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Abstract 
Hydrogen is an alternative fuel for transportation vehicles because it is clean, sustainable, and highly flammable. However, 
the production of hydrogen from lignocellulosic biomass by microorganisms presents challenges. This microbial process 
involves multiple complex steps, including thermal, chemical, and mechanical treatment of biomass to remove hemicel-
lulose and lignin, as well as enzymatic hydrolysis to solubilize the plant cell walls. These steps not only incur costs but also 
result in the production of toxic hydrolysates, which inhibit microbial growth. A hyper-thermophilic bacterium of Caldicel-
lulosiruptor bescii can produce hydrogen by decomposing and fermenting plant biomass without the need for conventional 
pretreatment. It is considered as a consolidated bioprocessing (CBP) microorganism. This review summarizes the basic 
scientific knowledge and hydrogen-producing capacity of C. bescii. Its genetic system and metabolic engineering strategies 
to improve hydrogen production are also discussed.

Key points
• Hydrogen is an alternative and eco-friendly fuel.
• Caldicellulosiruptor bescii produces hydrogen with a high yield in nature.
• Metabolic engineering can make C. bescii to improve hydrogen production.

Keywords Hydrogen · Lignocellulosic biomass · Caldicellulosiruptor bescii · Consolidated bioprocessing (CBP) · 
Metabolic engineering

Introduction

Currently, there are increasing concerns about serious envi-
ronmental problems such as the greenhouse effect, global 
climate change, fine dust caused by the use of fossil fuels, 
and other complications caused by the depletion of fossil 
fuels (Fawzy et al. 2020; Manisalidis et al. 2020; Martins 
et al. 2019). To address these issues, there has been a grow-
ing interest in biofuels, such as bioethanol, biodiesel, and 
biohydrogen, which are produced through biological pro-
cesses using various renewable resources (Cha et al. 2013a; 
Hoang et al. 2023; Jeswani et al. 2020; Martínez-Jaramillo 
et al. 2019). Among these biofuels, hydrogen is an attrac-
tive and promising option for two important reasons: (i) 
hydrogen is non-toxic and does not release the greenhouse 
gas  CO2 when combusted (clean energy), and (ii) it carries 
higher energy compared to other hydrocarbon fuels (Has-
san et al. 2023; Okolie et al. 2021). Therefore, hydrogen has 
been suggested as a major chemical energy carrier and could 
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be utilized as a high-energy storage for transportation vehi-
cles (Miller et al. 2021). Hydrogen can be utilized not only 
as a commercial transportation fuel but also in the chemi-
cal industry (chemical looping hydrogen) for the production 
of methanol and ammonia (Palone et al. 2023), as well as 
in various other industries such as electronics, metals, and 
food. Unfortunately, hydrogen does not exist in a free form 
in nature. However, it is present in water or in the main com-
ponents of all living organisms, suggesting that hydrogen 
can be produced through biological processes (Akhlaghi and 
Najafpour-Darzi 2020; Lepage et al. 2021).

The biological production of hydrogen can be accom-
plished through various steps including enzymatic sacchari-
fication of renewable biomass to convert into fermentable 
sugars, as well as anaerobic fermentation of these sugars to 
hydrogen by anaerobic bacteria (Fig. 1) (Alicia Benitez et al. 
2021; Cha et al. 2013a, 2016). C5 and C6 sugars, which are 
derived from a variety of carbohydrates like glucose and 
xylose found in plant biomass, are oxidized via the Emb-
den–Meyerhof–Parnas glycolytic pathway (Fig. 1) to pro-
duce acetate, lactate, carbon dioxide, and hydrogen (Cha 
et al. 2013a, 2016, 2023; Chandel 2021). In terms of final 
fermentative products, carbon flow is directed towards lac-
tate or acetyl-CoA, while electrons flux towards lactate and 
 H2 from pyruvate, which serves as a major metabolic branch 
point (Fig. 1).

