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ABSTRACT Fake news can be easily propagated through social media and cause negative societal effects.
Since fake news is disinformation with malicious intent, manual fact-checking requires great effort. In order
to cope with these challenges, many automatic fake news detection models have been introduced. Recent
studies have shown that social network information along with news content can be used effectively for
detecting fake news. In this paper, we propose a Topological and Sequential Neural Network model (TSNN)
for detecting fake news by capturing the diffusion patterns between source news and users in social networks.
We employ the supernode approach instead of simple graph pooling methods to extract representative
features in graph topological structure. To better learn the representations in the supernode, we design
two-staged graph neural networks reflecting the heterogeneity between news and Twitter users. Our model
additionally captures sequential information on news diffusion path by using a transformer. We evaluate
our model with two fake news benchmark datasets annotated by fact-checking websites: PolitiFact and
GossipCop. TSNN achieves 92.15% accuracy and 92.11% F1-score on PolitiFact, and 97.91% accuracy and
97.88% F1-score on GossipCop. These results demonstrate that our model significantly outperforms other
baselines, establishing it as a state-of-the-art solution for fake news detection. To verify the effectiveness
following model configuration, we perform ablation studies to demonstrate how each component among
our two-stage graph neural networks, and sequential information modules contribute to the performance
improvements.

INDEX TERMS Fake news detection, graph neural network, graph classification.

I. INTRODUCTION
The technological advancement from traditional newspapers
to online news platforms has revolutionized access to infor-
mation. This transition has drastically enabled rapid acquisi-
tion and sharing of news on an unparalleled scale, granting
readers the flexibility to choose news according to their
personal preferences. However, these benefits have not come
without serious drawbacks. The digital age has also witnessed
an alarming increase in the production of fake news content.
These deceptive articles are purposefully crafted to mislead
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readers, with the hidden aim of boosting click-through
rates for the creators. The effects of these misleading news
pieces are far-reaching, inducing personal, public, and even
global damages. Economically and emotionally, individuals
and communities have suffered due to the misinformation
spread by fake news. A critical example of its detrimental
effects is seen in the case of the COVID-19 pandemic,
where misinformation had a substantial impact on public
health guidelines and overall well-being of communities
worldwide [1]. Given this scenario, the detection of fake news
has transformed from being a mere concern to a crucial task,
demanding concerted efforts from both societal and research
domains.
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While the phrase ‘‘fake news’’ is widely recognized, it is
ironically undefined and lacks a standardized definition [2].
Previous studies [2], [3] have tried to tackle this issue by
dividing the societal problems caused by fake news into
multiple categories. These categories range from rumor,
misinformation, clickbait, propaganda, to disinformation.
Each type is characterized based on factors like the authen-
ticity of the information, the intent behind spreading it,
and the inherent characteristics of the information itself.
In this particular research, our primary focus lies on the
disinformation category of fake news, which implies news
pieces that are knowingly false and are designed to deceive
readers.

Most of the existing fake news detection utilizes deep
learning mechanisms categorized as two types of meth-
ods: content-based and propagation-based. Content-based
methods focus on analyzing the content of news articles.
Using natural language text [4], [5], [6], [7] recognizes
linguistic patterns, and assesses the consistency of informa-
tion, or using image-text multimodality [8], [9] allows the
broader perspective by considering the interplay between
textual and visual components in evaluating the credibility
of news content. Propagation-based methods identify the
patterns of spreading information across networks and
consider the dissemination pathways on social networks and
online communities. To comprehend the propagation struc-
ture, some studies exploit graph neural networks (GNNs)
[10], [11], knowledge-graphs [12], or multiple features
[13], [14], [15] containing relationships between news,
social media, and users. Especially, several graph neural
network-based methodologies have been utilized to model
the news propagation network in the form of a graph
structure. The data structure of these models is highly
effective in capturing the relationships among nodes and
also in representing the propagation patterns. Within this
graph neural network, nodes are designed to exchange
messages and update information from neighboring nodes,
simulating the interactive essence of social media networks.
News content is widely disseminated via social media
platforms, with Twitter being a major contributor. Twitter
users share and post news on their accounts, contributing
to the news propagation network. In an insightful study by
Zhao et al. [16], it was found that the propagation patterns
of fake news and real news exhibited big differences. It was
observed that real news was largely shared in the first layer of
the network, where the writer’s original content was posted.
However, fake news was shared more frequently beyond the
first layer, meaning it was propagated via retweets more than
original posts.

We propose a model called the Topological and Sequential
Neural Network model (TSNN) that is specifically drawing
from this significant observation. We present sophisticated
experimental results on fake news detection datasets, demon-
strating the potential of TSNN to outperform traditional
methods in identifying fake news. Our experiments are
structured to directly compare with foundational baselines,

ensuring a straightforward evaluation of our model. The
ablation study sheds light on the effectiveness of various
components, revealing how each part contributes to the
model’s performance in fake news detection, while also
pointing out areas for improvement.

