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ABSTRACT The goal of music genre classification is to identify the genre of given feature vectors
representing certain characteristics of music clips. In addition, to improve the accuracy of music genre
classification, considerable research has been conducted on extracting spectral features, which contain
critical information for genre classification, frommusic clips and feeding these features into training models.
In particular, recent studies argue that classification accuracy can be enhanced by employing multiple
spectral features simultaneously. Consequently, fusing information from multiple spectral features is a
critical consideration in designing music genre classification models. Hence, this paper provides a short
survey of recent studies on music genre classification and compares the performance of the most recent
CNN-based models with a newly devised model that employs a late fusion strategy for the multiple spectral
features. Our empirical study of 12 public datasets, including Ballroom, ISMIR04, and GTZAN, showed that
the late fusion CNN model outperforms other compared methods. Additionally, we performed an in-depth
analysis to validate the effectiveness of the late fusion strategy in music genre classification.

INDEX TERMS Music genre classification, convolutional neural network, spectral feature, late fusion
strategy.

I. INTRODUCTION
Music information retrieval (MIR) can be broadly categorized
into three main areas: music classification, manipulation,
and creation [2]. Among these, music classification plays
an integral role in everyday life and has experienced steady
research growth. Specifically, this subfield involves the
assignment of appropriate labels to musical clips based
on genres or emotional moods, utilizing their musical
characteristics. More particularly, given that most end users
exhibit consistent tastes that do not deviate significantly
from their established preferences [3], music classification
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facilitates music enjoyment by filtering out irrelevant genres.
Further, while various applications are based on music clas-
sification [4], [5], [6], the music genre classification (MGC)
task can provide a highly satisfying listening environment
tailored to individual tastes.

Meanwhile, to improve the accuracy ofMGC, considerable
research has been conducted on extracting spectral features
from music clips [7]. Specifically, these features contain
critical information for MGC, which can subsequently be
fed into training models. Particularly, notable extraction
techniques include the short-term Fourier transform (STFT)
[8], mel-frequency cepstral coefficient (MFCC) [9], mel-
spectrogram (MLS) [10], tempo, and chromagram [11].
Early MGC studies [12] trained models using single-spectral
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features derived from one of these extraction techniques.
However, due to the inherent variety and ambiguity of
music genres, more recent studies argue that the accuracy
of classification tasks can be improved by employing
and combining multiple spectral features obtained from
various extraction techniques [28], [30], [31], [32]. This
suggests two important considerations: first, selecting which
spectral features and how to combine them can critically
improve the accuracy of MGC. Second, the model archi-
tecture should be able to handle multiple spectral features
simultaneously.

Because of the remarkable success of deep learning in
various fields, various deep learning models such as a graph
neural network [86], a convolutional neural network [60],
and an attention model [87] can be applied to the MIR
domain. Recently, convolutional neural networks (CNNs)
have attracted huge research interests in the MIR domain
due to their inherent ability to handle complex spectral
features [38], [39], [41]. Specifically, these features, derived
from music clips, are two-dimensional, making CNNs ideal
for discerning spatial relationships among them, thereby
capturing the temporal structures of music clips. Therefore,
recent CNN-basedMGCmodels are designed to handle either
single-spectral features [43] or multiple spectral features that
are concatenated as input data [66]. The latter approach is
predicated on the assumption that the concatenation of mul-
tiple spectral features can provide more critical information
than single-spectral features, thereby improving the accuracy
ofMGC.More specifically, when the combination ofmultiple
spectral features is determined, the features are concatenated
as cubic input data, and this method is called the early fusion
strategy.

This paper begins by reviewing existing MGC methods
in terms of their applied datasets, input features, and
classification models. Specifically, this review allows us to
identify the limitations of current techniques and guides
us to devise a CNN-based MGC model to handle multiple
spectral features. In particular, we explore a late fusion
strategy that concatenates multiple spectral features after
the extraction of individual information via convolutional
operators to compare the performance with that of the early
fusion strategy. Consequently, the devised model effectively
handles multiple spectral features by extracting distinct
information from each one and fusing only the essential
information. Our experimental results, derived from 12 well-
known music genre datasets, reveal the relative superiority
of our method over conventional CNN-based methods for
MGC tasks. The contributions of this study can be outlined
as follows:

• We provide a short survey of existing MGC methods
in terms of their applied datasets, input features, and
classification models.