Microorganisms are crucial for achieving high yields of 
hydrogen, especially with the involvement of thermophiles 
such as Thermoanaerobacter tengcongensis (~ 4.0 mol  H2/
mol glucose) (Soboh et al. 2004), Thermotoga maritima 
(~ 4.0 mol  H2/mol glucose) (Schroder et al. 1994; Singh 
et al. 2019), and Thermococcus kodakarensis (~ 3.3 mol  H2/

mol glucose) (Burkhart et al. 2019; Kanai et al. 2005). The 
hyperthermophile, Pyrococcus furiosus (optimal tempera-
ture 90 °C), also produced ~ 2.8 mol  H2/mol glucose (Servé 
and Kengen 1994; Song et al. 2019) although it is smaller 
compared to others. The utilization of high temperatures 
(> 50 °C) should be beneficial for hydrogen production due 
to reduced viscosity, improved mixing, trace contamination, 
enhanced reaction rates, and the elimination of the need for 
reactor cooling (Shahbeik et al. 2022). Additional microor-
ganisms capable of producing hydrogen are listed in Table 1. 
While most hydrogen-producing microorganisms rely on 
starch-based biomass, which can be easily saccharified, the 
direct production of hydrogen from lignocellulosic biomass 
is challenging for microorganisms as it requires additional 
steps, such as pretreatment, enzymatic saccharification, 
and the generation of fermentation inhibitors (Zafar et al. 
2021). Therefore, the development of microbial strains that 
fermenting lignocellulosic biomass effectively is necessary 
(Kim et al. 2022).

The genus Caldicellulosiruptor is a thermophilic micro-
organism with cellulosic activity. It can produce hydrogen 
at high rates from lignocellulosic biomass, with an optimal 
growth temperature between 75 and 80 °C (Scott et al. 
2019). C. bescii can serve as a consolidated bioprocess-
ing (CBP) organism (Fig. 2) because it can utilize both 
C5 and C6 sugars simultaneously and directly convert lig-
nocellulosic biomass without conventional pretreatment 
steps (Fig. 2) (Cha et al. 2013a, 2016; Chung et al. 2014; 
Periyasamy et al. 2023). The C. bescii genome encodes 
many carbohydrate-active enzymes (CAZymes), which 
are multi-domain enzymes with cellulolytic and hemicel-
lulolytic activity and utilize a broad range of substrates, 

Fig. 1  A predicted and simpli-
fied biosynthetic pathway for 
hydrogen production in C. 
bescii 
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including plant biomass, without the need for conventional 
pretreatment (Kim et al. 2019). Therefore, there is poten-
tial to improve the economics of biofuel production from 
lignocellulosic biomass by skipping thermal, chemical, 

and mechanical treatment steps (Cha et al. 2013a; Chung 
et al. 2014).

This review provides the scientific knowledge and data 
on C. bescii, focusing on its  H2 production capacity, genetic 

Table 1  Hydrogen production by various microorganisms

Microorganisms Optimal 
growth temp. 
(°C)

YH/G (mol/mol)* Final products (except for  H2 and 
 CO2)

References

Clostridium acetobutylicum 
ATCC824

30 1.79 Acetate, acetone, butanol, butyrate Oh et al. (2009)

Clostridium beijerinckii 37 2.81 ––- Lin et al. (2007)
Clostridium butyricum 37 2.29 ––- Lin et al. (2007)
Clostridium thermosaccharolyticum 

LMG 6564
55 1.6 Acetate, lactate, ethanol, butanol, 

butyrate
Vancanneyt et al. (1990)

Clostridium thermocellum 27,405 60 1.6 Acetate, lactate, ethanol, formate David et al. (2006)
Caldicellulosiruptor saccharolyticus 70 2.5 Acetate, lactate de Vrije et al. (2007)
Caldicellulosiruptor bescii JWCB001 75 1.8 Acetate, lactate Cha et al. (2013a)
Escherichia coli 37 1.4 Ethanol, acetate, lactate, succinate Seppälä et al. (2011)
Escherichia coli MG1655 37 0.56 Acetate, lactate Cofré et al. (2016)
Enterobacter aerogenes 37–55 1.92 Acetate, lactate, ethanol Jayasinghearachchi et al. (2009)
Enterobacter aerogenes E.82005 38 1.0 Acetate, lactate, ethanol Tanisho (1998)
Klebsiella oxytoca 38 1.0 ––- Minnan et al. (2005)
Klebsiella pneumoniae 37 2.7 Acetate, lactate, formate, 2,3-butan-

ediol, ethanol
Niu et al. (2010)