Our contributions can be summarized as follows:
• We introduce a new concept of ‘supernode’, which
stands as a comprehensive representation of the topo-
logical information within the graph. This approach is
a notable shift from conventional methodologies, such
as simple average pooling or max pooling, which may
not fully capture the breadth of network data. The use
of a supernode allows for a more encompassing view
of the network, highlighting its distinctive features and
capturing the complete topological landscape.

• In order to augment the effectiveness of the supernode
and to gain a richer understanding of the graph
data, we have constructed two-staged graph neural
networks. This network deploys a leafGAT (leaf Graph
Attention Network) at the leaf nodes and integrates
a time-decay Graph Convolutional Network (GCN)
throughout the full graph. This unique combination
presents a multi-dimensional view of the graph, encap-
sulating diverse data points and providing an intricate
representation of the graph structure.

• In acknowledgment of the temporal characteristics of
news propagation, we have included sequential feature
information along the path of news dissemination.
To achieve this, we have harnessed the capabilities of
a transformer architecture, a proven effective model for
handling sequential data. The integration of temporal
features offers a more in-depth analysis of how news
propagates over time, making our model more effective
in understanding and predicting fake news propagation
patterns.

The remainder of this paper is organized as follows:
Section II provides backgrounds for understanding our
method and related work in the fields of fake news detection.
Section III describes datasets about fake news detection, used
in our experiments. Section IV outlines the methodology,
describing the architecture of the TSNN model. Section V
presents the experimental setup, including hyperparameter
details, environment, evaluation metrics, and comparison
with baseline methods. The ablation study with dynamic
analysis is discussed in Section VI. Finally, Section VII
concludes the paper by summarizing the contributions and
outlining potential avenues for future research.

The implementation of our model can be found at GitHub
repository.1

II. BACKGROUND
Our TSNN is based on graph neural networks and trans-
former architecture for fake news detection. GNNs are
an essential method for understanding topological patterns

1https://github.com/dongin1009/TSNN-DFN
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in our topological information layer. Previous fake news
detection approaches based on GNNs were proposed with
their own advantages and outstanding performance. This
section describes the background knowledge of graph neural
networks and previous fake news detection approaches to
explain our method.

A. GRAPH NEURAL NETWORKS
GNNs are influential methods for representation learning
in graph-structured data, which are commonly found in
various fields such as social networks [17], chemical
molecular structure [18], and recommendation systems [19].
These systems consist of nodes and edges where nodes
represent entities and edges represent the connections or
relationships between these entities. GNNs are useful for
capturing intricate relationships and dependencies between
nodes in complex graph-structured data, enabling enhanced
understanding and analysis of the underlying connections.
By aggregating information from neighboring nodes and
propagating it through layers, GNNs can distill contextual
information, making them valuable for tasks such as node
classification, link prediction, and graph classification. The
unique feature of GNNs is their ability to propagate node
messages to neighboring nodes connected via these edges and
dynamically update node features.

Several GNN convolution architectures have been devel-
oped in recent years, each designed for different types
of graph-structured data. In this paper, we focus on three
significant architectures: the graph convolutional network
(GCN) [20], graph attention network (GAT) [21], and
GraphSAGE [22]. The GCN [20] operates by propagating
a node’s message to its neighboring nodes and updating
the node features based on the received messages. Even
with its simplicity, it is a powerful method widely applied
in various fields. In contrast, the GAT [21], an evolved
version of the GCN, incorporates attention mechanisms into
GNNs, enabling it to assign different importance levels to
different nodes. This attention-driven approach enhances the
GAT’s ability to capture nuanced relationships within the
graph, enabling it to excel in tasks that require modeling
complex and varying node interactions. GraphSAGE [22]
adopts a novel approach of sampling local neighbor nodes
and propagating messages within these sampled nodes,
which effectively reduces the computational complexity and
enhances scalability. By efficiently aggregating information
from a diverse set of local neighbors, GraphSAGE manages
to strike a balance between computational efficiency and
capturing global graph characteristics, making it well-suited
for large-scale graph-based learning tasks.

Significant strides have been made in the development
of GNN structures. However, effectively encapsulating an
entire graph remains a challenging task. This problem is
particularly noticeable in graph classification tasks. The
difficulty stems from the arbitrary structure and unpredictable
connections within a graph. The ordinary average pooling

or max pooling is often used strategy in graph classification
tasks. These methods may lead to a loss of important
structural information and fail to capture nuanced patterns
within the graph, resulting in suboptimal classification
performance. To address this, various graph pooling methods
have been proposed, such as the differentiable pooling
(DiffPool) [23] which uses soft cluster assignments, and the
top-K pooling [24] which selects the top-K scored nodes
for representation. Both methods aim to provide a more
meaningful and representative snapshot of the graph data,
enhancing the graph classification performance.

