtimes on File I/O Performance
in Edge Computing
Kyungwoon Lee 1, Jeongsu Kim 2, Ik-Hyeon Kwon 3, Hyunchan Park 4,* and Cheol-Ho Hong 5,*

1 School of Electronics Engineering, Kyungpook National University, Daugu 41566, Republic of Korea;
kwlee87@knu.ac.kr

2 Agency for Defense Development, Daejeon 34186, Republic of Korea; jeongsukim0122@gmail.com
3 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;

inzulmi@cau.ac.kr
4 Department of Computer Science and Artificial Intelligence/CAIIT, Jeonbuk National University,

Jeonju 54896, Republic of Korea
5 Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
* Correspondence: hyunchan.park@jbnu.ac.kr (H.P.); cheolhohong@cau.ac.kr (C.-H.H.)

Abstract: Containers enable high performance and easy deployment due to their lightweight architec-
ture, thus facilitating resource utilization in edge computing nodes. Secure container runtimes have
attracted significant attention because of the necessity for overcoming the security vulnerabilities
of containers. As the runtimes adopt an additional layer such as virtual machines and user-space
kernels to enforce isolation, the container performance can be degraded. Even though previous
studies presented experimental results on performance evaluations of secure container runtimes,
they lack a detailed analysis of the root causes that affect the performance of the runtimes. This
paper explores the architecture of three secure container runtimes in detail: Kata containers, gVisor,
and Firecracker. We focus on file I/O, which is one of the key aspects of container performance. In
addition, we present the results of the user- and kernel-level profiling and reveal the major factors
that impact the file I/O performance of the runtimes. As a result, we observe three key findings:
(1) Firecracker shows the highest file I/O performance as it allows for utilizing the page cache inside
VMs, and (2) Kata containers offer the lowest file I/O performance by consuming the largest amount
of CPU resources. Also, we observe that gVisor scales well as the block size increases because the file
I/O requests are mainly handled by the host OS similar to native applications.

Keywords: container runtimes; security; I/O performance; kernel-level profiling

1. Introduction

Containers offer many advantages such as high performance and easy deployment
owing to their lightweight architecture [1–4] that allows multiple containers to share
the same operating systems (OSs) and system libraries [1]. Containers, which enable
lightweight virtualization, also make it easier to utilize performance resources in edge
computing nodes [5]. Even though the shared architecture provides high efficiency for
running multiple applications on the respective containers, it has a large attack surface
that contributes to its security vulnerabilities [6–8]. For example, it has been reported that
attackers can overwrite the host runc binary by exploiting the ability of Docker containers
to execute a command with a root privilege in the containers [6]. Compromised containers
can leak important data in the host server to the attacker or manipulate the entire system.
Thus, such security vulnerabilities can pose a key barrier to offering secure execution
environments [8].

To overcome the security issues of containers, several container runtimes that enforce
isolation (i.e., secure container runtimes) have been introduced [9–11]. Figure 1 illustrates

Appl. Sci. 2023, 13, 13329. https://doi.org/10.3390/app132413329 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413329
https://doi.org/10.3390/app132413329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4730-950X
https://doi.org/10.3390/app132413329
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413329?type=check_update&version=2

Appl. Sci. 2023, 13, 13329 2 of 16

the architectures of three representative secure runtimes: Kata containers, gVisor, and Fire-
cracker. First, Kata containers [11] were developed by the Linux Foundation, which com-
bines Intel Clear Containers and the Hyper.sh runV project, in 2017. Kata containers adopt
a virtual machine (VM) layer to offer isolated execution environments to the containers as
illustrated in Figure 1a. Each container runs on a VM equipped with a kernel image and a
root filesystem. This differs from existing Docker containers (based on the runc container
runtime) that run on the same kernel image [2]. Second, Google has introduced gVisor [10]
(Figure 1b) that is based on the user-space kernel called Sentry. Sentry filters system calls
executed by the container in order to prevent the container from performing unauthorized
system calls directly. So, the system calls are translated by Sentry before they get delivered
to the actual filesystem or host devices. By filtering the system calls, gVisor can elimi-
nate the threat in which the host system is manipulated by malicious containers. Finally,
Firecracker has been presented by Amazon as a virtualization platform for the serverless
computing service, Lambda [12]. In Firecracker (Figure 1c), applications are run on a VM
rather than containers, and each VM has an independent kernel image and root filesystem.
However, in contrast to Kata containers that run with the existing KVM/QEMU techniques
for virtualized environments, Firecracker utilizes the Firecracker virtual machine monitor
(VMM) that is optimized from QEMU [13] for lightweight execution environments [9] to
run multiple VMs on a host server efficiently.

Table 1 summarizes the architectures and I/O processing mechanisms of three secure
runtimes. For example, Kata containers adopt virtio-fs [14] to handle the file I/O requests
of containers running on the VM, whereas Firecracker offers the virtio block device [15]
to the VM. Because the file I/O performance is one of the major factors determining the
application performance [16,17], it is important to have an in-depth understanding of
the file I/O performance characteristics of secure container runtimes. However, only a
few papers [9,18–20] have been published on this topic because the runtimes have been
introduced within the last two years.

Host OS

QEMU

Virtual machine

Container
Application

(a)

Host OS

Userspace kernel

Container
Application

(b)

Host OS

Firecracker VMM

Virtual machine
Application

(c)
Figure 1. Different architectures of representative secure container runtimes: Kata containers, gVisor,
and Firecracker. (a) Kata containers, (b) gVisor, and (c) Firecracker.

Table 1. Detailed mechanisms of secure container runtimes.

Kata Containers gVisor Firecracker

Architecture Containers on VMs User-space kernel Firecracker VMM-based
microVM

VMM technology KVM KVM KVM

I/O processing virtio-fs System call
filtering virtio-blk

Programming language Go Go Rust

Previous studies [9,18–21] mainly focus on quantitative comparisons of the runtimes
in terms of CPU, memory, and I/O performance without providing a detailed analysis
of the differences between the runtimes. For example, the performances of gVisor and

Appl. Sci. 2023, 13, 13329 3 of 16

Firecracker have been compared with runc [18] and QEMU [9]. Even though these stud-
ies offer evaluations of the CPU, memory, and I/O performance, they do not provide
sufficient explanation for the reasons behind the performance differences. Similarly, re-
search works [19,20] present the performance of gVisor and Firecracker in terms of CPU,
memory, network, and file I/O. However, they do not describe the difference in their file
I/O processing and the corresponding impact on the file I/O performance. In addition,
previous studies lack an analysis of the resource usage such as the CPU in each runtime
when performing file I/O processing. In edge computing, it is important to utilize com-
puting resources efficiently [22,23] so that the resource usage analysis is essential for the
container runtimes to properly provision computing resources. For a better understanding
of the secure runtimes, the goal of this paper is to present a comprehensive and detailed
analysis on the file I/O processing and CPU usage of the runtimes and find out how their
architectures impact the file I/O performance (explained in Section 5).