• We devise a late fusion CNN that utilizes multiple
spectral features to establish baseline performance in
comparison with conventional MGC methods.

• We conduct empirical experiments to validate the impact
of the information fusion strategy for MGC tasks
predicated on CNN.

• We conduct an in-depth analysis to underline the
effectiveness of the late fusion strategy.

II. RELATED WORK
Many studies have thoroughly explored the MGC task,
particularly focusing on spectral features selection and MGC
across various music datasets [20]. Research detailing the
investigation of the impact of traditional classifiers in devel-
oping an automatic MGC model [36] extracted rhythmical
features from the widely used GTZAN dataset [49]. Specif-
ically, the study employed principal component analysis
for feature dimension reduction [24], [50]. Experiments
were performed using conventional approaches like gradi-
ent boost [51], support vector machines (SVM), random
forest [52], XG boost [53], decision tree (DT) [54], and
k-nearest neighbor (kNN) [55]. Notably, the influence of
linguistic content on accuracy was seldom separated from
the audio [22]. Furthermore, the comparative performance of
SVM and kNN revealed SVM having superior classification
accuracy, closely followed by kNN [23]. In addition, a unique
ensemble model of SVM and radial basis function (SVM-
RBF) was proposed for music clip classification within the
Spotify dataset [25]. Meanwhile, the Daubechies Wavelet
Coefficient Histogram (DWCH) that concurrently captures
local and global music signal information was also utilized
for MGC tasks [37]. Moreover, three multi-linear subspace
techniques were compared for processing large data tensors
and deriving compact feature vectors [33]. Particularly, the
research found that the algorithm based on the time domain
was rapid, while that based on the frequency domain was
accurate [35].
Furthermore, deep neural networks featuring multiple

layers have exhibited performance improvements over tradi-
tional classifier techniques [56]. Specifically, these networks
include CNN [57], recurrent neural network (RNN) [58],
and the combined convolutional recurrent neural network
(CRNN) or CNN-long short-term memory (CNN-LSTM)
[59]. Additionally, the bidirectional recurrent neural network
(BRNN) has also been investigated [27], with a model
employing parallelized CNN attention, achieving a classifica-
tion accuracy of 92.7%. Furthermore, long short-term mem-
ory (LSTM) was explored using time and frequency domain
features [28]. Precisely, the highest achieved accuracy was
0.989 using the SVM classifier with the combined feature in
an experiment with LSTM. Meanwhile, recent advancements
in the natural language processing field inspired the use of a
transformer classifier, which yielded significant results [40].
Specifically, the authors designed a multi-head attention
mechanism and a feed-forward layer in the encoder. Despite
RNN’s intrinsic time series information modeling capability
from music clips, recent studies have focused on CNN for
MIR tasks. This is attributed to CNN’s high classification
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TABLE 1. Summary of existing MGC methods.
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accuracy when treating time-frequency information as the
input image.

Particularly, the efficacy of a four-layer neural network
model with extracted musical features from the GTZAN
dataset was examined for the MGC task [17]. The results
were compared with neural networks, SVMs, multi-layer
perceptrons, and DTs using MFCCs, achieving a classi-
fication accuracy of 91%. In addition, the authors also
experimented with ImageNet’s pre-trained CNNmodel using
three musical datasets: ESC-50 [60], UrbanSound8k [61],
and GTZAN. Moreover, transfer learning was utilized to
classify music genres [38]. The models pre-trained using
two large-scale datasets, which are the Million Song and the
MagnaTagATune datasets, achieved a classification accuracy
of 0.88, although they struggled to classify pop and R&B.
Further, in evaluating the effectiveness of the middle-level
learning feature interaction method, visual and audio features
were processed through visual and audio feature extraction
modules, respectively [41]. More specifically, the combina-
tion of two visual and nine audio features boosted the model
accuracy while decreasing training speed by 60% compared
to the equivalent model. Besides, some innovative features
were proposed based on long-term modulation spectral
analysis [42]. In addition, an information fusion approach
was developed, integrating feature-level and decision-level
fusion.

