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Graphitic carbon nitride (g-C3N4) has emerged as a promising material for various
applications, particularly in the field of energy storage systems. Among these
systems, lithium-ion batteries (LIBs) have become the cornerstone of portable
electronics and are increasingly being adopted for electric vehicles and renewable
energy storage. However, the search for alternative electrode materials that can
overcome the limitations of traditional graphite anodes and transition metal oxide
cathodes remains a significant challenge. In recent years, g-C3N4 has attracted
considerable attention due to its unique physicochemical properties, such as high
electrochemical stability, tunable bandgap, large specific surface area, and
excellent thermal and chemical stability. Also, the low cost, abundance, and
environmental sustainability of g-C3N4 contribute to its suitability for next-
generation LIBs. However, the successful utilization of g-C3N4 as an electrode
material is hindered by several challenges. This paper aims to explore the
challenges and future perspectives of utilizing g-C3N4 as a potential electrode
material for LIBs, highlighting the potential benefits and drawbacks of integrating
this material into the battery system.
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1 Introduction

The Earth has an abundance of energy resources in the form of fossil fuels, most of which
are being consumed at an exponential rate leading to rapid depletion of them. Despite, the
depletion of fossil fuels, the energy requirement of the world will double by 2050
(Organization for Economic Co-operation and Development, 1999; International Energy
Agency, 2050). Secondly, fossil fuels release greenhouse gases such as CO2 and contribute to
global warming. To mitigate these problems, scientists have been working on renewable and
sustainable energy resources, such as solar energy, wind energy, tidal energy, etc., for a long
time (Gong et al., 2015; Shamoon et al., 2022; Greening et al., 2023). Researchers developed
many ways to utilize and store these energies in the form of electrical energy (Miller et al.,
2015; Baig et al., 2022). The most powerful tool to store electrical energy is electrochemical
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devices such as batteries (Boruah et al., 2020), in which electrical
energy can be stored in the chemical form and can be used directly
from batteries when needed (Escudero-González & Amparo López-
Jiménez, 2014; Fan et al., 2020). Thus, scientists have started to
design and build high-performance rechargeable batteries (Yuan
et al., 2022). Among the rechargeable batteries, LIBs have many
advantages over other batteries. For example, LIBs are—1) more
efficient and smaller in size as compared to other batteries, 2) very
good in charge and discharge repeating cycle, 3) able to favor
cordless charging, and 4) competent to prevent self-discharge
(Liu et al., 2015; Zhou et al., 2018). LIBs possess good energy
storage systems and have been extensively employed in many
electric vehicles, transferable electronic gadgets, and electrical
energy storage stations. Consequently, LIBs attracted huge
marketable feat requiring more advancement such as high safety
with high energy density capacity, low cost, and good reliability (Hu
et al., 2017; Lu et al., 2019).

The main components of LIBs are a cathode (like—LiCoO2), an
anode (like—graphite), and an electrolyte (Encyclopedia of
Sustainability Science and Technology, 2012). Cathode in LIBs
behaves as a source of the Li-ions, once these ions pass through
the electrolyte and accumulate in between the stacking layers of the
anode, this phenomenon is called recharging of LIBs (Figure 1D).
The LIBs follow the vice versa phenomenon of charging and
discharging. In commercially available LIBs, graphite is widely
acceptable as an anode as it has indispensable merits of high
numbers of charging and discharging cycles, easy availability,