B. FAKE NEWS DETECTION
The GCNFN (Graph Convolutional Network Fake News
detection) model, introduced by Monti et al. [25], signified
a paradigm shift in the field of fake news detection. This
pioneering approach marked the first utilization of the
GCN [20] within this context, thereby presenting the concept
of a news propagation graph specifically designed for the
task of detecting fake news. In essence, GCNFN capitalizes
on the abilities of GCN to decode intricate patterns within
news propagation across social networks, making substantial
strides toward enhancing the identification of fake news.

After the introduction of GCNFN, the Bi-GCN (Bidi-
rectional Graph Convolutional Network) model was pro-
posed by Bian et al. [26] which captures graph structure
bidirectionally for a rumor detection task. Taking a unique
stance, Bi-GCN encompassed a bidirectional GCN opera-
tion, integrating both top-down and bottom-up approaches.
By consolidating the outputs from these two unidirectional
GCNs, Bi-GCN offered a comprehensive depiction of the
network’s information propagation, thereby improving the
efficiency of fake news detection.

Further advancing the field, Dou et al. [27] have presented
the UPFD (User Preference-aware Fake news Detection)
model with news embeddings and user encodings as
graph-structured data. This model added a novel layer of
complexity by incorporating user preference, specifically
targeting users who are the initial disseminators of news on
Twitter. To accurately represent these user preferences, UPFD
utilized an average of embeddings from a user’s 200 most
recent tweets. UPFD’s empirical evidence suggested that
combining news context and user preferences proved more
effective than relying solely on news features. In addition,
UPFD adopted various graph neural network architectures,
including GCN [20], GAT [21], and GraphSAGE [22],
to measure their effectiveness.

Addressing the issue of uncertainty within news propaga-
tion, Wei et al. [28] proposed the UPSR (Uncertainty-aware
Propagation Structure Reconstruction) model for fake news
detection. Utilizing a novel Gaussian Propagation Estimation,
UPSR aims to reconstruct the original propagation structure
and learn the latent interactions between network nodes.
The UPSR reconstructs long-range and potential interactions
in the uncertain propagation to explore diverse structural
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patterns. This novel approach offers a sophisticated way of
dealing with the inherent uncertainties in news propagation,
consequently strengthening the accuracy of fake news
detection.

III. DATASETS
The FakeNewsNet [29] dataset2 collected news with its fake
or real label which was evaluated by renowned fact-checking
websites, PolitiFact and GossipCop. The PolitiFact focuses
on politically oriented news and the GossipCop is centered
around celebrity gossip. These websites play a critical role
in distinguishing real news from fake news. However, the
original complete news and tweet texts were not disclosed by
the news publisher copyrights and Twitter privacy policies.
In certain cases, the web pages of original news are deleted
and are no longer available.

In this study, we utilized datasets made publicly acces-
sible3 for the identification of fake news which have been
derived from existing research [27]. Dou et al. [27] provided
these datasets in the form of pre-encoded news vectors,
Twitter users vectors, and their interconnection from the
original news retweet graphs of FakeNewsNet [29]. The
datasets incorporate news embedding and user preference
embedding vectors. These user preference embedding vectors
were formulated by averaging text embeddings from the
most recent 200 tweets for individual users. They suggested
that this process gives an overall representation of a user’s
preference in a condensed form.

As indicated in Table 1, the PolitiFact dataset comprises
157 real and fake news pieces, respectively. The real and
fake news pieces maintain a balanced ratio. Also, GossipCop
dataset has much more amount including 5464 source news
pieces which have 2732 of real news and 2732 of fake news.
In both datasets, the fake news cases have a higher average
graph depth of news diffusion network compared to the real
news cases. This statistic indicates that fake news is shared
more extensively at a deeper level than real news. In other
words, real news is more frequently shared as a ‘tweet’ (at the
first depth level) than a ‘retweet’ (at the second depth level or
above).

TABLE 1. Statistics of fake news detection benchmark datasets and
graphs.

For our experiments, we used pre-encoded embeddings by
Word2Vec [30] from the spaCy python library. In this setup,
we preserved 25% of the dataset randomly for generating

2https://github.com/KaiDMML/FakeNewsNet
3https://github.com/safe-graph/GNN-FakeNews#datasets

a reproducible testing set, in line with the methodology
presented in [28] and [31]. The remaining 75% of the dataset
is subjected to a 5-fold cross-validation strategy, enhancing
the reliability of our experimental outcomes. The training,
validation, and testing datasets have the same label proportion
as original dataset.

IV. METHODS
We propose our Topological and Sequential Neural Network
model (TSNN) for detecting fake news. As shown in
Fig. 1, TSNN is composed of 4 modules which are news
diffusion modeling, topological information layer, sequential
information layer, and classification layer. The news diffusion
modeling is the first step, creating a detailed map of the jour-
ney news articles take on social media platforms, representing
each post as nodes in a network. The topological information
layer uses an element known as a ‘supernode’ which is a
condensed expression of the entire network structure. This
layer provides valuable insights into the overall topology of
the news diffusion pattern. Simultaneously, the sequential
information layer contributes to this process by understanding
the timeline of news propagation. It uses a transformer model,
a mechanism adept at tracking the sequence and timing of
the news spread, effectively capturing the temporal aspect of
the information flow. Finally, the classification layer employs
all the insights from the previous layers and leverages this
comprehensive understanding to categorize the news as either
real or fake. In the following, we provide details of each
module.