Meanwhile, the design of a specialized network for music
genre identification was proposed in [43]. Specifically,
the model aimed to exploit the low-level information of
Mel spectrograms for classification decision-making. More
particularly, a distance-based MGC algorithm was created to
adopt an information fusion framework [44]. Precisely, the
fusion method improved the accuracy rate by 2% to 15%
compared to using single ones. A novel combination model
that fuses harmonic and instrumental information was also
proposed [45], exhibiting that jointly processing both pieces
of information improves accuracy. A multi-level feature cod-
ing network using a CNN with self-attention and NetVLAD
learned high-level features for each low-level feature [46].
The proposed model achieved a high classification accuracy
of 96.50% on the GTZAN dataset. A res-gated convolutional
structure with an attention mechanism was also applied to the
MGC task, and the model achieved a classification accuracy
of 96.8% on the GTZAN dataset [87]. Parallel attention
was applied to the CNN model to extract multiple features
from the MLS features [89]. A new pre-training method
was also proposed that applied a swin transformer to learn
meaningful music representation of massive unlabeled music
data [90]. A neural model reprogramming was employed
as part of a transfer learning approach, in which the
model was initially trained on a large-scale acoustic dataset
and subsequently fine-tuned using the smaller GTZAN
dataset [88]. Additionally, a locally activated gated network
was employed to capture the different characteristics of music
genres [91].

Furthermore, inspired by the auditory system and spectro-
gram features, music genres were classified through the late
fusion method, combining auditory, spectral, and acoustic
features [47]. Specifically, this proposed model achieved
a higher classification accuracy than many state-of-the-art
classification methods. Another study for mobile devices was
conducted [48], where an STFT image passed through two
separate blocks of convolution and bi-recurrent operations.
In particular, the two blocks produced the same-sized output
combined for genre classification. Table 1 summarizes the
related works on the MGC task.

While CNN exhibited promising results in MGC tasks,
it has also been applied to tasks such as music mood
and instrument classifications. For instance, a study on
music mood classification using audio and lyric information
suggested that song mood identification can be enhanced
not only through musical features but also through lyrics
information [34]. A model for mood, genres, and composers
detection, using an integrated approach of MFCCs and
CNN, was conducted [32]. Specifically, this model captures
temporal and timbre information, respectively, using two
different methods — sequential and parallel structures, and
then merges them. For listeners unfamiliar with the genre,
a study classifying them using easily recognizable moods
such as happy, angry, and sad was conducted [31]. The
proposed CNN model achieved an average classification
accuracy of 82% and a peak accuracy of 86% for
the ‘‘happy’’ label. Meanwhile, in the music instrument
classification domain, a study that adopts time-frequency
localization features proposed a CNN model [21], where
the continuous wavelet transform of the audio signals
was realized through the convolutional layer of the
CNN model.

While recent CNN-based methods [17], [31], [41], [46],
[47] have exhibited state-of-the-art performance on MGC
datasets, all except one [47] employ an early fusion
strategy [66], wherein all features are combined and fed into
the models as input data. Meanwhile, in the studies by [42]
and [47], a different approach is used, where input data is
separated into visual, spectral, and acoustic features. These
features are then individually fed into the model to extract
unique information, which is subsequently concatenated in
the middle of the model, a process known as the late fusion
strategy. However, given that spectral features may contain
redundant information from each other, it is plausible that
the late fusion strategy might be equally effective when
applied to multiple spectral features. Therefore, this study
investigates the efficacy of the late fusion strategy in handling
multiple spectral features for theMGC task. Furthermore, as a
CNN model is a well-established architecture, we employ
it as a baseline model to compare the performances with
conventional CNNs on the various MGC datasets. The
performances of the baseline model can serve as a reference
point for benchmarking and comparing the performances of
newer neural architectures in future studies.
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III. BASELINE MODEL: LATE FUSION CNN
A. PRELIMINARIES
STFT,MLS, andMFCC are themost commonly used spectral
features for MGC [22], [24], [27], [30]. Specifically, the
STFT is a Fourier-related transformation utilized to ascertain
the sine wave frequency and phase content of specific local
sections of a time-varying signal. Particularly, it furnishes
time-localized frequency information for situations where
signal frequency components vary over time. This is advan-
tageous when understanding the flow of frequency within a
desired time period as the signal frequency changes. From the
result of the STFT, the MLS reflects the human characteristic
of being more sensitive to changes in low frequencies than
in high frequencies. The spectral features from STFT are
scaled using a mel-scale that transforms high-frequency
voice signals into low-frequency ones, to which humans
are more sensitive. Furthermore, MFCC can be derived
by performing a single discrete cosine transform (DCT)
operation [65] on the extracted MLS features. Specifically,
the DCT operation compresses the filter bank obtained
from the MLS to reduce frequency correlations. Because
the MLS and MFCC can provide another perspective on
the spectral features, they are often used in conjunction
with STFT.