In this paper, we first analyze the file I/O operations of each runtime (Section 4) and
examine the entire file I/O stacks. We explain how the file I/O requests of containers are
handled, including symbol-level profiling. Second, we present the experimental results on
CPU usage as well as file I/O performance, which shows the performance and efficiency
of the runtimes when executing file I/O operations (Section 5). The experimental results
demonstrate that among the three runtimes, Firecracker has the best performance with the
lowest CPU usage. Kata containers offer the lowest performance with the highest CPU
consumption. Last, we provide symbol-level profiling results that point out the root cause
of the differences in the performance and CPU usage, which can suggest research directions
for improving the file I/O performance of the runtimes (Section 6). We find that the virtio
block driver of Firecracker allows the applications to exploit the page cache inside the VM,
which results in the high performance of Firecracker. On the other hand, Kata containers
incur high overhead for two reasons. First, it handles page faults caused by the VM when
the application performs read and write operations on the shared filesystem. Second, Kata
containers utilize virtio-fs that involves an asynchronous event notification for every file
I/O request.

The contributions of this paper are as follows.

• We analyze the detailed file I/O operations of three secure container runtimes and
describe the entire file I/O stack of the runtimes thoroughly.

• We present the experimental results on both file I/O performance and CPU usage,
which demonstrate the performance and efficiency of the runtimes.

• We offer symbol-level profiling results that point out the root cause of the differences
in performance and CPU usage, which can suggest research directions for improving
the file I/O performance of the runtimes.

The remainder of this paper is organized as follows. First, we explain the related
work (Section 2) and the foundation technologies for secure container runtimes (Section 3).
Second, we discuss the details of the file I/O stack in each container runtime (Section 4).
We then evaluate the file I/O performance and present the characteristics of the CPU
usage (Section 5). Next, we analyze the bottlenecks of the file I/O stack using symbol-
level profiling (Section 6). Finally, we discuss future works to further improve this paper
(Section 7) and summarize the key findings of this paper (Section 8).

2. Related Work
2.1. Performance Comparison and Analysis

Recent years have seen the introduction of secure container runtimes, leading to nu-
merous studies assessing their performance across various metrics, like startup time, CPU,
memory, and I/O. Previous research [9,18] introduces gVisor and Firecracker, comparing
their performance with existing container runtimes. Similarly, Kumar and Thangaraju [24]
and Randazzo and Tinnirello [11] delve into Kata containers’ performance via qualitative
and quantitative analyses. Debab and Hidouci [20] explore the runc, gVisor, Kata contain-
ers, and Firecracker performance alongside other runtimes. Anjali et al. [19] conduct an

Appl. Sci. 2023, 13, 13329 4 of 16

architecture analysis comparing native Linux, gVisor, and Firecracker, finding differences in
the kernel code execution and network latency. Viktorsson et al. [25] demonstrate deploy-
ment and execution speed differences between gVisor and Kata containers, highlighting
their security strengths but with significant performance trade-offs.

Additionally, studies by the authors of [26,27] investigate gVisor’s and Firecracker’s
performance with other serverless computing platforms during concurrent execution,
emphasizing the runtime architecture and scheduling approaches as key performance
determinants. Another study [26] shows Firecracker’s superiority over gVisor in concur-
rent execution.

While prior research offers quantitative performance measures, it often lacks an in-
depth analysis explaining runtime performance disparities. This paper fills this gap,
presenting a sophisticated performance analysis focusing on file I/O performance and
CPU usage. Moreover, it provides a detailed, symbol-level analysis of the file I/O stack,
elucidating the root causes of performance differences and CPU usage among representative
secure container runtimes.

2.2. Runtime Optimization

Secure container runtimes, due to additional security layers, incur performance degra-
dation, prompting various efforts to enhance metrics, like the startup time, networking,
parallel execution, and storage interfaces. Cadden et al. [28] showcase snapshot and re-
store techniques achieving millisecond-level cold startup times, significantly reducing
deployment times and enabling substantial in-memory caching. Ustiugov et al. [29] tackle
long cold startup times by addressing frequent page faults, proposing proactive instance
memory page prefetching, resulting in a 3.7x reduction in startup times.

Thomas et al. [30] propose Particle, an optimized networking architecture reducing
the network provisioning time by utilizing an ephemerally generated pool of network
addresses. Conversely, Dukic et al. [31] leverage workload parallelism to reduce memory
consumption per invocation without performance degradation and decrease the total
memory utilization and cold starts.

Koller and Williams [32] propose a storage interface addressing the gap between the
host and guest, employing read-only data files and a read–write block device, requiring host
file mapping and metadata preparation for a copy-on-write filesystem. While orthogonal to
runtime optimization studies, their detailed file I/O stack analysis can guide future efforts
aiming to enhance file I/O performance or reduce the CPU usage in file I/O processing.

3. Background

Secure container runtimes adopt a secure layer to enforce security over the execution
environments in which the applications run. This section explains the key technologies for
the layer: the kernel-based virtual machine (KVM) and Linux secure computing mode (sec-
comp).

3.1. Kernel-Based Virtual Machine with Intel Virtualization Technology

The kernel-based virtual machine (KVM) is a virtualization platform that utilizes a
Linux kernel as a hypervisor (e.g., Xen in other virtualization platforms). KVM runs as
a loadable kernel module (i.e., kvm.ko) in the Linux kernel (i.e., host OS) and constructs
virtualized execution environments (i.e., VMs) by exploiting the hardware-assisted vir-
tualization techniques, such as Intel virtualization technology (VT) [33]. Intel VT offers
two different execution modes, the root mode and non-root mode: the host OS runs in the
root mode and VMs run in the non-root mode [34]. The mode transition that switches the
execution mode of the CPU from the root mode to the non-root mode is called VMentry,
which occurs when the instructions of VMs are executed. On the other hand, when the
applications in VMs execute privileged instructions, the execution mode is switched from
the non-root mode to the root mode, which is called VMexit. This is because the privileged
instructions cannot be handled in the VM. For example, when a hardware interrupt oc-

Appl. Sci. 2023, 13, 13329 5 of 16

curs, it triggers VMexit to execute the corresponding interrupt handler in the host OS [35].
Upon every mode transition, the state information (e.g., the values of the registers and
memory address) of the current execution mode is stored in the specialized data structure,
the virtual machine control structure (VMCS), so that the states are restored later.

In addition, Intel VT provides an extended page table (EPT) [36] that enables the
translation from the virtual address of a VM into the physical address of the host server.
MMU with EPT offers two page tables: the guest page table for the VM and the host page
table for the host OS. For each virtual memory accessed by the VM, MMU retrieves the
physical address of the host server from the virtual address of the VM using the guest and
host page tables. The EPT translation requires two page table walks so that inherently it is
slower than native (without KVM) address translation. Moreover, when the memory access
made by a VM is not permitted, it causes an EPT violation that is a page fault, which needs
extra processing to update the page tables [37]. KVM typically utilizes QEMU to support
virtualization together. QEMU is a fast machine emulator using a dynamic translator.
QEMU supports full system emulation, where a complete and unmodified kernel runs.
Also, QEMU provides the CPU and device emulation, memory management, and I/O
for VMs.