A. NEWS DIFFUSION MODELING
The foundation of our model is centered on the concept of
news diffusion modeling. This process starts with leveraging
the FakeNewsNet dataset [29], which is a comprehensive
collection of source news articles and their corresponding
shared tweets, complete with the timestamps τi when they
were posted. These news articles, once released, found their
way through the intricate web of Twitter, leading to the
formation of a distinct propagation network unique to each
piece of news. This structure is made as a tree structure in
which a piece of source news and Twitter users, consists of a
root node and leaf nodes. A graph of tree structure represents
the propagation network for news sharing flow.

In this representation, the root node denoted as N or U0,
stands for the source news article when it was first introduced
on the platform. The root node is the embedding of news
text, that averaged Word2Vec [30] word representation for
the whole news text. As the news spreads and gets shared,
we see the emergence of the leaf nodes, denoted as U1:n.
Each of these leaf nodes corresponds to individual Twitter
users who engaged with the article, be it through sharing,
commenting, or tweeting about it. This Twitter user node
was produced by averaging 200 historical tweets represented
as Word2Vec [30] word embedding. In the context of our
study’s graph structure, the nodes represent the news pieces
or the Twitter users, the edges show the interactions or
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FIGURE 1. Our overall topological and sequential neural network (TSNN) model architecture. TSNN comprises four key layers that are news diffusion
modeling, topological information layer, sequential information layer, and classification layer. Inputs are news N , Twitter users Ui , posting timestamp τi ,
and news-user connections. The final output ŷ is utilized with real/fake label y for calculating loss. The model updates weights through gradient descent
by cross-entropy loss function.

sharing activity between them. This interaction shows how
fast a news story spreads, which can help tell if it is
fake or not. Specifically, an edge might represent a user
sharing a news piece or a user retweeting another user’s
post about a certain news article. This interaction is essential
as it captures the propagation of news across the platform
and helps in understanding how quickly and widely a
particular news item spreads, which can be an indicator of its
harmfulness.

By creating this tree structure, we aim to capture two
critical aspects: the inherent graph structure representing
connections and the sequence in which the news propagates.
To convey forward, tree-structured news diffusion network
processes appropriately to fit the next layer. First, according
to posting time, news and tweets are aligned chronologi-
cally to make one sequence and this sequence feeds into
the sequential-transformer of sequential information layer.
Second, the tree structure preserving its nodes, edge connec-
tions, and timestamp, feeds into the two-stage GNN layers
of topological information layer. These structured represen-
tations serve as the input for the subsequent processing layers
within our model, ensuring a detailed and clear understanding
of the news spread.

B. TOPOLOGICAL INFORMATION LAYER
The next component is the topological information layer. The
news diffusion network comprises a news node and multiple
tweet user nodes. Each of these nodes carries specific
embedding characteristics: news embeddings represent news
content, whereas tweet user embeddings signify the average
of tweets. Due to the heterogeneous nature of these embed-
dings, our topological information layer is formulated as
two-stage GNN layers comprising leafGAT and time-decay
GCNs to aggregate efficiently.

The first stage, leafGAT employs GAT [21] convolution as
its foundation. We eliminate a root node (news) to perform
message passing within leaf nodes (user). The leafGAT
updates user nodes by considering diverse user preferences
and avoids discrepancies from the nature of heterogeneous
nodes. In the context of a deep graph, it can be challenging to
propagate the information from the end leaf node to the root
node. Therefore, leafGAT focuses on bringing up themessage
from the end of leaf node toward the root node. By enabling
efficient message propagation across nodes in a hierarchical
graph structure, leafGAT ensures that information flows
seamlessly across the entire graph, fostering holistic dissem-
ination of knowledge and contributing to a more thorough
understanding of intricate relationships and patterns within
the data. The leafGAT executes information propagation by
considering the attention between only leaf nodes in the tree-
structured graph. This attention performs to find importance
from Twitter users. The leafGAT is formulated as follows:

U ′
i = leafGAT(Ui)

= αi,i(W·Ui) +
H
∥

h=1

( ∑
j∈Ni,i,j ̸=0

αh
i,j(W

h
·Uj)