Further, to integrate those spectral features for a single
CNN model, feature-level fusion has exhibited effectiveness
in fusing multiple spectral features [66]. In particular, there
are two primary strategies for fusing input data: early fusion
and late fusion. Early fusion integrates separate spectral
features into a unified data source, which then undergoes the
entire training process. Despite its simplicity, this approach
struggles to extract the unique characteristics of each spectral
feature. Specifically, when using STFT, MLS, and MFCC,
the early fusion strategy may produce redundant information,
given that the spectral features by MLS originate from STFT
and those by MFCC originate from MLS. Consequently, the
benefits of using multiple spectral features might disappear
due to the overwhelming redundancy, which could potentially
mislead the model.

Conversely, late fusion merges data one step before the
classification stage. Specifically, input data with multi-modal
features are fed into the CNN model separately, and the
output from each modality is concatenated. Particularly, this
method is effective in extracting the unique characteristics
of each modality. Furthermore, when data sources vary
in sampling rates, data dimensions, and units of measure-
ment, it is a more straightforward and flexible approach
than the early fusion method. Therefore, we construct a
baseline model with a late fusion strategy for the spectral
features of STFT, MLS, and MFCC and make comparisons
with conventional CNN-based methods for MGC. In this
paper, we specifically applied the late fusion strategy
to a CNN model and compared its performance with
that of conventional CNN models designed for the MGC
domain.

B. LATE FUSION CNN FOR MGC
The late fusion CNN model devised in this paper is
motivated by DenseNet [14] since it is robust against the
gradient loss problem and adopts an effect of feature reuse,
which can contribute to enhanced classification performance.
In particular, DenseNet connects the feature map of the
first layer to the feature map of the last layer to prevent
information loss and provides a normalization effect by
linking the feature maps of various layers. Specifically, the
lth layer uses all of the preceding output feature maps
0,1,2. . . ,l-1 as input feature maps, with the result being xl .
The expression of xl is as follows:

xl = Hl ([x0, x1, x2, . . . , xl−1]) (1)

In Equation (1), function Hl (·) corresponds to batch
normalization, rectified linear unit (ReLU) [71], and a 3 ×

3 convolution layer.
Figure 1 illustrates the architecture of the devised model.

Initially, multiple spectral features by STFT, MLS, and
MFCC were extracted from the music clip. Each input data
from different spectral features is resized into (256, 1296) for
late fusion at the feature level. Each input data passes through
a 7 × 7 group convolution layer and a max pooling layer,
where the width and height of the feature maps are halved.
The reduced feature maps are then forwarded to the dense
block.

Dense layers in the dense blocks follow the structure of
batch normalization, ReLU, 1 × 1 convolution layer, Batch
Normalization, ReLU, 3 × 3 convolution layer. Precisely,
four dense blocks consist of 6, 12, 24, and 16 dense layers,
respectively. The ReLU function forwards the input value
to the output value for numbers greater than zero and
outputs zero for numbers less than zero. Particularly, a
1 × 1 convolution layer, referred to as the bottleneck layer,
reduces the channel number of the feature map. Additionally,
a 3 × 3 convolution layer captures important characteristics
of the feature maps, and a dropout layer is added after the
3×3 convolution layer of the dense layer. A detailed structure
of the dense layer is shown in Figure 2, where w, h, ki
represent the width, height, and depth of a corresponding
feature map, respectively. In this study, k0 begins from 60 and
increases the total depth of the feature maps by 32 as k is
concatenated.

The next component to be described is the transition layer,
which reduces the horizontal and vertical dimensions of the
feature map as well as the number of feature maps. Except for
the last dense block, it connects to the back of the dense block
and comprises batch normalization, ReLU, 1×1 convolution
layer, and 2 × 2 adaptive-average-pooling. Here, θ , which
reduces the number of feature maps via 1 × 1 convolution
layer and indicates the degree of reduction, is set to 0.5 in this
study. The number of feature maps is halved, and the width
and height of the feature map are also halved through the
2×2 average pooling layer after passing through the transition
layer. Hyperparameter θ [0, 1] aligns the output channel with
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FIGURE 1. Flowchart of the devised late fusion CNN.

m × θ as a factor adjusting the number of output feature
maps by the transition layer when m feature maps are input
into the dense block. If θ = 1, the same number of feature
maps is taken. Lastly, adaptive-average-pooling was adopted
as shown in Figure 3.