good thermal and chemical stability, short voltage plateau,
excellent chemical kinetics, and low cost (Safaei et al., 2018). In
contrast, graphite anode has a low energy density rate (372 mAh g−1)
which does not equally align with the recently unveiled cathodes’
energy density rate as these cathodes have a comparatively high rate
(Fu et al., 2014). Besides, the propagation of lithium dendrite over
the graphite anode is also a matter of acute safety concerns, such as
catching fire (Lu et al., 2019). These shortcomings collectively
restrict its application in high-performance LIBs. Subsequently,
immense research has been done to mitigate these problems, and
researchers designed and synthesized numerous materials to be used
as an anode. However, the search for alternative electrode materials
that can overcome the limitations of traditional graphite anodes and
transition metal oxide cathodes remains a significant challenge
(Liang et al., 2021). Among them, the two-dimensional graphite
with nitrogen substitution at its maximum doping level provides a
unique material called graphitic carbon nitride (g-C3N4) as a highly
potential electrode material. Nitrogen doping of graphite provides a
high coulombic cycle storage and reversible capacity. That is why,
g-C3N4 has emerged as a promising material for various
applications, particularly in the field of energy storage systems
(Zhang H. et al., 2020; Wang et al., 2021; Tang et al., 2023).
Also, this two-dimensional carbon-based material (g-C3N4) in
comparison with graphite exhibits high oxygen-reducing
reactivity, remarkable chemical stability, and high thermal
stability. Furthermore, g-C3N4 has a tunable bandgap, high
surface area, and excellent stability (Luo et al., 2019). These

FIGURE 1
(A) g-C3N4 structure and its properties, (B,C) Advantages and physicochemical properties of g-C3N4 composites for LIBs, and (D) Charging and
discharging of a g-C3N4-based LIB.
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features all together make it an ideal candidate for batteries. In terms
of metal-ion batteries (MIBs) like LIBs, g-C3N4 composites have
shown superiority to some extent over other electrode materials
(like: graphite, silicone, TiO2) as demonstrated by Yadav et al., 2023,
Maniyazagan et al., 2023, Nulu et al., 2022; Hankel et al., 2015,
because its structure is based on the poly (triazine imide) webs.
These webs contain pores to facilitate easy coordination with Li-ions
(Zhao et al., 2015).

Instead of having of edge over other electrode materials, several
challenges need to be addressed to realize the full potential of
g-C3N4-based electrodes for LIBs. Among them, some of the
major challenges compared to other electrodes are limited
electrical conductivity, restricted cycling stability, and poor
kinetics of LIBs (Gordon et al., 2023). Besides, large-scale
production of g-C3N4 with cost-effective methods is still a quest.
There is significant literature on the application of g-C3N4 in energy
storage systems in the last decade, however, this manuscript is solely
focused on the utilization of g-C3N4 as electrode material for LIBs.
Also, this review article aims to explore those challenges and future
perspectives of utilizing g-C3N4 as an electrode for LIBs,
highlighting the potential benefits and drawbacks of integrating
this material into the battery system. By addressing the key
challenges and discussing the potential prospects, this analysis
will shed light on the feasibility and relevance of g-C3N4-based
LIBs in the quest for more efficient and sustainable energy storage
solutions.

2 Physicochemical properties of
g-C3N4

The physicochemical properties of g-C3N4 make it an attractive
alternative to conventional electrode materials as shown in Figure 1.
These physicochemical properties are chiefly influenced by the
distinctive sheet structure of g-C3N4. The sheets of g-C3N4 are
supposed to be made up of two primary unit rings—1) s-triazine
(C3N4), and 2) tri-s-triazine (C6N7).

The s-triazine units are not as energetically favorable as the tri-s-
triazine units (Cao et al., 2020). It was determined that the density
functional theory (DFT) favors the thermodynamic stability of tri-s-
triazine units over the s-triazine units (Kroke et al., 2002). Hence, it
is broadly admitted that the tri-s-triazine units are the main
constructing blocks of g-C3N4 sheets. Here, the key
physicochemical properties of g-C3N4 that contribute to its
suitability for LIBs have been conferred.