3.2. Linux Secure Computing Mode (Seccomp)

To enhance the security, the Linux kernel offers several functionalities, such as Netfilter
and Linux Security Modules. The Linux secure computing mode (seccomp) is one of
them, which offers secure state management in system call processing. Seccomp prevents
applications from executing unauthorized system calls in order to avoid negative impacts
(e.g., a bug or malicious attack) on the host OS. If an application attempts to execute the
unauthorized system call, the Linux kernel immediately terminates the application using
SIGKILL or SIGSYS.

Seccomp offers STRICT and FILTER modes, and users can opt for one of them to utilize
the seccomp functionalities. First, the STRICT mode allows applications to execute only
four system calls, exit(), sigreturn(), and read() and write(), to already-open file descriptors.
Second, the FILTER mode enables users to specify the available system calls for their
applications depending on their purposes. This can be performed by initializing a system
call filter that consists of available system calls and registering the filter to seccomp using
Linux kernel APIs. For example, gVisor enables the applications in the container to execute
211 system calls out of 319 Linux system calls.

4. File Operations in Secure Container Runtimes

Secure container runtimes adopt additional layers such as VMs and user-space kernels
to enforce isolation between the containers. The commonality among three representative
secure runtimes lies in their use of KVM-based VMM technology. However, they implement
different architectures and techniques to offer isolated execution environments. From an
architectural standpoint, Kata containers leverage containers on VMs, gVisor utilizes a user-
space kernel, and Firecracker employs VMM-based microVMs. Regarding I/O processing,
Kata containers utilize virtio-fs, gVisor employs system call filtering, and Firecracker utilizes
virtio-blk. Therefore, they have different file I/O stacks depending on the architectures.
This section describes the file I/O stacks of the Kata containers, gVisor, and Firecracker.
This paper presents a deep-dive analysis of the file I/O stack at the symbol level, illustrating
how the host OS manages file I/O requests from applications. It is worth noting that this
file I/O processing differs from that in the existing native environments and has not been
explored in previous studies.

Specifically, we categorize the symbols related to file I/O processing by using the
functionalities: mode transition, handling EPT, memory processing, filesystem processing,
scheduling, and application.

• Handling EPT: Operations that deal with EPT violation and the reconstruction of the
EPT.

Appl. Sci. 2023, 13, 13329 6 of 16

• Memory processing: Miscellaneous memory operations such as memory mapping
and copy, except the handling EPT.

• Filesystem processing: The file I/O processing operation conducted in the host OS
(e.g., vfs_read).

• Scheduling: Symbols related to the process scheduling.
• Application: Operations executed by the application running on containers or VMs.

4.1. Kata Containers

First, Kata containers utilize virtio-fs [14] as illustrated in Figure 2a. Virtio-fs consists
of virtio_fs.ko in a VM and virtiofsd on a host OS. This allows VMs to access a directory
tree on the host OS, which means the host and the VM share the filesystem. Although the
default filesystem is 9 pfs, Kata containers have supported virtio-fs since version 1.7. This
paper focuses on Kata containers with virtio-fs because virtio-fs provides a significant
performance improvement compared to 9 pfs [38].

Figure 2a shows the steps of the file operations. First, the Kata runtime runs the
application on a container deployed in a VM that consists of an independent kernel im-
age and root filesystem as in Figure 1. The application submits I/O requests directly to
the filesystem (i.e., virtio_fs.ko) using Direct Access (DAX) [39] (1©). DAX enables the
application to read or write data to the virtio-fs using the memory mapping offered by
the memory management of QEMU. 2© Then, virtiofsd, a filesystem daemon running on
the host OS, performs the I/O requests to the actual block device on behalf of virtio-fs
in the VM. 3© The requests are handled as FUSE (FUSE (filesystem in user space) is the
most widely used user-space filesystem that offers simple APIs and high performance) [40]
requests asynchronously because virtio-fs utilizes the FUSE library for communication
between the VM and the host OS. As a result, 4© they are finally delivered to the storage
device of the host OS.

Figure 2b depicts the call flow of the file I/O stack of Kata containers. The file I/O
stack can be divided into categories depending on their functionalities as described above.
When Kata containers execute the file I/O system calls such as pread or pwrite, the virtio-fs
driver in the VM submits the file I/O requests to the virtiofsd. This brings VMexit, where
the execution mode is switched to the root mode [41]. Upon every VMexit, kvm_vcp_ioctl
and vmx_handle_exit are executed to check the reason of the VMexit (i.e., the type of the
privileged instruction that causes the VMexit). This includes handling EPT violations, such
as handle_ept_violation and tdp_page_fault. An EPT violation is caused by a page
fault in the EPT and requires the reconstruction of the EPT entries. After reconstructing the
EPT entries, memory mapping is performed in ksys_mmap_pgoff and the execution mode
can be returned to the VM after calling do_sys_poll.

In Kata containers, the actual filesystem processing is conducted by virtiofsd asyn-
chronously. Virtiofsd copies the file I/O requests of the VM and executes the proper fuse
filesystem requests. Note that the symbols related to virtiofsd belong to the source code of
QEMU rather than the Linux kernel and run in the user space.

QEMU

VM

Device
Host OS

Filesystem

Virtiofsd

① ②

③

DAX

④

virtio_fs.ko

(a)

“FUSE”

“Virtiofsd” Memory
Processing

Scheduling

Handling EPTMode transition

Application

kvm_vcpu_ioctl

vmx_handle_exit handle_ept
_violation

tdp_page_fault

ksys_mmap
_pgoff

do_sys_poll

Non-root mode
Root mode

User space Kernel space

virtio_fs.ko
pread/pwrite

do_read

copy_from_iov

(b)
Figure 2. File operations of Kata containers. (a) Overview, and (b) symbol-level analysis of the file
I/O stack.

Appl. Sci. 2023, 13, 13329 7 of 16

4.2. gVisor

gVisor offers the virtualized environment to sandbox containers and filters system
calls by utilizing the user-space kernel. To construct the virtualized environment, gVisor
supports ptrace [42] and KVM [43]. Even though ptrace is offered by default, the KVM-
based virtualization environments provide better performance than ptrace because of the
hardware acceleration [18]. Thus, this paper focuses on gVisor with KVM to eliminate
the performance bottlenecks in the system call filtering with ptrace when analyzing the
bottlenecks in the file I/O stack itself.

In gVisor, the filesystem is located in the host OS, and the containers can only access the
filesystem through the user-space kernel that consists of Sentry and Gofer. Different from
Kata containers, gVisor does not share filesystems so that the containers cannot execute
filesystem-related system calls directly. As shown in Figure 3a, 1© Sentry captures the
system calls from the containers. When the system call is related to the filesystem, 2© Gofer
receives the request and 3© executes the corresponding file I/O function, such as vfs_read.
4© This leads to the actual file I/O processing that works on the storage device of the host.