After each input data passes through the four dense blocks
and three transition layers, the feature maps are concatenated
to fuse the information from multiple spectral features.
The concatenated features then pass through a single fully

connected layer. In particular, we implement only one fully
connected layer with the SoftMax function to classify genres
to avoid overfitting from multiple fully connected layers.
For the loss function, cross-entropy [74] is used, a common
metric for evaluating performance in classification models
in machine learning. Assuming a predictive model trying to
anticipate the q distribution without knowledge of the actual
distribution q, the distribution obtained through predictive
modeling is p(x). When creating a p distribution that predicts
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FIGURE 2. Schematic diagram of the dense layer inside the dense block
where w , h, and ki represent the width, height, and depth of a
corresponding feature map. The last concatenated Lth layer is 6, 12, 24,
and 16 in the dense blocks 1, 2, 3, and 4, respectively.

FIGURE 3. Schematic diagram of the transition layer.

the actual distribution q, cross-entropy is defined as follows:

Hp (q) = −

C∑
c=1

q (yc) log (p (yc)) (2)

A smaller cross-entropy value indicates the two probability
distributions are closer. Minimizing entropy thus allows us to
reduce the difference between actual and predicted values.
Finally, the Adam optimizer [75] is used with a default
learning rate of 0.001.

The application of the late fusion strategy in the field
of music genre classification can be driven by its inher-
ent compatibility with the complexities of this domain.
In music genre classification, the abundance of audio features
extracted from music clips results in numerous potential
feature combinations for classification models, as described
in Table 1. The late fusion strategy is chosen for its innate
simplicity and adaptability, facilitating the management of
diverse feature combinations and thus addressing the inherent
variability in music data.

Furthermore, as the field of music genre classification
advances, the incorporation of advanced deep learning
techniques, such as attention mechanisms, becomes increas-

ingly relevant. The structural nature of the late fusion
strategy aligns with this requirement, granting users the
flexibility to selectively integrate advanced techniques that
align most effectively with their specific classification needs.
Consequently, the late fusion strategy not only simplifies the
handling of diverse feature combinations but also enables
the effective integration of contemporary deep learning
methodologies, positioning it as an ideal choice for music
genre classification.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
In this section, we contrast the late fusion CNN model
as a baseline model with existing MGC techniques across
12 music datasets. The Ballroom dataset, comprising
698 songs from eight genres of Ballroom dancing, each
with a maximum duration of 30 seconds, forms the initial
benchmark [76]. The Ballroom-Extended dataset enhances
the original Ballroom set with superior audio quality, a six-
fold increase in tracks, the addition of five new rhythm
classes, and a variety of repetitive annotations [77]. The
FMA-SMALL dataset, encompassing 8,000 tracks, is a
subset selected from Free Music Archive (FMA) [78]. Addi-
tionally, we utilize the GTZAN dataset, a popular choice for
music classification, with 1,000 audio tracks each 30 seconds
long, and the HOMBURG dataset with 1,886 songs1 [79].
The MICM dataset for the classification of seven Dastgahs
of Iranian classical music is referenced from [1]. The
Seyerlehner:Unique dataset features 3,115 30-second music
clips from popular songs across 14 unbalanced genres [80].
The EmoMusic-G dataset, assembled from 1,000 FMA songs
for music emotion recognition, and the Emotify-G dataset,
including 400 60-second song clips based on the Geneva
Emotional Music Scales [81], each allows up to three tags
per song. The final datasets, GiantStepsKey-G and GMD-
G, encompass 604 electronic dance music pieces2 for key
estimation and 1,150 MIDI files totaling 13.6 hours and over
22,000 measures of drumming, respectively. Although the
EmoMusic-G, Emotify, GiantStepsKey, and GMD datasets
initially pertain to various domains, we convert them to genre
domains using the provided metadata. For further details on
each dataset, refer to [82].
Table 2 provides the summary statistics for all datasets,

including those previously modified for the experiments.
Specifically, each column represents the dataset’s name, the
number of patterns |W |, the average length of music clips
in the collection, the domain as suggested by the original
data providers, and the domain we applied in this study.
Additionally, it enumerates the number of tags |T | and the
average number of patterns per genre. Upon assembling the
datasets, all music files were converted into the .wav format.
The Python library librosa was then used to extract the
necessary features from each music file for the experiments.