2.1 Thermal stability

The thermal stability of electrode materials is crucial to ensure
reliable and safe operation. It is vital to develop such LIBs which can
be operated at elevated temperatures for long-lastingEVs operation.
For this purpose, g-C3N4 exhibits excellent thermal stability, with a
decomposition temperature of around 600 °C (Liang et al., 2021).
The high thermal stability of g-C3N4 ensures that it remains
structurally intact and minimizes the risk of thermal runaway in
LIBs (X. Liu et al., 2023). Thus g-C3N4 exhibits a paramount
potential for thermally stable LIBs. However, there is a need of

further research on commercialization of stable LIBs employing
g-C3N4 as an electrode for elevated temperature environments as in
EVs (Chen et al., 2019).

2.2 Electrochemical stability

g-C3N4 shows its structural integrity and performance over
repeated charge-discharge cycles, exibhiting electrochemical
stability. In, electrode materials undergo significant volume
changes during cycling, which leads to mechanical degradation
and capacity loss (Luo et al., 2019). However, plasma-induced
highly nitrogen-deficient (ND) g-C3N4 electrode possesses a
reasonably stable chemical structure resulting in retention of its
performance even after 5,000 cycles (Sun et al., 2022). The
remarkable chemical stability makes g-C3N4 a suitable candidate
for long-lasting and high-capacity LIBs (Niu and Yang, 2018; Zhang
J. et al., 2023).

2.3 Electrical conductivity

Pure g-C3N4 is a semiconductor with limited electrical
conductivity. However, by incorporating dopants or adopting
new synthesis methods, the conductivity of g-C3N4 can be
significantly improved (Zhang X. et al., 2020). For instance,
doping g-C3N4 with elements such as carbon or sulfur has been
shown to enhance its conductivity, resulting in improved Li-ion
battery performance (Hong et al., 2020). Likewise, recently
developed technologies such as nitrogen-deficient g-C3N4 have a
great potential for high-conductivity electrodes (Sun et al., 2022).
The superior electrical conductivity will help the rapid and large-
scale adoption of g-C3N4 in LIBs.

2.4 Specific surface area

The g-C3N4 exhibits a large surface area due to its unique porous
structure (Huang et al., 2020), which consists of stacked layers with
interlayer spacing that can accommodate a high density of lithium
ions. The high surface area of g-C3N4 enhances the accessibility of
lithium ions to the electrode material, facilitating faster charge-
discharge processes and higher energy storage capacity (J. Zhang
et al., 2015). The high surface areas also favor g-C3N4 as a highly
potential electrode candidate for LIBs.

2.5 Sustainability and chemical stability

The carbon and nitrogen atoms in g-C3N4 form strong covalent
bonds, which render the material resistant to chemical degradation.
This stability ensures that the g-C3N4 electrode withstands solid-
electrolyte-interphase leading to a prolonged lifespan of the
electrode material, reducing the need for frequent replacements
and lowering the environmental impact (Li et al., 2023).
Additionally, g-C3N4 is composed of abundant elements, making
it an attractive alternative to the limited and expensive resources
used in traditional LIB materials, such as cobalt (Kong et al., 2018).
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3 Application of g-C3N4 in LIBs

Especially to be used as an anode or cathode the composite
structures of g-C3N4 can also be formed by combining with other
materials (Rono et al., 2021), leveraging the advantages of both
materials. Here are some specific applications of g-C3N4 in LIBs as
an anode and cathode.

3.1 Auxiliary anode material

The pristine form of g-C3N4 has shown a higher theoretical
capacity compared to graphite, with a capacity of around 524 mAh
g−1 (Adekoya et al., 2021). The g-C3N4 unique electronic properties
and porous structure allow for improved lithium-ion diffusion and
enhanced cycling stability (Chen et al., 2017; Li et al., 2020).
Therefore, as an anode, g-C3N4 composites of graphene (Wang
et al., 2018), Nitrogen and Phosphorous (Tao et al., 2017), and salt of
Se (Zhou et al., 2018), Zn (Joshi et al., 2018), Mn/Ni/Cu/Co (Zhang
et al., 2019), Sn (Maniyazagan et al., 2023), WS2 (Xu et al., 2022)
exhibit improved specific capacities. While, 2,749 mAh g−1 is the
highest initial discharge capacity so far reported for Sn/g-C3N4

composite anode (Le et al., 2022). So, it is deduced that g-C3N4

can be utilized as a composite with other materials to enhance its
properties and performance.