Figure 3b shows the call flow of the filesystem-related system calls in gVisor. First,
when applications execute pread or pwrite, it involves VMexit from the user space of the
non-root mode to the kernel space of the root mode, which is similar to Kata containers.
However, the VMexit does not require handling an EPT violation because the application
running on the container of gVisor cannot perform file I/O processing directly. Instead
of handling the EPT violation, after the VMexit, Sentry receives the file I/O requests and
calls the corresponding system call such as pread64, and in turn, Gofer initiates the file I/O
system call.

Container

Sentry Gofer

Device

Userspace kernel

Host OS

①

②

③

Filesystem
④

(a)

Filesystem
processing

“Sentry”“Gofer”

Application

run

Pread64

Read

switch copy_page
_to_iter

vfs_read

Non-root mode

Root mode

User space Kernel space

pread/pwrite

Mode transition

kvm_vcpu_ioctl

vmx_handle_exit

(b)
Figure 3. File operations of gVisor. (a) Overview, and (b) symbol-level analysis of the file I/O stack.

4.3. Firecracker

Firecracker offers a file I/O stack using virtio block devices [15], an open API for
emulated devices. The virtio block device operates in a pair: the virtio front-end driver and
virtio back-end driver. The virtio front-end driver is located in a VM and sends/receives
I/O requests to/from the host OS. The virtio back-end driver is typically located in the
host OS, and it performs read/write operations on the actual storage devices. Instead,
Firecracker developed a new VMM (i.e., Firecracker VMM) that utilizes the virtio back-end
driver to process I/O requests from VMs.

As illustrated in Figure 4a, 1© when the application of the VM submits I/O requests,
the virtio block in the VMM receives the requests asynchronously through the virtio front-
end driver (virtio.ko) of the VM. 2© To handle the requests, the virtio block executes the file
I/O functions of the host OS. For example, when the application running on a VM executes
pread in 1©, this is delivered to the virtio block through virtio::block::request::Request that
directly leads to vfs_read that processes the pread request in the host OS (3©).

Figure 4b shows the call flow of Firecracker’s file I/O stack. When an application in
the VM executes a file I/O system call such as pread or pwrite, the file I/O requests are
executed in the virtio front-end driver of the VM. As the virtio front-end driver is exposed
as a block device in the VM, the application reads or writes directly to the filesystem of the
VM. Then, the virtio front-end driver (virtio.ko) in the VM submits the file I/O requests to
the virtio block of the Firecracker VMM, which causes VMexit. In order to identify the cause

Appl. Sci. 2023, 13, 13329 8 of 16

of VMexit, kvm_vcp_ioctl and vmx_handle_exit are executed. Then, handle_ept_violation and
tdp_page_fault are executed to handle the EPT violation. Because the application performs
read and write operations on the block device inside the VM, memory should be allocated
in the VM. At this time, page faults occur and are handled by using handle_ept_violation
and tdp_page_fault. The Firecracker VMM receives the file I/O requests asynchronously
from the VM and then calls virtio::block::request::Request in order to process the requests
in the host OS. Then, ksys_read/write is executed to process the filesystem operations. When
the filesystem processing is completed, epoll_pwait is called.

VM

Device

Firecracker VMM

Host OS
Filesystem

Virtio-block kvm-ioctls

①

②

③

virtio.ko

(a)

Filesystem
processing

Scheduling

Handling EPTMode transition

Application

kvm_vcpu_ioctl

vmx_handle_exit tdp_page_fault

handle_ept
_violation epoll_pwait

ksys_read

Non-root mode
Root mode

User space Kernel space

Firecracker
VMM

pread/pwrite

virtio::block::request::Request

virtio.ko

(b)
Figure 4. File operations of Firecracker. (a) Overview, and (b) symbol-level analysis of the file
I/O stack.

5. Performance and CPU Usage Analysis

Now, we evaluate the file I/O performance of the secure container runtimes and
compare the results with the most popular container runtime, runc. In particular, we
measure the CPU usage when each runtime executes the file I/O benchmark, which
indicates the efficiency of the runtime. In addition, we measure the effects of the file
operations and block size in order to evaluate their impact on performance and CPU usage.

5.1. Experimental Setup

For the experiments, we utilize a host server equipped with an Intel Xeon processor
(E5-2650 v3@2.30 GHz, 10 cores), 256 GB RAM, and Intel 400 GB PCIe 3.0 x4 NVMe SSD as
a local disk, running Ubuntu 18.04 LTS (Linux kernel v5.4.0). Table 2 lists the specifications
of the host server and the versions of the runtimes. We construct a single container (and
also a VM) running Ubuntu 18.04 LTS on each runtime and configure it to have a single
virtual CPU (vCPU). Note that we do not limit the memory size of the container (and
the VM) to eliminate performance bottlenecks in the memory. The host server is based
on an ext4 filesystem, while the container (runc and gVisor) or the VM (Kata containers
and Firecracker) in each runtime utilizes the following filesystems: overlayfs (runc), ext4
(gVisor and Firecracker), and virtio-fs (Kata containers).

We measure the I/O bandwidth and CPU usage with different block sizes (i.e., 4 KB,
16 KB, 64 KB, 256 KB, and 1 MB). First, for the I/O bandwidth, we utilize fio [44], a standard
Linux I/O benchmark that performs read/write operations of various sizes. We conduct
four different operations (i.e., sequential read/write and random read/write) on a 1 GB file.
We run each operation for 10 s and perform three iterations of each experiment. To eliminate
the effect of the page cache on the I/O bandwidth, we restart the container and VM before
each iteration, and the file is flushed to the disk so that the page cache is cleared between
each iteration. Also, for CPU usage, we utilize mpstat [45], a standard Linux CPU profiling
tool, which monitors the number of CPU cycles spent for the following categories: User,
System, Iowait, Softirq, and Guest. User, System, and Guest indicate the percentage of
CPU cycles spent in the user level, the system level, and the VM level, respectively. Iowait
means the percentage of CPU cycles that are idle while the system has outstanding disk I/O
requests, while Softirq indicates the CPU consumption for processing software interrupts.

Appl. Sci. 2023, 13, 13329 9 of 16

Table 2. Experimental configuration.

Component Configuration Component Configuration

Processor Intel E5-2650 v3@2.30 GHz (10 cores) Container/VM OS Ubuntu 18.04 LTS

RAM 256 GB Docker container v19.03.6
Storage Intel 400 GB PCIe 3.0 x4 NVMe SSD Kata containers 1.12.0-alpha0

Operating system Ubuntu 18.04 LTS gVisor release-20201208.0

Linux kernel v5.4.0 Firecracker v0.21.0

5.2. Sequential Read/Write

Figure 5 shows the results of the sequential read and write performance (y-axis) with
different block sizes (x-axis). Among the three runtimes, Firecracker achieves the best
performance for both the read and write operations. For read, Firecracker shows an even
higher performance than runc by 3.6% on average. For write, Firecracker achieves a higher
performance than runc consistently by 21.0% on average. This is due to the different
filesystems in runc and Firecracker. runc adopts the union filesystem [46] that needs to
go through the storage driver of the runtime (i.e., overlayfs) to access the host backing
filesystem (i.e., ext4). On the other hand, Firecracker uses the virtio block device inside
the VM, which allows applications to exploit the page cache in the VM after a file block
is stored in the cache. For example, when a fio benchmark writes the 1 GB file at first,
the corresponding blocks of the file are transferred to the VM through the virtio block in
the host OS. After the first write operation, the file blocks are stored in the page cache of the
VM, and the fio benchmark can write from the page cache without asking the virtio block
in the host OS. As a result, Firecracker achieves superior file I/O performance compared to
the other runtimes, even better than runc.