Thermoanaerobacter tengcongensis 
JCM 11007

75 4.0 Acetate Soboh et al. (2004)

Thermotoga maritima DSM 3109 80 4.0 Acetate Schroder et al. (1994)
Thermococcus kodakarensis KOD1 85 3.3 Acetate, alanine Kanai et al. (2005)
Thermotoga neapolitana 77 2.4 ––- de Vrije et al. (2010)
Thermoanaerobacterium thermosac-

charolyticum
55–60 1.8 Ethanol, D-/L-lactate, acetate Liu et al. (2008)

Pyrococcus furiosus DSM 3638 90 2.8 Acetate, alanine Servé and Kengen (1994)

Fig. 2  Hydrogen production 
with no or reduced pretreatment 
by a CBP (consolidated bio-
processing) organism, Caldicel-
lulosiruptor bescii 
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system, and metabolic engineering strategies, which can 
make C. bescii a highly efficient organism for hydrogen 
production at high temperatures.

Biosynthetic pathway of hydrogen of C. bescii

Usually, the genus Caldicellulosiruptor produces relatively 
high yields of  H2 (4 mol of  H2/ mol of glucose) compared 
with other microorganisms (Cha et al. 2013a, 2016; Straub 
et al. 2020). Additionally, acetate should be coupled with 
 H2 production for the reoxidation of NADH (a two-electron 
donor) and ferredoxin (a one-electron donor) (Buckel 2021; 
Cha et al. 2016; White 2012) (Fig. 1).

As shown in Fig. 1, H2 is produced through proton reduc-
tion catalyzed by hydrogenases (Cha et al. 2016; Jay et al. 
2020; Lu and Koo 2019). These hydrogenases are metal-
loenzymes that contain iron in their active site, such as di-
iron, nickel–iron, or iron-sulfur clusters (Lu and Koo 2019). 
Specifically, Caldicellulosiruptor spp. have only two types 
of hydrogenases: bifurcating [Fe–Fe] hydrogenase and 
[Ni–Fe] hydrogenase (Cha et al. 2013a, 2016; Zhang et al. 
2021). NADH and ferredoxin are catabolized by the bifur-
cating [Fe–Fe] hydrogenase, resulting in the production of 
 H2 (Cha et al. 2016; Zhang et al. 2021). On the other hand, 
the [Ni–Fe] hydrogenase is a membrane-bound heterodimer 
and is widely found in nature (Alfano and Cavazza 2020). 
Although the [Ni–Fe] hydrogenase also catalyzes  H2 pro-
duction, the bifurcating [Fe–Fe] hydrogenase is the primary 
enzyme for  H2 production in C. bescii, while the main role 
of the [Ni–Fe] hydrogenase is to pump out protons across 
the cellular membrane to generate the “proton motive force” 
(Kaila and Wikstrom 2021; White 2012).

Hydrogen production from C5 and C6 sugars

In most of the studies reported, the maximum amount of 
hydrogen produced was 2.0–3.8 mol of  H2 /mol of glu-
cose (C6 sugars) due to the formation of co-products such 
as lactic acid and acetic acid (Esercizio et al. 2021). The 
theoretical molar yield of hydrogen from xylose (C5 sugar) 
fermentation is 3.3 mol of  H2/mol of xylose (C5 sugar) with 
acetate as the sole byproduct, but the reported values were 
lower than 2 mol of  H2/mol of xylose (Chiu-Yue Lin and 
Hung 2008). Hydrogen production has been reported to be 
between 0.5 and 4 L/L/day (Ghimire et al. 2015; Beckers 
et al. 2015). The nature, carbohydrate content, and bio-
degradability of carbon substrate play an important role in 
the  H2 yield, production rate, and overall economics of the 
process (Nanqi et al. 2011). Many bacterial species have 
been reported to produce hydrogen from C5 and C6 sugars, 
including enteric bacteria such as Enterobacter aerogenes, 
Enterobacter cloacae, and Escherichia coli, which produce 
about 1–2 mol of  H2/mol of glucose (Yoshida et al. 2006). 