)
, (1)

where ∥ expresses the concatenation operation,H denotes the
number of heads in the multi-head attention mechanism, and
Ni is the neighborhood indices of node Ui in the graph.
The trainable weight matrix W is learned during the

training process, and it plays a role in determining how
information from different nodes is integrated. Through the
optimization of W, the model gains the ability to emphasize
or attenuate certain aspects of node information to capture
meaningful patterns and nuances present in the graph data.
The attention coefficient αi,j is calculated for each pair
(i-th and j-th) of nodes in the graph, serving as a measure
of how much attention node Ui should pay to node Uj when
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updating its own information. This attention mechanism
allows the model to dynamically allocate importance to
different relationships based on the content and context of
the nodes, enhancing its ability to capture both local and
global dependencies within the graph. Ultimately, attention
coefficient α between nodes Ui and Uj is derived using the
following formula:

αi,j =

exp
(
φ
(
a⊤[W·Ui∥W·Uj]

))
∑

k∈G exp
(
φ
(
a⊤[W·Ui∥W·Uk ]

)) , (2)

where φ denotes the LeakyReLU [32] activation function and
a denotes attention mechanism structured as a single-layer
feed-forward neural network and G means whole nodes in
a single graph. LeakyReLU [32] is an activation function
designed to address the ‘dying ReLU’ problem, allowing
small negative values when the input is less than zero to
maintain the activation and gradient flow. This trickmakes the
model avoid dying ReLU and gradient vanishing problems.
After through leafGAT, the nodes are directed to the second
stage, time-decay GCNs having edge weight as posting time
difference. To make topological information feature T , root
node N and updated leaf node U ′ are fed to time-decay
GCNs which have two layered GCNs. In this layer, all nodes
are updated by their neighborhood nodes and using time
difference between node pairs. After two layered GCNs,
we extract supernode to topological information feature T
from root node U ′′

0 in the final layer as follows:

U (l)
i = time-decay GCN(U ′

i )

= U (l−1)
i +

∑
j∈Ni∪{i}

τj,i(W(l−1)
·U (l−1)

j )

T = U ′′

0 , (3)

where τj,i represents the time-decay score between nodes
U ′
i and U ′

j . This score is used to measure the posted time
gap between two nodes, U ′

i and U ′
j . For each node, there

is a unique self-loop score, τi,i, which is always assigned
a consistent value of 1. This ensures each node has a base
reference.

The importance of the time-decay score, τj,i, plays a vital
role in the context of our model. Its primary function is to
gauge how much weight or importance should be given to
nodes depending on how far they are from the central or root
node. Nodes that are nearer to the root are assigned more
importance, while nodes that are farther away are given less.
In essence, it helps in distinguishing the proximity of nodes
to the root. Furthermore, we use this time-decay score τj,i as
an edge weight. This weight is crucial in deciding how the
convolution should be applied between the i-th and j-th nodes
that are interconnected. For a clearer understanding of how
we calculate the time-decay score, we provide the following
equation:

τj,i =
1

log(1 + (|τi − τj|)/60)
, (4)

where τi is used to represent the posted timestamp of the
i-th node, which is measured in units of seconds. Meanwhile,
the time-decay factor, τj,i, is calculated as the time difference
between two nodes, measured in minute units. Nodes that
were posted much later after the original news have lower
scores, whereas those posted closer to when the news was
released have higher scores. This system of scoring ensures
nodes closer to the news release are deemed more significant.

By applying this method, we finally create an updated
root node, denoted as U ′′

0 . This node, also referred to as
the ‘supernode’, is assumed to hold the entire topological
information feature, T , of the entire graph. With this feature
of the supernode, we ensure that the model captures all
the essential time-based data while analyzing the graph’s
structure.

C. SEQUENTIAL INFORMATION LAYER
In the complex landscape of news diffusion networks, users
propagate specific news postings on social media platforms
like Twitter, creating a time-bound sequence of interactions.
To effectively capture and analyze this sequential information
inherent in the news diffusion network, we employ the
transformer [33] architecture.

Transformer [33] is an innovative and powerful model
in deep learning, which has multiple encoder and decoder
blocks with a self-attention mechanism. The encoder of
transformer extracts context-rich representation features
from the input sequence, by self-attention capturing the
relationships and dependencies on each word. The decoder
of transformer generates output sequences or features based
on the encoder’s output features by masked self-attention
and encoder-decoder attention in an autoregressive manner.
Transformer offers several advantages and is shown for its
exceptional performances in natural language processing,
computer vision, and speech processing tasks. Rooted in
its unique design, transformer leverages a multi-head dot
product attentionmechanism along with sinusoidal positional
encoding to handle sequential data efficiently and accurately.
This approach allows the model to capture varying levels of
dependencies and relationships among the data, which are
especially pertinent in understanding the propagation pattern
of news articles over time.