4K 16K 64K 256K 1M
0

2000

4000

6000

8000

Block size (B)

Ba
nd

wi
dt

h
(M

B/
s)

Runc Kata gVisor FC

(a)

4K 16K 64K 256K 1M
0

2000

4000

6000

8000

Block size (B)

Ba
nd

wi
dt

h
(M

B/
s)

Runc Kata gVisor FC

(b)
Figure 5. Sequential file I/O performance of runc, Kata containers (Kata), gVisor, and Firecracker
(FC) with different block sizes. (a) Sequential read, and (b) sequential write.

Kata containers have the lowest performance regardless of read and write and the
block size. For example, Kata containers achieve a bandwidth ranging from 581 to 752 MB/s
on average, which is only 13.7% of the Firecracker performance. The reason for the low
performance is that Kata containers use the shared filesystem that requires a request transfer
between the VM and virtiofsd for every file I/O operation in an asynchronous manner.
virtiofsd runs on the host OS and communicates with the VM by using socket data. This
is very different from Firecracker, which can allow applications to utilize the page cache
inside its VM.

The performance of gVisor increases when the block size increases from 4 KB to 1 MB.
For the 1 MB blocks, gVisor achieves 4058 MB/s for read and 2578 MB/s for write. This
shows that gVisor scales well with the block size, which is consistent with the results of
previous research [18]. The lack of an increase in the sequential write performance from 4K
to 16K in Figure 5b is due to CPU saturation. However, although the performance of gVisor
increases with the block size, gVisor still shows quite a lower performance than Firecracker

Appl. Sci. 2023, 13, 13329 10 of 16

by 69.7% and 72.8% for read and write, respectively. This is because the user-space kernel
of gVisor requires mode transition and system call filtering for every file I/O request, which
is different from Firecracker that can eliminate the additional mode transition by utilizing
the page cache inside the VM.

In terms of CPU usage, Figure 6a,b illustrate that Kata containers consume the largest
CPU resources (143.7% on average) for both read and write and for all block sizes. This
result explains the low performance of the Kata containers. Through profiling, we find that
virtiofsd of the Kata containers performs a memory copy frequently to deliver the requests
of the VM to the filesystem of the host OS and executes file I/O operations, so it burns the
CPU heavily in the user and system categories as shown in Figure 6a,b.

R K G F R K G F R K G F R K G F R K G F0

50

100

150

200

Block size (B)

To
ta

l C
PU

 u
til

iz
at

io
n

(%
)

System Iowait Softirq GuestUser

4K 16K 64K 256K 1M

(a)

R K G F R K G F R K G F R K G F R K G F0

50

100

150

200

Block size (B)

To
ta

l C
PU

 u
til

iz
at

io
n

(%
)

System Iowait Softirq GuestUser

4K 16K 64K 256K 1M

(b)
Figure 6. CPU usage in processing sequential file I/O operations under runc (R), Kata containers (K),
gVisor (G), and Firecracker (F). (a) Sequential read, and (b) sequential write.

Firecracker and gVisor utilize 112.8% of the CPU on average, which is similar to the
usage of runc (112.4% on average). However, the categories that consume most of the CPU
resources are different between them due to their architectural differences. Firecracker
mostly consumes the CPU resources in Guest (i.e., 87.6% for read and 92.2% for write),
which means that most of the file operations are conducted in the VM. On the other hand,
in gVisor, the CPU spent in Guest (i.e., the container in gVisor) is smaller than Firecracker,
which is 27.2% for read and 21.5% for write. This is because the container in gVisor does
not perform file I/O requests, but Gofer executes the filesystem-related system call that
conducts actual memory copy and file I/O processing, which is counted in the System
category. As a result, in gVisor, the CPU spent in System increases as the block size
increases.

5.3. Random Read/Write

Figure 7 depicts the performance for random read and random write operations. First,
for random read, runc shows the highest performance (2458 MB/s on average), while the
Kata containers have the lowest performance (422 MB/s on average) on average. Also,
the performance of all runtimes increases as the block size increases. Similar to sequential
read, Firecracker achieves a higher performance than gVisor and Kata containers. For the
1 MB blocks, Firecracker shows the highest performance (4749 MB/s on average), which is
4.3 times higher than the Kata containers (1113 MB/s on average) and 26.1% higher than
gVisor (3766 MB/s on average). Regarding the performance for random write, Firecracker
achieves the highest performance (3842 MB/s on average), while the Kata containers show
the lowest performance (302 MB/s on average) independent of the block size. For the 1 MB
blocks, Firecracker reaches 4671 MB/s, which is 5.7 times higher than the Kata containers
(815 MB/s on average).

Also, we measure the CPU usage of the runtimes for the random read and write as in
Figure 8. It shows that there is the significant Iowait for random read with small blocks
such as 4 KB and 16 KB, which explains the low performance of Figure 7a for the small
blocks. Also, comparing with the sequential read in Figure 6a, the random read in Figure 8a
has a larger Iowait for all runtimes: For the sequential and random read, this is 7.4% and

Appl. Sci. 2023, 13, 13329 11 of 16

54.0% (runc), 4.6% and 18.0% (Kata containers), 7.1% and 32.6% (gVisor), and 2.0% and
19.9% (Firecracker) on average. This indicates that there is a performance bottleneck in
processing random read requests. Figure 8 also shows that the random read has a higher
Iowait than random write: For read and write, this is 54.0% and 3.0% (runc), 18.0% and
14.6% (Kata containers), 32.6% and 15.5% (gVisor), and 19.9% and 1.4% (Firecracker) on
average. This is because the read and write operations have different characteristics: read
operations are performed synchronously, while write operations are asynchronous. Such
differences render random write to have less Iowait CPU usage than random read.

4K 16K 64K 256K 1M
0

2000

4000

6000

8000

Block size (B)

Ba
nd

wi
dt

h
(M

B/
s)

Runc Kata gVisor FC

(a)

4K 16K 64K 256K 1M
0

2000

4000

6000

8000

Block size (B)

Ba
nd

wi
dt

h
(M

B/
s)

Runc Kata gVisor FC

(b)
Figure 7. Random file I/O performance of runc, Kata containers (Kata), gVisor, and Firecracker (FC)
with different block sizes. (a) Random read, and (b) random write.