Clostridium spp. also produce similar amounts (Liu et al. 
2006). Caldicellulosiruptor spp. produce about 3–4 mol 
of  H2/mol of glucose (Willquist et al. 2010). Enterobac-
ter utilizes a formate-H2 lyase, and Clostridium spp. use a 
ferredoxin-dependent hydrogenase to avoid the thermody-
namically unfavorable formation of  H2 from NADH (Schut 
and Adams 2009). Based on previous studies on various 
microorganisms, metabolic engineering and pre-treatment 
of substrates can increase hydrogen production by improv-
ing the biodegradability of substrates. In summary, C. bescii 
can be a superior organism as it does not contain competing 
pathways other than lactate, offers the potential to produce 
maximum amounts of  H2 (4 mol of  H2/mol of C5 and C6 
sugars), and is tractable to metabolic engineering.

Hydrogen production from various biomass by C. 
bescii

The most important aspect of C. bescii is its ability to 
decompose various monosaccharides and polysaccharides, 
such as glucose, xylose, crystalline cellulose, and non-
pretreated plant biomass. To compare hydrogen production 
from real-world substrates, C. bescii wild type (JWCB001) 
and its mutant strains (JWCB005 and 017) were grown on 
0.5% switchgrass (Cha et al. 2013a). The strains were incu-
bated for 120 h; then, hydrogen production was measured. 
The hydrogen productions of JWCB001 and JWCB005 
were ~ 1.8 mol/mol of glucose and ~ 1.7 mol/mol of glucose, 
and it is a bit lower than  H2 production by Caldicellulo-
siruptor saccharolyticus (~ 2.5 mol/mol of glucose). How-
ever, in the case of C. saccharolyticus, yeast extracts were 
added to the growth medium. Even without the addition of 
yeast extracts, the engineered C. bescii strain JWCB017 pro-
duced significantly more hydrogen (~ 3.4 mol/mol of glu-
cose; Table 2) (Cha et al. 2013a). Actually, C. bescii lacks 
the enzyme required for ethanol production. Chung et al. 
reported the heterologous expression of adhE to enable C. 
bescii to produce alcohol (Chung et al. 2014). However, 
this resulted in reduced hydrogen production as carbon and 
electrons were redirected for alcohol production (Chung 
et al. 2014). C. bescii can also produce hydrogen from bar-
ley straw and Miscanthus. In a previous study, JWCB018 
without the chromosomal ldh gene produced 63% and 25% 
more hydrogen from barley straw and Miscanthus than the 
wild-type strain (JWCB001), respectively. It might be due to 
a decrease in lactate production by interrupting lactate dehy-
drogenase function by a native active transposon (Cha et al. 
2023, 2013b). Yilmazel and Duran reported hydrogen pro-
duction in co-substrate reactors, where C. bescii was grown 
on four different substrate mixtures of cattle manure (CM), 
switchgrass (SG), and biosolid (BS). C. bescii grown on 
BS + SG + CM (~ 15.0 mM) showed much better hydrogen 
production compared to BS + SG (~ 11.0 mM), exhibiting 
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synergistic effects of co-fermentation of these feedstocks 
(Yilmazel and Duran 2021).