In our approach, we input the news and tweet users
diffusion sequence which is a list of user interactions with
the news post arranged in chronological order, into the trans-
former model. Our chosen configuration of the transformer
model comprises two stacked encoder blocks and two stacked
decoder blocks, faithfully following the original architecture
described in [33]. Also, all layers for the transformer
have two-head attention which weighs the importance of
two different aspects of the input sequence. Each encoder
block integrates a multi-head self-attention mechanism and
feed-forward networks, designed to extract complex feature
representations from the input data. On the other hand, each
decoder block comprises a masked multi-head self-attention
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mechanism, another multi-head encoder-decoder attention
module, and a set of feed-forward networks. The masked
attention ensures that the prediction for a specific position
is dependent only on the known outputs at positions before
or same as the current one, hence preserving the temporal
sequence of the diffusion data. Unlike the original trans-
former, ourmodule does not employ a tokenizer that separates
the sequence into several tokens and adds special tokens to
have particular purposes. This is due to the fact that the
diffusion sequence already consists of distinct embeddings
for individual news and Twitter users, i.e.,N ,U1, . . . ,Ui. For
this reason, our sequence has no [CLS] token for text classi-
fication, [SEP] token for separate two sequences, and [UNK]
token for unknown vocabulary. Whereas we use padding in
themini-batch units like [PAD] token, andmasking inmasked
self-attention like [MASK] token. Finally, we extract the last
vector of final hidden state as an output vector to gain a
sequential information representation for the transformer.

The output from the transformer, capturing the distilled
sequential information, is then passed through a linear layer.
This layer helps in additional transformation and scaling
of the learned features, making them suitable for further
analysis. Finally, we obtain the sequential information feature
S from the output of this linear layer. Feature S encapsulates
the sequential pattern of news propagation, serving as a
critical input for subsequent steps in our fake news detection
model.

D. CLASSIFICATION LAYER
Our model, TSNN, is designed to integrate two crucial fea-
tures: topological information, denoted as T , and sequential
information, referred to as S. By doing so, TSNN is capable
of emphasizing the importance of both the structural patterns
and the time-based sequences seen in news propagation.
When T and S are combined as a concatenation, they form
a comprehensive feature vector, S||T , which integrates the
essence of both these information types.

After the formation of this comprehensive feature vector,
it is then directed towards the classification layer of the
model. This layer comprises two parts: a linear layer followed
by a log softmax layer. A linear layer transforms feature
vector to the 2-dimensional vector and the log softmax layer
converts to the probability distribution over the class labels,
providing an interpretable output ŷ for the classification.
The primary goal of the classification layer is to sort or
categorize the incoming feature vector into one of two
possible categories: real news or fake news.

For loss function, we employ cross-entropy loss function.
During the training process, model utilizes the actual label
of news and updates the trainable parameters through
backpropagation and gradient descent. The gradient descent
optimization aims to minimize the discrepancy between
the model’s predictions ŷ and the actual labels y, thereby
iteratively improving the model’s ability to accurately clas-
sify between different categories. This iterative optimization
process guides the model to learn and adapt its internal

representations, fostering a more discriminative and nuanced
understanding of the underlying features that distinguish real
news from fake news.

V. EXPERIMENTS
In this section, the experimental settings and the environment
utilized in our works are elaborated upon. We conducted an
in-depth evaluation of our model’s performance. When we
compared our results with those of other well-known models,
it became clear that our model has notable advantages and
can handle a variety of situations effectively. In Table 2,
we provide a clear comparison, showcasing how our model
performs in relation to several other baseline models. This
comparison helps highlight the strengths of our model and
how it stands out in different settings.

TABLE 2. Fake news detection performance of TSNN and baselines. The
evaluation results denoted as † are brought from the original paper
because of cannot be reproducible.

Moreover, a meticulous investigation was conducted to
discern the effects of time units, such as seconds and minutes,
and the influence of graph depth on the model’s output. These
variations in time-decay factors are extensively shown in
Table 3. From these experiments, we observed which time
units work best to improve the accuracy of decay calculations
in our model. This knowledge helped us fine-tune our
approach and get better results. Additionally, the intricacies
of the model’s design are laid out in Table 4. This table serves
as a focal point for understanding the contributions of the
sequential information layer, to the overall performance of
the model. As a result of comparisons, we configure our
time-decay GCN module as the minute-based time-decay
score without Depth divide, and sequential-transformer as
a 2-layered encoders-decoders transformer, and our TSNN
model has about 2.7 million parameters.

A. EXPERIMENTAL SETUP
The environment for our experiments consisted of an
Ubuntu 22.04 LTS, Intel Xeon Gold 6326 @ 2.90GHz CPU
processor, coupled with an NVIDIA A10 GPU. To align our
experiments with established practices, we incorporated a set
of widely-accepted hyperparameters and techniques. We use
Adam optimizer [34], L2 regularization weight of 0.001 was
adopted. In terms of the model architecture, we configured
our models to process a batch size of 128 and a hidden
dimension d is 128.Wefine-tuned our learning rate within the
range of {0.01, 0.005, 0.001, 0.0005}. The final choice was
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TABLE 3. A comparative analysis of the variants of the time-decay
function in our time-decay GCNs module. It emphasizes the impact of
changes in time unit and graph depth on the model’s performance, with
minute-based decay offering optimal performance.

determined by the criterion of validation loss, allowing us to
adaptively select the optimal learning rate that minimizes the
validation loss.