R K G F R K G F R K G F R K G F R K G F0

50

100

150

200

Block size (B)

To
ta

l C
PU

 u
til

iz
at

io
n

(%
)

System Iowait Softirq GuestUser

4K 16K 64K 256K 1M

(a)

R K G F R K G F R K G F R K G F R K G F0

50

100

150

200

Block size (B)

To
ta

l C
PU

 u
til

iz
at

io
n

(%
)

System Iowait Softirq GuestUser

4K 16K 64K 256K 1M

(b)
Figure 8. CPU usage in processing random file I/O operations under runc (R), Kata containers (K),
gVisor (G), and Firecracker (F). (a) Random read, and (b) random write.

6. Bottleneck Analysis Using Symbol-Level Profiling

To further investigate the file I/O performance, we profile the operations and catego-
rize the data based on the symbols presented in Section 4. We utilize the Linux profiling tool,
perf, to gather the performance counter statistics for the symbols. Note that we run perf
for sequential read and write operations because random read and write have significant
Iowait CPU usage, which means that the experiment settings are not optimized for random
read and write.

6.1. Kata Containers

Figure 9 illustrates the CPU cycles that each symbol occupies for the read and write
operations with 4 KB and 1 MB blocks. Note that the y-axis is the normalized CPU cycles
(over the total CPU cycles of an operation on the x-axis, such as read with 4 KB). First,
handling EPT shows the highest overhead regardless of the block size and the type of
operations, and it occupies more than 26.8% in all cases. The profiling results show that
handling EPT involves a large number of page table walks [37]. In particular, the overhead
of handling EPT increases in the write operation because the I/O requests should be stored
in the memory space of the VM and delivered to the host OS.

Second, the overhead for mode transition increases in the operations with small blocks
(i.e., 4 KB) because small blocks have more I/O request rates than large blocks. In addition,

Appl. Sci. 2023, 13, 13329 12 of 16

memory processing increases when the block size is small (4 KB). This is because Kata
containers require memory mapping for every file I/O request to deliver the requests to
the host OS, which increases the amount of memory (un-)mapping and (de-)allocation.
In addition, memory processing includes virtiofsd clearing the dirty flag of the memory
used. These results show that the architecture of Kata containers incurs additional memory
overhead, such as reconstructing EPT entries, frequent memory mapping, and clearing
flags. Note that the overhead of memory processing decreases with the 1 MB blocks because
the number of memory (un-)mapping operations decreases with large blocks.

Read 4KB Read 1MB Write 4KB Write 1MB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 C

PU
 c

yc
le

s

Mode transition Handling EPT Scheduling
Application Memory processing ETC

Figure 9. Symbol-level profiling of I/O processing in Kata containers.

6.2. gVisor

In gVisor, the file I/O requests from the containers are not directly applied to the
filesystem, but they are filtered by Sentry. If the requests are examined as valid, Gofer
executes the corresponding filesystem API, such as vfs_read. This is different from the
Kata containers that allow the containers to write the file I/O requests to the memory
space allocated to the VMs. Because the containers in gVisor cannot access the memory
space directly, they do not incur the overhead of handling EPT. Instead, Figure 10 shows
that mode transition and filesystem processing have a major impact on the file I/O perfor-
mance in gVisor. Specifically, filesystem processing increases when the block size increases
from 4 KB to 1 MB for both the read and write operations. This is because the I/O band-
width and CPU usage in System increases with the increase in block sizes as depicted in
Figures 5 and 6.

In addition, mode transition decreases when the block size increases for both read and
write. The reason is that the number of system calls decreases when the block size increases
from 4 KB to 1 MB, which causes the mode transition to decrease as well. Moreover, for
the 4 KB block, the overhead in Application is 8.6% for read and 7.7% for write, and for
1 MB, Application becomes negligible for both read and write (1.2% and 1.5%, respectively).

Read 4KB Read 1MB Write 4KB Write 1MB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 C

PU
 c

yc
le

s

Mode transition Scheduling Application
Filesystem processing etc.

Figure 10. Symbol-level profiling of I/O processing in gVisor.

Appl. Sci. 2023, 13, 13329 13 of 16

6.3. Firecracker

Figure 11 shows that for read, filesystem processing occupies the largest CPU cycles at
more than 41.3%. filesystem processing indicates file I/O processing in the host OS, which
delivers the file I/O requests between the storage devices in the host server and the VM.
Note that this is different from the results in Figure 6a, which shows that the largest fraction
of the CPU usage is spent in Guest. The reason for this difference is that we conduct the
profiling on the host OS rather than on the VM. Because our profiling result only contains
filesystem-related functions executed on the host OS, this leads to amplifying the overhead
of filesystem processing. We plan to conduct additional profiling to include the overhead
caused by the filesystem-related functions executed in the VM.

For write, handling EPT is the symbol that occupies more than 38.5% of the CPU cycles.
This is because the I/O requests should be stored in the virtio block device in the VM.
This makes the write performance lower than the read (as shown in Figure 5b). The mode
transition is similar regardless of the type of operations or block sizes, which is distinct from
the other runtimes. This is because Firecracker prevents VMs and its VMM from interfering
with each other, which reduces the mode transition. In other words, the architecture of
Firecracker leads to a superior file I/O performance over other runtimes.

Read 4KB Read 1MB Write 4KB Write 1MB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 C

PU
 c

yc
le

s

Mode transition Handling EPT Scheduling
Application Filesystem processing etc

.

Figure 11. Symbol-level profiling of I/O processing in Firecracker.

7. Discussion

This paper focuses on evaluating the file I/O performance of secure container run-
times. Our evaluation results show that Firecracker offers the highest file I/O performance
for all types of operations with high efficiency compared to the other secure container
runtimes. Firecracker outperforms the other runtimes in read and write operations by
leveraging the virtio block device within the VM for efficient page caching, enhancing the
overall performance. In contrast, Kata containers’ reliance on a shared filesystem leads
to asynchronous request transfers between the VM and virtio-fs, impacting performance.
gVisor exhibits significantly lower performance than Firecracker due to its user-space ker-
nel, which necessitates mode transition and system call filtering for each file I/O request,
unlike Firecracker’s streamlined utilization of the VM’s page cache.

When we determine which runtime to choose for constructing container environments,
the security aspect of the runtime should be considered also. As each runtime adopts a
different architecture (e.g., the VM layer or user-space kernel) to enhance the security
of the containers, the security characteristics can be different. The threat models can be
categorized into three cases: (1) protection between a container and an application running
in the container, (2) inter-container protection, and (3) protection between containers and
the host OS as described in the previous study [47]. The security assessment of each runtime
depends on the threat cases. For example, to protect the host OS from malicious containers,
Firecracker and Kata containers may be better choices than gVisor. This is because the
containers in gVisor execute more system calls (74) to the host OS than those of Firecracker
(37) and Kata containers (none) [48,49]. Moreover, Firecracker and Kata containers assign

Appl. Sci. 2023, 13, 13329 14 of 16

an independent VM to each container, so most of the system calls are handled inside the
VM. Therefore, they do not affect the host OS.