3.2 Auxiliary cathode material

The g-C3N4 can also be employed as a cathode material in LIBs.
It can serve as a host matrix for active materials, improving their
electrochemical performance (Dutta et al., 2022). By incorporating
active materials into the g-C3N4 matrix, the overall capacity and
cycling stability of the cathode can be enhanced (Ramar and Wang,
2022). Similarly, the composites of g-C3N4 with graphene (Huang
et al., 2016), porous carbon (Hong et al., 2020), nano sulfur
copolymer (Yao et al., 2018; Tiwari et al., 2022), and salt of P
(Zhang H. et al., 2020), and Cu (Li et al., 2023), show incredibly good
cathodic properties. Hence, g-C3N4 also shows the characteristics of
it being employed as a single electrode material or as support for
other materials rendering them superior performance.

4 Challenges and future directions of
g-C3N4 for LIBs

Despite the excellent merits of g-C3N4 (Ahmed and Maraz,
2023), as an electrode, it is facing many challenges to be used as a
strong electrode material in LIBs, which are discussed in this section.

4.1 Challenges in utilizing g-C3N4 for LIBs

4.1.1 Limited electrical conductivity
One of the primary challenges associated with g-C3N4 as an

electrode material for LIBs is its limited electrical conductivity (Ruby
Raj et al., 2023). Compared to conventional carbon-based materials,
such as graphite, g-C3N4 exhibits lower electron transport

properties. This impedes the efficient movement of charge
carriers during charge and discharge processes, leading to
reduced battery performance (Luo et al., 2019). There have been
efforts to improve the electrical conductivity of g-C3N4 by doping
with other materials. However, enhancing the electrical conductivity
of g-C3N4 without compromising its unique properties is still a
critical challenge that needs to be addressed.

4.1.2 Poor kinetics of Li-ion intercalation
The inherently layered structure of graphite allows for easy

intercalation of Li-ions, which enables the reversible charge storage
mechanism in LIBs (Zhu et al., 2019). In the case of g-C3N4,
however, the intercalation kinetics of Li-ions is slower (Li et al.,
2022). This sluggish intercalation limits the battery’s rate capability
and affects charge-discharge performance (S. Wang et al., 2018).
Developing strategies to improve the kinetics of li-ion intercalation
within g-C3N4 is imperative for its successful integration into high-
performance LIBs (Pathak et al., 2021).

4.1.3 Limited cycling stability
The g-C3N4-based electrodes demonstrate poor cycling stability,

it is because they may experience mechanical stress, leading to
structural degradation (Versaci et al., 2020). Li-ion insertion and
extraction cause pulverization of the electrode. Further, slow kinetics
of li-ion diffusion, unwanted side reactions between the electrode
and the electrolyte leading to the formation of solid-electrolyte
interface (SEI), and g-C3N4 may trap some lithium ions during
cycling, reducing the reversible capacity of the electrode over time.
These all phenomena contribute to the loss of cycling stability.
Exploring novel approaches to mitigate structural deterioration and
enhance the cycling stability of g-C3N4 electrodes is crucial for their
industrial implementation as Sun et al., did, they built an anode
material for LIBs by refilling of heteroatom in plasma-induced
highly ND g-C3N4 (Sun et al., 2022).