Our models were trained for a maximum of 200 epochs.
If validation loss does not decrease until 10 epochs, we made
our model early stop training. The average execution time
on 5 runs is 150 seconds in PolitiFact, and 180 seconds in
GossipCop each runtime. As mentioned in Section III, for
the data division, we split the available dataset into training
and test sets at a proportion of 0.75:0.25. This was done to
ensure that our model was tested on unseen data, contributing
to a more objective evaluation. To ensure a comprehensive
evaluation of our model’s performance, we applied a
5-fold cross-validation strategy specifically to the training set.
We partitioned the training data into five subsets, training the
model on four of themwhile validating its performance on the
remaining subset in each fold. This process helps us assess
the model’s robustness and generalization across different
subsets of the training data. The reported evaluation metrics
including accuracy and macro F1-score, are averaged results
on five cross-runs. This repetitive testing reduces chances
of anomalies linked to a single evaluation, thus presenting
a more honest picture of a model’s capability. Accuracy is
a widely used evaluation metric that measures the ratio of
correctly predicted instances to the total number of instances.
F1-score is a useful metric specifically in class-imbalanced
datasets, that is calculated by harmonic mean of precision and
recall.

B. EXPERIMENT RESULTS
As comparing models fairly is very important, we took metic-
ulous steps to ensure that every model, ours included, was
tested under the same experimental conditions. A uniform
random seed was maintained throughout all tests, ensuring
reproducibility. Table 2 shows a detailed comparison of our
model’s performance against other principal baseline models.
Notably, most of these baseline models are commonly cited
in research, highlighting their importance in the field. We re-
implemented these baselines to obtain evaluation results in
same and fair environments, except the UPSR [28] model.
Due to the unavailability of open-source code, we referred
directly to the UPSR performance from the original paper by
Wei et al. [28]. Moreover, most of our experiment settings

follow as possible UPSR, such as dataset, data split strategy,
and training setting.

Our TSNN outperforms the other solid baselines with
a remarkable margin in both datasets. The gap between
UPSR and other baselines was already anticipated results
since reported from UPSR paper [28]. However, as TSNN
overwhelms UPSR, our model achieves a noticeable perfor-
mance improvement. We regard this achievement caused by
advantages from the appropriate time-decay score function,
supernode approach, and sequential-transformer architecture.
To verify the effectiveness of our model, we conduct several
ablation studies by empirical analysis in Section VI.

VI. ABLATION STUDY
To gain a deeper understanding of the role and impact of
various components in our TSNN model, we undertake a
comprehensive ablation study targeting each of these crucial
elements. Our primary goal is to determine the contributions
and significance of each piece, especially in relation to the
model’s overall performance. To verify the contributions
of each layer in TSNN, we made adjustments to both the
sequential and topological information layers and carefully
observed the effects of these modifications on the model’s
efficiency.

A. EFFECT FOR TIME-DECAY GCNS
To deeply estimate the role of topological information layer,
we closely examined two important details in time-decay
GCNs module. Specifically, we looked at two main areas:
how adjusting the time unit (changing from minutes to
seconds) might influence themodel performance, and the role
of the graph depth level plays in time-decay. Our primary
focus was on the original ‘minute-based time-decay score’,

expressed as τj,i =
1

log(1 + (|τi − τj|)/60)
. Building on this,

we also considered a factor of 60 to switch the time units from
minutes to seconds, named ‘second-based time-decay score’
as follows:

τ
(sec)
j,i = |

1

log(1 + (|τi − τj|))
|. (5)

As a comparison with the first and third rows in Table 3, the
minute-based time-decay scoring function has more effect
than the second-based method. The second-based approach
empowers too excessively sensitive time differences to edge
weight importance. The fifth row in Table 3 shows the result
of removing the time-decay scoring function named ‘w/o
time-decay’. In this setup, the time-decay GCN module
was simplified by substituting it with basic 2-layered GCNs
without edge weight, which was omitted to discern its
overall influence. Removing the time-decay score thoroughly
decreases performance extremely and the time-decay score
is a significant feature in our original model. We observed
that an appropriate time-decay score can affect topological
information propagation with time-weighted information.
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As a result, we apply to divide the raw timestamp by the time
scale factor 60.

Another aspect that took the minute-based decay and
divided it by the depth of the graph, named ‘Depth divide
decay score’ is formulated as:

τ
(min w/ Dep)
j,i =

1

log(1 + (|τi − τj|)/60)/D
, (6)

where D indicated node’s depth level in a graph. We expect
that the deeper level node of graph might be less important
than around of root node. However, as can show performance
with the Depth divide score function in Table 3, the Depth
divide method widens too much gap depending on the depth
level. This scoring method makes edge weight weaker on the
more deep depth level.