There have been attempts to assess the security of container runtimes [47,49]. However,
previous studies only provide results with limited aspects, such as the evaluation of a single
container runtime (i.e., runc) or focusing on a system call-level security assessment. Hence,
it is necessary to evaluate in detail the security aspects of secure container runtimes, similar
to what we perform for file I/O performance. In future work, we plan to perform security
assessments for secure container runtimes and find the trade-off between security and
overall performance.

8. Concluding Remarks

This paper analyzes the file I/O stack of the representative secure container runtimes,
Kata containers, gVisor, and Firecracker. We evaluate the runtimes in terms of file I/O
performance and CPU usage and compare the results to the popular container runtime,
runc. This paper points out that each runtime adopts different file I/O mechanisms, such
as virtio-fs and virtio block. Also, we present the architectural comparison that leads to
the significant differences in the file I/O performance and CPU usage of the runtimes.
The key findings of this paper are three-fold. First, Firecracker shows the highest file
I/O performance because it can allow applications to exploit the page cache inside the
corresponding VMs. Second, Kata containers offer the lowest file I/O performance while
consuming the largest amount of CPU resources. We find that the root cause of the
inefficiency lies in their file I/O stack based on the asynchronous event notification between
a VM and virtiofsd. Last, we observe that gVisor scales well as the block size increases.
The reason is that the file I/O requests are mainly handled by the host OS so that gVisor
scales as the host OS.

Author Contributions: Conceptualization, K.L. and J.K.; methodology, I.-H.K.; software, K.L. and
J.K.; validation, I.-H.K., H.P. and C.-H.H.; formal analysis, K.L.; investigation, I.-H.K., H.P. and
C.-H.H.; resources, C.-H.H.; data curation, K.L.; writing—original draft preparation, K.L., J.K. and
I.-H.K.; writing—review and editing, H.P. and C.-H.H.; visualization, K.L.; supervision, H.P. and
C.-H.H.; project administration, C.-H.H.; funding acquisition, C.-H.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was supported by Korea Institute for Advancement of Technology (KIAT) grant
funded by the Korea Government (MOTIE) (P0017011, HRD Program for Industrial Innovation). This
research was supported by the Chung-Ang University Research Scholarship Grants in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Soltesz, S.; Pötzl, H.; Fiuczynski, M.E.; Bavier, A.; Peterson, L. Container-based operating system virtualization: A scalable,

high-performance alternative to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, Lisbon, Portugal, 21–23 March 2007; pp. 275–287.

2. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
3. Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance comparison of virtual machines and linux containers. In

Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia,
PA, USA, 29–31 March 2015; pp. 171–172.

4. Li, Z.; Cheng, J.; Chen, Q.; Guan, E.; Bian, Z.; Tao, Y.; Zha, B.; Wang, Q.; Han, W.; Guo, M. RunD: A Lightweight Secure Container
Runtime for High-density Deployment and High-concurrency Startup in Serverless Computing. In Proceedings of the 2022
USENIX Annual Technical Conference (USENIX ATC 22), Carlsbad, CA, USA, 11–13 July 2022; pp. 53–68.

5. Hong, C.H.; Varghese, B. Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms.
ACM Comput. Surv. (CSUR) 2019, 52, 1–37. [CrossRef]

http://doi.org/10.1145/3326066

Appl. Sci. 2023, 13, 13329 15 of 16

6. National Vulnerability Database. CVE-2019-5736 Detail. 2019. Available online: https://nvd.nist.gov/vuln/detail/CVE-2019-5
736 (accessed on 14 April 2021).

7. Walsh, D.J. Are Docker Containers Really Secure? 2014. Available online: https://opensource.com/business/14/7/docker-
security-selinux (accessed on 23 March 2021).

8. Sultan, S.; Ahmad, I.; Dimitriou, T. Container security: Issues, challenges, and the road ahead. IEEE Access 2019, 7, 52976–52996.
[CrossRef]

9. Agache, A.; Brooker, M.; Iordache, A.; Liguori, A.; Neugebauer, R.; Piwonka, P.; Popa, D.M. Firecracker: Lightweight virtualization
for serverless applications. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), Santa Clara, CA, USA, 25–27 February 2020; pp. 419–434.

10. gVisor: Application Kernel for Containers. Available online: https://github.com/google/gvisor (accessed on 6 May 2021).
11. Randazzo, A.; Tinnirello, I. Kata containers: An emerging architecture for enabling mec services in fast and secure way. In

Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
Granada, Spain, 22–25 October 2019; pp. 209–214.

12. Barr, J. Firecracker—Lightweight Virtualization for Serverless Computing. 2018. Available online: https://aws.amazon.com/ko/
blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/ (accessed on 14 April 2021).

13. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual Technical Conference, FREENIX
Track, Anaheim, CA, USA, 10–15 April 2005; pp. 41–46.

14. virtio-fs. Available online: https://virtio-fs.gitlab.io/ (accessed on 25 May 2021).
15. Russell, R. virtio: Towards a de-facto standard for virtual I/O devices. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 95–103. [CrossRef]
16. Klimovic, A.; Wang, Y.; Stuedi, P.; Trivedi, A.; Pfefferle, J.; Kozyrakis, C. Pocket: Elastic ephemeral storage for serverless analytics.

In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), Carlsbad, CA,
USA, 8–10 October 2018; pp. 427–444.

17. Kang, J.; Hu, C.; Wo, T.; Zhai, Y.; Zhang, B.; Huai, J. Multilanes: Providing virtualized storage for os-level virtualization on
manycores. ACM Trans. Storage (TOS) 2016, 12, 1–31. [CrossRef]

18. Young, E.G.; Zhu, P.; Caraza-Harter, T.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. The true cost of containing: A gVisor case
study. In Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton, WA, USA, 8
July 2019.

19. Anjali.; Caraza-Harter, T.; Swift, M.M. Blending containers and virtual machines: A study of firecracker and gVisor. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Lausanne,
Switzerland, 17 March 2020; pp. 101–113.

20. Debab, R.; Hidouci, W.K. Containers Runtimes War: A Comparative Study. In Future Technologies Conference (FTC) 2020,
Proceedings of the Future Technologies Conference, Vancouver, BC, Canada, 5–6 November 2020; Springer: Cham, Switzerland, 2020; pp.
135–161.

21. Goethals, T.; Sebrechts, M.; Al-Naday, M.; Volckaert, B.; De Turck, F. A functional and performance benchmark of lightweight
virtualization platforms for edge computing. In Proceedings of the 2022 IEEE International Conference on Edge Computing and
Communications (EDGE), Barcelona, Spain, 10–16 July 2022; pp. 60–68.

22. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view
of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

23. Ngenzi, A.; R, S.; Nair, S.R. Dynamic Resource Management in Cloud Data Centers for Server Consolidation. arXiv 2015,
arXiv:1505.00577.

24. Kumar, R.; Thangaraju, B. Performance Analysis between runC and Kata Container Runtime. In Proceedings of the 2020 IEEE
International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July
2020; pp. 1–4.

25. Viktorsson, W.; Klein, C.; Tordsson, J. Security-Performance Trade-offs of Kubernetes Container Runtimes. In Proceedings of
the 2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Nice, France, 17–19 November 2020; pp. 1–4.