Genetic system for C. bescii

There are many interesting thermophiles that produce inter-
esting and important chemicals. The ability to manipulate 
C. bescii genes is required to make the hyper-thermophilic 
strain more useful in the real world. However, the wild-type 
strain of C. bescii is not sufficient to produce biofuel, so it 
needs to be metabolically engineered to produce biofuel at 
a suitable yield. One of the most difficult aspects of study-
ing hyperthermophiles like C. bescii is the lack of genetic 
tools for metabolic engineering. In order to develop a genetic 
tool, there are several requirements: (i) overcoming the 
restriction-modification (R-M) system, (ii) constructing a 
E. coli-C. bescii shuttle vector, (iii) establishing a transfor-
mation method, and (iv) selecting a selection marker (Chung 
et al. 2013a). One significant barrier to develop genetic tools 
for uncharacterized microorganisms, especially hyperther-
mophiles, is the lack of selectable markers. Antibiotics are 
typically used in mesophilic bacteria, but not in thermo-
philes because thermostable antibiotic markers are usu-
ally not available at high temperatures over 70 °C (Crosby 
et al. 2019). Because of their high growth temperatures, 
the genetics of most thermophiles depend on auxotrophic 
mutant strains. This method is often used for many ther-
mophiles including Caldicellulosiruptor (Cha et al. 2013a, 
2016; Chung et al. 2014; Lipscomb et al. 2016), Sulfolo-
bus (Wagner et al. 2012; Zheng et al. 2012), and Thermo-
toga sp. RQ7 (Han and Xu 2017). The selection method 
(using an auxotroph mutant strain) for transformation in C. 
bescii relies on the loss of the uracil biosynthetic enzyme 

coding for orotidine-5′-monophosphate (OMP) decarboxy-
lase (pyrF), which was first described in yeast (Boeke et al. 
1984) and has been a useful genetic tool in both bacteria 
and archaea (Lucas et al. 2002). In order to generate a spon-
taneous pyrF mutant strain, the cells were grown on low 
osmolarity-defined growth medium (LOD) (Farkas et al. 
2013) supplemented with uracil and 5-fluoroorotic acid 
(5-FOA). The strain with ΔpyrFA, C. bescii JWCB005, was 
obtained as a host strain for gene manipulation (Chung et al. 
2013a). In order to create a shuttle vector capable of repli-
cating in both Escherichia coli and C. bescii, the pyrF gene 
for uracil auxotroph was cloned and inserted into pBAS2 
vector (Clausen et al. 2004), which is a small plasmid with 
a replication origin of the two plasmids in C. bescii. The E. 
coli/C. bescii shuttle vector pDCW89 was constructed by 
linking a low copy replication origin of E. coli, PSC101, and 
apramycin-resistant gene cassette  (AprR) to pBAS2 vector 
(Clausen et al. 2004; Dam et al. 2011). Although a shuttle 
plasmid is available, there is still another barrier that needs 
to be addressed to manipulate C. bescii genes. The biggest 
obstacle when transforming foreign DNA for deletion/inser-
tion of a gene is the restriction-modification (R-M) system, 
which recognizes the difference in DNA methylation when 
foreign DNA is introduced into the cells, leading to the deg-
radation of the foreign DNA by the restriction system in the 
strain (Chung et al. 2013b). When the pDCW89 shuttle vec-
tor is transformed into the pyrF deleted strain by electropo-
ration, the transformation competency is significantly low 
because C. bescii has its own restriction endonuclease, CbeI 
(Cbe_2438), which was discovered by Chung et al. (2011). 
CbeI has a HaeIII-like activity and is a type II restriction 
endonuclease that cleaves unmethylated sequences at 5′-GG/
CC-3′ (Chung et al. 2013b; Han et al. 2014). The CbeI 

Table 2  Hydrogen production from biomass by C. bescii 

CM cattle manure, SG switchgrass, BS biosolids

Strain Substrate Hydrogen produced References

C. bescii DSM 6725 (wild type) CM + SG  ~ 11.5 mM Yilmazel and Duran (2021)
C. bescii DSM 6725 (wild type) CM + BS  ~ 13.0 mM
C. bescii DSM 6725 (wild type) SG + BS  ~ 11.0 mM
C. bescii DSM 6725 (wild type) CM + SG + BS  ~ 15.0 mM
C. bescii DSM 6725 (wild type) 0.5% SG  ~ 1.8 mol/mol of glucose Cha et al. (2013a)
C. bescii JWCB005 (ΔpyrAF) 0.5% SG  ~ 1.7 mol/mol of glucose
C. bescii JWCB017 (ΔpyrAF Δldh) 0.5% SG  ~ 3.4 mol/mol of glucose
C. bescii JWCB018 (ΔpyrAF Δldh ΔcbeI) 1% Barley Straw  ~ 12.0 mM Cha et al. (2023)
C. bescii JWCB018 (ΔpyrAF Δldh ΔcbeI) 1% Miscanthus  ~ 17.0 mM
C. bescii JWCB018 (ΔpyrAF Δldh ΔcbeI) 2% SG 14.5 mM Chung et al. (2014)
C. bescii JWBC032 (ΔpyrAF ldh::ISCbe4 