After testing these variants of the time-decay scoring
function thoroughly, it becomes clear that the straightforward
minute-based approach without depth dividing to time-decay
is the standout performer. It is evident that embedding the
time-decay score within the GCN significantly amplified
the model’s capacity to grasp intricate topological details.
These comparative experiments emphasize the importance of
selecting the correct time unit when working with GCN, and
in our experiments, focusing on minutes provided the best
performance.

B. EFFECT FOR SEQUENTIAL TRANSFORMER
To prove validity of sequential information layer, we adjust
stacking layers of the transformer or alter the model.
As shown in Table 4, we exhibit the performances of various
stacked sequential transformers and, other recurrent neural
network model families.

TABLE 4. Our ablation study demonstrates the impact of different model
components on the overall performance of the TSNN model. Key findings
show the superior performance of the 2-layered encoders-decoders
transformer in capturing sequential information.

First, we reduce the number of transformer encoders and
decoders appropriately. We evaluate the adjusted transformer
on various stacked layers to decide on transformer config-
uration. As shown from the first to fourth rows in Table 4,
comparative targets are for each, 2, 3, 4 layered encoders-
decoders and only 4 layered encoders. These configurations
with reduced layers have fewer model parameters than
the original transformer from Vaswani et al. [33]. The deep
learning models with more parameters commonly have a
greater capacity to memorize and generalize from training.

However, it has disadvantages which include potential
overfitting on smaller datasets, and the need for extensive
tuning and regularization techniques. In our case, the data
amount is insufficient to gain better representation and
train the deeper model. The results in Table 4 reveal that
the layer-diminished transformer shows better performance.
Therefore, the transformer with 2 layered encoders-decoders
is the most favorable configuration in our datasets. Further-
more, the 4 encoders variation has the second-best perfor-
mance even though it removed decoder part in transformer
and its performance is slightly reduced than the 2-layered
encoders-decoders version.

Second, we shifted our focus to two specific models: the
sequential-LSTM and the sequential-GRU. These networks
are the most popular and widely used type of RNNs for
modeling sequential data and alleviating the limitation of
traditional RNN. We select these two models due to their
prominence and the underlying mechanics they offered. The
sequential-LSTM model incorporated a two-layered bidirec-
tional LSTM [35], which involves stacking two layers of
LSTM units and processing input sequences in both forward
and backward directions. Likewise, the sequential-GRU is
built upon a two-layered bidirectional GRU [36] which
has more simple architecture and fewer parameters than
LSTM [35]. In both instances, these architectures are
employed as alternatives to the transformer setup typically
found in recurrent neural network models. The 2-layered
encoders-decoders sequential-transformer outperforms other
RNNs. These results signify that transformer is more
effective than RNNs in sequential data with long-range
dependencies.

Finally, we found the superior configuration and model in
the sequential information layer. Our meticulous research,
the details of which are elaborated in Table 4, led to
some key insights. Most notably, the 2-layered encoders-
decoders transformer consistently outperformed its counter-
parts, namely those built on LSTM and GRU frameworks
for adopting to sequential information layer. This result
can show the validity of our sequential-transformer in
designing the news-tweet diffusion path for sequential
features.

VII. CONCLUSION
In response to the increasing prevalence of fake news,
we present a topological and sequential neural network
model (TSNN) for more accurate fake news detection. Our
TSNN model incorporates both topological and sequential
information in news propagation networks, thus offering
a more comprehensive approach to identifying fake news.
In our model, topological information is represented through
a supernode which is extracted by using two-staged graph
neural networks. The first stage involves the application
of a leaf graph attention network (leafGAT) at the leaf
nodes. The second stage introduces two layered time-decay
graph convolutional networks (time-decay GCNs) that cover
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the full graph. Furthermore, the TSNN model utilizes a
transformer architecture to capture the sequential features
in the news diffusion path. This element of the model
allows for identifying the sequence in which news is shared
and is often a significant clue in detecting fake news.
We evaluated the effect of our contribution by ablation
study with sophisticated observation. TSNN reached 92.15%
accuracy and 92.11% F1-score on PolitiFact, and 97.91%
and 97.88% onGossipCop, respectively. These results clearly
indicate that our model significantly outperforms other
foundational baselines in fake news detection benchmark
datasets. In summary, the TSNN model proposed in this
paper represents a significant step forward in the field of
fake news detection. By using both topological and sequential
information, themodel provides amore nuanced and effective
approach to identifying fake news. The approach is expected
to contribute to ongoing research and development in this
area.

Nevertheless, this approach and task have an unattainable
limitation that may be challenging to overcome. The dataset
has a static status of fixed time points in this scenario.
In this context, the dataset may not reflect real-time changes,
as actual news and its dissemination network are subject to
rapid updates and modifications. This static characteristic
of the dataset could lead to a potential mismatch with the
evolving news content, making it difficult to capture the latest
information. In future work, we will explore fake news in
constantly changing status and real-time environments by
analyzing unstable news history. We expect that continual
learning or online learning approaches are useful for adapting
new and changeable data.
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