26. Park, J.; Kim, H.; Lee, K. Evaluating Concurrent Executions of Multiple Function-as-a-Service Runtimes with MicroVM. In
Proceedings of the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), Beijing, China, 19–23 October 2020;
pp. 532–536.

27. Barcelona-Pons, D.; García-López, P. Benchmarking Parallelism in FaaS Platforms. arXiv 2020, arXiv:2010.15032.
28. Cadden, J.; Unger, T.; Awad, Y.; Dong, H.; Krieger, O.; Appavoo, J. SEUSS: Skip redundant paths to make serverless fast. In

Proceedings of the Fifteenth European Conference on Computer Systems, Heraklion, Greece, 27–30 April 2020; pp. 1–15.
29. Ustiugov, D.; Petrov, P.; Kogias, M.; Bugnion, E.; Grot, B. Benchmarking, analysis, and optimization of serverless function

snapshots. arXiv 2021, arXiv:2101.09355.
30. Thomas, S.; Ao, L.; Voelker, G.M.; Porter, G. Particle: Ephemeral endpoints for serverless networking. In Proceedings of the 11th

ACM Symposium on Cloud Computing, Virtual Event, 19–21 October 2020; pp. 16–29.
31. Dukic, V.; Bruno, R.; Singla, A.; Alonso, G. Photons: Lambdas on a diet. In Proceedings of the 11th ACM Symposium on Cloud

Computing, Virtual Event, 19–21 October 2020; pp. 45–59.

https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://opensource.com/business/14/7/docker-security-selinux
https://opensource.com/business/14/7/docker-security-selinux
http://dx.doi.org/10.1109/ACCESS.2019.2911732
https://github.com/google/gvisor
https://aws.amazon.com/ko/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://aws.amazon.com/ko/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://virtio-fs.gitlab.io/
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/2801155
http://dx.doi.org/10.1145/1721654.1721672

Appl. Sci. 2023, 13, 13329 16 of 16

32. Koller, R.; Williams, D. An ounce of prevention is worth a pound of cure: Ahead-of-time preparation for safe high-level container
interfaces. In Proceedings of the 11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 19), Renton, WA,
USA, 8–9 July 2019.

33. Neiger, G.; Santoni, A.; Leung, F.; Rodgers, D.; Uhlig, R. Intel Virtualization Technology: Hardware Support for Efficient Processor
Virtualization. Intel Technol. J. 2006, 10, 167–177. [CrossRef]

34. Uhlig, R.; Neiger, G.; Rodgers, D.; Santoni, A.L.; Martins, F.C.; Anderson, A.V.; Bennett, S.M.; Kagi, A.; Leung, F.H.; Smith, L. Intel
virtualization technology. Computer 2005, 38, 48–56. [CrossRef]

35. Zhang, B.; Wang, X.; Lai, R.; Yang, L.; Wang, Z.; Luo, Y.; Li, X. Evaluating and optimizing I/O virtualization in kernel-based
virtual machine (KVM). In Network and Parallel Computing, Proceedings of the IFIP International Conference on Network and Parallel
Computing, Zhengzhou, China, 13–15 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 220–231.

36. Yang, S. Extending KVM with new Intel Virtualization technology. In Proceedings of the KVM Forum, Napa Valley, CA, USA,
11–13 June 2008.

37. Dong, Y.; Xue, M.; Zheng, X.; Wang, J.; Qi, Z.; Guan, H. Boosting GPU Virtualization Performance with Hybrid Shadow Page
Tables. In Proceedings of the 2015 USENIX Annual Technical Conference (USENIX ATC 15), Santa Clara, CA, USA, 8–10 July
2015; pp. 517–528.

38. Kunwar, B. Disk I/O Performance of Kata Containers. Available online: https://www.stackhpc.com/images/IO-Performance-
of-Kata-Containers-TheNewStack.pdf (accessed on 12 May 2021).

39. Wilcox, M.; Zwisler, R. Linux DAX. Available online: https://www.kernel.org/doc/Documentation/filesystems/dax.txt
(accessed on 8 April 2021).

40. Szeredi, M. FUSE: Filesystem in Userspace. 2010. Available online: http://fuse.sourceforge.net (accessed on 8 April 2021).
41. Kim, H.; Kim, S.; Jeong, J.; Lee, J. Virtual asymmetric multiprocessor for interactive performance of consolidated desktops. In

ACM SIGPLAN Notices, Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments—
VEE’14, Salt Lake City, UT, USA, 1–2 March 2014; ACM Press: New York, NY, USA, 2014; pp. 29–40. [CrossRef]

42. gVisor—Ptrace. Available online: https://gvisor.dev/docs/architecture_guide/platforms/#ptrace (accessed on 20 May 2021).
43. gVisor—KVM. Available online: https://gvisor.dev/docs/architecture_guide/platforms/#kvm. (accessed on 20 May 2021).
44. fio. Available online: https://linux.die.net/man/1/fio (accessed on 8 April 2021).
45. mpstat. Available online: https://linux.die.net/man/1/mpstat (accessed on 8 April 2021).
46. Brown, N. Overlay Filesystem. Available online: https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

(accessed on 6 May 2021).
47. Laurén, S.; Memarian, M.R.; Conti, M.; Leppänen, V. Analysis of security in modern container platforms. In Research Advances in

Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 351–369.
48. Skarlatos, D.; Chen, Q.; Chen, J.; Xu, T.; Torrellas, J. Draco: Architectural and Operating System Support for System Call Security.

In Proceedings of the 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Athens, Greece,
17–21 October 2020; pp. 42–57.

49. Yang, J.; Tak, B. Security Assessment Technique of a Container Runtime Using System Call Weights. J. Korea Soc. Comput. Inf.
2020, 25, 21–29.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1535/itj.1003.01
http://dx.doi.org/10.1109/MC.2005.163
https://www.stackhpc.com/images/IO-Performance-of-Kata-Containers-TheNewStack.pdf
https://www.stackhpc.com/images/IO-Performance-of-Kata-Containers-TheNewStack.pdf
https://www.kernel.org/doc/Documentation/ filesystems/dax.txt
http://fuse.sourceforge.net
http://dx.doi.org/10.1145/2576195.2576199
https://gvisor.dev/docs/architecture_guide/platforms/#ptrace
https://gvisor.dev/docs/architecture_guide/platforms/#kvm
https://linux.die.net/man/1/fio
https://linux.die.net/man/1/mpstat
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

	Introduction
	Related Work
	Performance Comparison and Analysis
	Runtime Optimization

	Background
	Kernel-Based Virtual Machine with Intel Virtualization Technology
	Linux Secure Computing Mode (Seccomp)

	File Operations in Secure Container Runtimes
	Kata Containers
	gVisor
	Firecracker

	Performance and CPU Usage Analysis
	Experimental Setup
	Sequential Read/Write
	Random Read/Write

	Bottleneck Analysis Using Symbol-Level Profiling
	Kata Containers
	gVisor
	Firecracker

	Discussion
	Concluding Remarks
	References