4.1.4 Scalability and cost-effectiveness
For any promising material to find widespread application in

LIBs, scalability and cost-effectiveness are key considerations (Xia
et al., 2022; Liu et al., 2023). Currently, the synthesis of g-C3N4 lacks
appropriate methods for large-scale production (Wang et al., 2019).
Additionally, the cost of raw materials used for g-C3N4 synthesis is
higher compared to conventional carbonaceous materials (Fang
et al., 2016; Zou et al., 2016). Addressing these challenges is vital
to ensure the viability and commercialization of g-C3N4-based LIBs.

4.2 Future directions

4.2.1 Designing hierarchical structures
The development of hierarchical structures can address the

limited electrical conductivity of g-C3N4 (Xu et al., 2022).
Introducing conductive additives or forming composite structures
with conducting materials can improve the overall conductivity of
the electrode. For example, incorporating carbon nanotubes or
graphene into g-C3N4 matrices can enhance its electrical
properties, leading to improved li-ion diffusion and charge
transport within the electrode (Wang S. et al., 2023; Wang Y.
et al., 2023).
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4.2.2 Surface modification of g-C3N4

Surface modification strategies can be employed to enhance the
kinetics of li-ion intercalation in g-C3N4-based electrodes.
Functionalizing the g-C3N4 surface with active groups can facilitate
li-ion diffusion and enhance the interaction between the electrode and
electrolyte (J. Li et al., 2023). By careful selection and design of
functional groups, improved intercalation kinetics and enhanced
battery performance can be achieved (Choudhury et al., 2023).

4.2.3 Structural stability improvement
To improve the cycling stability of g-C3N4 electrodes, efforts

must focus on stabilizing their structure during repeated lithiation
and delithiation cycles (Li et al., 2017; Veith et al., 2013).
Incorporating strengthening agents, such as carbon fibers or
polymers, can provide mechanical support and alleviate structural
distortion. Furthermore, exploring surface coatings and protective
layers can prevent unwanted side reactions, reducing capacity fade,
and improving long-term stability as reported by Maniyazagan et al.

4.2.4 Scalable synthesis methods
Developing scalable synthesis methods for g-C3N4 electrodes

will facilitate their large-scale production. Innovative approaches
like solvothermal, aerosol-assisted, or direct carbonization of
nitrogen-containing precursors (Wang et al., 2020) can be
explored (Villalobos et al., 2020). These techniques can promote
efficient mass production of g-C3N4 electrodes, making them more
commercially viable (Ramar and Wang, 2022).

4.2.5 Cost reduction
To enhance the cost-effectiveness of g-C3N4-based LIBs, efforts

should be directed toward finding alternative and cheaper
precursors for g-C3N4 synthesis (Han et al., 2019), which can be
sustainably recycled or disposed off from used LIBs (Y. Liu et al.,
2021). Moreover, innovative manufacturing techniques and
optimization of fabrication processes can contribute to cost
reduction for commercial production of LIBs with g-C3N4

(Zhang Y. et al., 2023; Degen and Krätzig, 2023).

5 Conclusion

In conclusion, the g-C3N4 exhibits various physicochemical
properties that make it a promising material for LIBs. Its high
thermal stability, large specific surface area, chemical stability, and
environmental sustainability contribute to its suitability for LIBs, as
discovered recently. These exceptional properties of g-C3N4 make it a
favorable material for diverse functions in LIBs, including anodes,
cathodes, composites, electrolyte additives, and separator coatings.
Also, its incorporation in LIBs can lead to improved energy storage
performance, enhanced cycling stability, and increased safety. Despite
the challenges faced by g-C3N4 for LIBs, concerted efforts in
addressing the limited electrical conductivity, poor intercalation
kinetics, scalability, and cost-effectiveness can pave the way for its
successful integration. Additionally, continued research and
development in synthesizing and optimizing g-C3N4-based
electrodes for high-performance and environment-friendly LIBs
can contribute to a more sustainable and efficient energy storage
future. g-C3N4 can emerge as a competitive material for next-

generation LIBs, by designing hierarchical structures, surface
modification, improving structural stability, developing scalable
synthesis methods, and reducing production costs.
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