1https://www.garageband.com
2https://www.beatport.com
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We first conducted the STFT extraction, where the length
of the windowed signal after zero-padding (n_fft) was set to
4,096, and each frame of audio was matched to n_fft. The
number of audio samples between successive STFT columns
(hop_length) was set to 512. During the MLS extraction,
we used the default settings, except that we adjusted the
sampling rate to 44,100 and performed normalization. For
the MFCC extraction, the settings were the same as those
for STFT, with the only difference being that all negative
numbers were converted into positive ones. Subsequently,
we zero-padded the music clips to equalize their lengths.
Clips of varying original lengths were padded to 1296 units,
equating to 30 seconds, to align with the length of the longest
music clip in the Ballroom dataset.

The baseline model was compared to the latest conven-
tional CNN-basedmethods for theMGC:ResNet50_trust [67],
Pelchat and Gelowitz [68], Cheng et al. [69], and
Shah et al. [70]. We detail each method as follows:

• ResNet50_trust is a CNN-based model utilizing the
ResNet50 architecture paired with a balanced trusted
loss function. The model is trained using features
extracted from STFT.

• Pelchat and Gelowitz represent a CNN-based model
comprising convolutional layers, max-pooling layers,
and fully connected layers. This model is trained using
spectrogram slices.

• Cheng et al. present a CNN-based model composed
of five convolutional layers, each containing a convo-
lutional operation, ReLU activation, max-pooling, and
dropout. The model is trained using features derived
from the mel-spectrogram.

• Shah et al. put forward a CNN-based model resembling
the Cheng et al. model, trained using features from the
mel-spectrogram.

For each method, the parameters were set equally for the
fairness of comparison. Specifically, the initial input size of
eachmusic clip was (256, 1296), which was for the 30-second
long audio, and the batch size, learning rate, and number of
epochs were set to 16, 0.001, and 60, respectively. Aside
from the devised baseline model, all models were trained
using concatenated features from STFT, MLS, and MFCC.
Additionally, hold-out cross-validation was conducted for
each experiment on a given dataset; 80% of the patterns were
randomly selected as training sets for model training. The
remaining 20% of the patterns were used as test sets to obtain
classification performance. The experiments were repeated
ten times, and the average accuracy and standard deviation
were calculated.

B. COMPARISON RESULTS
In Table 3, we have summarized the results of experiments
conducted with five different methods, presenting each
method’s accuracy on different datasets. Interestingly, the
▼** and ▼* symbols indicate that the late fusion CNN
(baseline) model is statistically superior to the comparison

method at the significance level 99% and 95%, respectively,
based on the paired t-test. The baseline model consistently
outperforms the comparative methods across all datasets.
Specifically, the late fusion CNNmodel exhibited the highest
accuracy in every dataset, with an outstanding performance
on the Ballroom-Extended dataset. Here, the baseline model
achieved 85.49% accuracy with a standard deviation of 1.06,
significantly outperforming the second-best method, Cheng
et al., by 22.61 percentage points. The largest performance
gap was observed on the same dataset, with the baseline
model outperforming the least accurate method, Pelchat and
Gelowitz’s, by a striking 40.81 percentage points.

It is noteworthy that the baseline model exhibits the least
variability, as indicated by relatively low standard deviations,
suggesting robustness across different experimental runs.
Particularly, the consistently high performance of the baseline
model across various datasets indicates its adaptability to
different music genres and recording qualities. A more
generalized view of the method’s performance is presented
at the bottom of the table. The baseline model achieved
a win in every dataset, resulting in a perfect win/tie/lose
score of 48/0/0. The average rank of 1.00 for the baseline
model further solidifies its superior performance over other
methods. In addition, the baseline model exhibited statistical
superiority to all comparison methods based on the paired t-
test at the significance level 99%, except for the experiment
of ResNet50_trust conducted using the GTZAN dataset.