Δcbe1::PS-layer Cthe-adhE2/(ura-/5-FOAR)
2% SG 9.8 mM

C. bescii JWCB038 (ΔpyrFA Δldh CIS1::PS-layer 
Cthe-adhE ΔhypADFCDE/(ura-/5-FOAR)

2% SG  ~ 4.0 mM Cha et al. (2016)
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activity should be removed in the host strains for successful 
DNA transformation. CbeI (Cbes_2438) and a neighboring 
α-class N4-cytosine methyltransferase (M.CbeI, Cbes_2437) 
were confirmed to be the counterpart of the R-M system 
in C. bescii (Chung et  al. 2013b). Treatment of the E. 
coli/C. bescii shuttle plasmid DNA with cloned M.CbeI 
protein resulted in efficient transformation. Chung et al. 
also reported a cbeI deletion (Cbes_2438) and generated a 
new host strain, C. bescii JWCB018 (ΔpyrAF ΔcbeI Δldh), 
through homologous recombination. JWCB018 (ΔpyrAF 
ΔcbeI Δldh) can be transformed by DNA isolated from E. 
coli without in vitro methylation (Chung et al. 2013b). A 
brief procedure of gene deletion is described in Fig. 3.

Enhanced hydrogen production by metabolically 
engineered C. bescii

The ultimate goal of biofuel production is to construct a 
microbial strain for a consolidated bioprocessing (CBP) 
organism (Olguin-Maciel et al. 2020), which is an organism 
capable of producing biofuels, such as alcohol and hydrogen 
gas, through a one-step process using plant biomass (Fig. 2).

Previous research has shown (Cha et al. 2013a, 2016, 
2023; Farkas et al. 2013) that various stains of C. bescii 
were constructed using metabolic engineering techniques 
to enhance its capabilities as a CBP organism (Cha et al. 
2013a). The first engineered C. bescii strain, obtained 
through a newly developed metabolic engineering technique, 
was a mutant strain with a deletion in the lactate dehydroge-
nase gene (ldh), resulting in the complete absence of lactate 
production. By removing the lactate production pathway, 
more carbon should be flowed to acetate and more electron 
flux carried by NADHs runs to acetate and hydrogen pro-
duction from pyruvate. The ldh-deleted strain of C. bescii 
(JWBC017) was grown on 0.5% switchgrass supplemented 

as the sole carbon source and showed increased production 
of acetate and hydrogen but no lactate production (Fig. 1) 
(Cha et al. 2013a). The ldh-deleted strain producing no 
lactate showed a 6.5% conversion of cellobiose to acetate 
(9.2 mM) with 105% overall carbon recovery (Cha et al. 
2013a). The metabolically engineered strain JWCB017 
(ΔpyrFA, Δldh) produced more hydrogen (~ 3.4 mol/mol of 
glucose) compared to wild-type C. bescii (~ 1.8 mol/mol of 
glucose) and C. saccharolyticus (~ 2.5 mol/mol of glucose) 
(de Vrije et al. 2007). This indicates that C. saccharolyticus 
wild type produced more hydrogen than C. bescii wild type 
due to the use of yeast extract in the culture media, which 
can improve growth and yield.

As mentioned earlier, hydrogenases play a key role in 
microbial energy metabolism, but the exact nature and 
function of these enzymes remain unclear. Cha et al. (2016) 
reported the deletion of a gene cluster called hypABFCDE, 
which encodes the maturation proteins for the C. bescii 
[Ni–Fe] hydrogenase. The resulting mutant strain, JWCB038 
(Cha et al. 2016), exhibited slower growth compared to its 
wild type or parent strain (JWCB005, ΔpyrFA) because the 
main function of the [Ni–Fe] hydrogenase may act as a pro-
ton pump generating a proton motive force (PMF) across the 
cellular membrane for ATP synthesis (Fig. 1). The data (Cha 
et al. 2016) also indicated that the mutant strain JWCB038 
did not exhibit a significant reduction in hydrogen produc-
tion, suggesting that the [Ni–Fe] hydrogenase may not be 
the main enzyme involved, and that the bifurcating [Fe–Fe] 
hydrogenase might be the primary enzyme responsible for 
hydrogen production in C. bescii.

To remove the R-M system in C. bescii to facilitate 
metabolic engineering, a cbeI deletion strain was generated 
(Chung et al. 2013b). However, the function of LDH was 
also disrupted by a native active transposon at the same time 
(Cha et al. 2013b). The resulting strain JWCB018 (ΔpyrFA 

Fig. 3  A procedure for editing a target gene in the genome of C. bescii 
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ΔcbeI Δldh) (Cha et al. 2013b; Chung et al. 2013b) was 
grown on 10 g/L cellobiose, 20 g/L Avicel, 10 g/L barley 
straw, and 10 g/L Miscanthus as carbon sources and then 
compared to the C. bescii wild type for hydrogen production 
(Cha et al. 2023). Because of the interruption of the lactate 
producing pathway in the mutant strain JWCB018, there 
was an increase in NADHs carrying electrons, resulting in 
enhanced  H2 production. This study showed that JWCB018 
exhibited up to 25%, 21%, 33%, and 25% increases in  H2 
production on 1.0% cellobiose, 2% Avicel, 1.0% barley 
straw, and 1.0% Miscanthus, respectively (Cha et al. 2023). 
These findings clearly indicate that appropriate metabolic 
engineering can significantly enhance the production of  H2 
and other valuable chemicals.

Further strategies to improve hydrogen 
production by C. bescii

Although very useful gene manipulation techniques for 
C. bescii metabolic engineering have been developed and 
research for biofuel production is being intensively con-
ducted, there is still a need for the development of more 
efficient genetic tools and techniques for thermophiles, espe-
cially C. bescii. For example, promoters for high expression 
and better replicating plasmids for heterologous gene expres-
sion should be developed. Instead of using an uracil auxo-
troph, new thermo-stable antibiotic screening techniques, 
such as thermo-stable kanamycin (Lipscomb et al. 2016), 
will also be needed to save time and effort. However, the 
current methods for deletion and insertion of multiple genes 
are sufficient.

There is one possible strategy to increase hydrogen 
production from real-world plant biomass. This strategy 
involves utilizing the genetic tools and the techniques devel-
oped for C. bescii. The first step is to remove the pathway 
for acetate production by deleting the phosphate acetyltrans-
ferase-encoding gene (pta, Cbes_1494). By deleting pta, 
the electrons carried by ferredoxins can be used by both 
types of hydrogenases such as [Fe–Fe] hydrogenases and 
[Ni–Fe] hydrogenases, resulting in more hydrogen produc-
tion and ATP synthesis. Another potential strategy involves 
the manipulating of various glycosyl hydrolases by encod-
ing genes by overexpressing the corresponding genes and 
manipulating regulatory genes to increase the decomposing 
efficiency of unpretreated plant biomass.

Conclusions

In this review, we highlighted that C. bescii can produce 
hydrogen directly from plant biomass without conventional 
pretreatment processes. Additionally, novel efficient methods 

for genetic modification of C. bescii have been developed 
through the deletion of cbeI, which is a thermostable type 
II restriction endonuclease. Overall, previous studies have 
demonstrated that C. bescii can be metabolically engineered 
to enhance hydrogen production. These would help C. bescii 
to efficiently produce hydrogen from biomass and biowaste 
including lignocellulosic biomass, cattle manure, and waste-
water sludge (Table 2).
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