Two statistical tests, Friedman and Bonferroni–Dunn tests,
were employed to further demonstrate the superiority of the
baseline model with quantitative evaluation. To analyze the
performance of various MGC methods, different methods on
different datasets were compared using the Friedman test,
a widely used statistical test. Given k methods andN datasets,
r ji represents the rank of the jth method for the ith dataset
(mean ranks are shared in case of ties) and Rj =

1
N

∑N
i=1 r

j
i

denotes the mean ranking for the jth method. The Friedman
statistic FF is given as

FF =
(N − 1)χ2

F

N (k − 1) − χ2
F

where the χ2
F is defined as

χ2
F =

12N
k(k + 1)

 k∑
j=1

R2j −
k(k + 1)2

4


Under the null hypothesis H0 : R1 = . . . = Rk ,

statistic FF is distributed according to the F-distribution with
numerator degrees of freedom k-1 and denominator degrees
of freedom (k-1)(N -1). Suppose FF is greater than the critical
value defined as the quantile of order 1 − α of the F-
distribution with k − 1 and (k-1)(N -1) degrees of freedom,
where α is the assumed significance level. In that case, the
null hypothesis that the performance between the comparison
methods is the same at each evaluation scale is rejected.
In the case of the rejection of the H0, a specific post-hoc
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TABLE 2. The standard characteristics and statistics of employed datasets.

TABLE 3. Experimental results of five models in terms of accuracy (▼** and ▼* indicate that the corresponding method is significantly worse than the late
fusion CNN (Baseline) model based on paired t-test at 99% and 95% significance level, respectively).

test should be conducted to analyze the relative performance
between the comparison methods [83]. As indicated in
Table 4, the value of the Friedman statistic (FF = 29.133)
exceeds the critical value of 2.583. This suggests that the
null hypothesis, assuming equal performance of all methods,
should be rejected. Following this, the Bonferroni–Dunn test
was performed to compare the baseline model against the
other methods. Particularly, the Bonferroni–Dunn post-hoc
test allows us to decide whether the baseline model performs
better than some other competitive method [84]. Specifically,
the difference in the average rankings between the baseline
model and one of the competitive methods is compared with
the following critical difference (CD):

CD = qα

√
k(k + 1)

6N
.

In the Bonferroni–Dunn test, the performance of the
baseline model is deemed statistically equivalent to that of
a comparative method if the average rankings for all datasets
fall within the CD. This implies that if the disparity in terms of
average rank between the baselinemodel and the comparative
method exceeds the CD, we can confirm that the performance

TABLE 4. Summary of the Friedman statistic FF (k = 5, N = 12) and
Critical Value in terms of the Classification Accuracy measure.

is significantly different, thus allowing us to discern the
superior method. With N = 12 datasets and k = 5 methods
under comparison, the CD at a significance level of α =

0.05 is found to be 1.612, given that qα = 2.498. Figure 4
visually represents the results of the Bonferroni–Dunn test.
The baseline model, which achieved the highest average
rank, is depicted on the rightmost side of the figure. The
CD line, which designates the range of CD, is positioned
above the main line. No other comparison method falls
within the CD range, allowing us to conclude that the
accuracy of the baseline model significantly surpasses that
of the competing methods, thereby corroborating its supe-
riority. Additionally, this result suggests that the late fusion
strategy’s ability to extract unique information from each
spectral feature appears more effective than the early fusion
strategy.
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TABLE 5. Classification accuracies and standard deviations of the baseline model for different feature combinations on all the datasets.

FIGURE 4. Bonferroni–Dunn test result of the five comparison methods in
terms of accuracy.

C. IN-DPETH ANALYSIS OF THE BASELINE MODEL
In particular, the architecture of the baseline model is
designed to leverage multiple spectral features by employing
a multi-head architecture and late fusion strategy. To validate
this strategy, two additional experiments were conducted. The
first experiment compared the impact of varying the number
of spectral features utilized in the baseline model. This
experiment aimed to determine whether the baseline model
could effectively utilize all spectral features concurrently. The
classification accuracy of the baseline model with different
combinations of spectral features is shown in Table 5.
Interestingly, the results suggest that the baseline model
achieves its best performance when all spectral features
are simultaneously employed. It is also important to note
that the performance of the baseline model is at its lowest
when only one of the spectral features is used across all
datasets. Nevertheless, an increase in the number of spectral
features used leads to a corresponding enhancement in the
performance of the baseline model.

Furthermore, we conducted a comparison experiment
to verify the effectiveness of the late fusion strategy.
Specifically, we compared the performance of the baseline
model with the early fusion strategy. For the early fusion
strategy, we concatenated all spectral features and fed them
into the baseline model as input data. Table 6 illustrates
the classification accuracy of the baseline model with early
fusion and late fusion strategies. The ▼ indicates that the

TABLE 6. Comparison of the experimental results of applying early and
late fusion to the baseline model in terms of accuracy (▼ indicates that
the early fusion is significantly worse than the late fusion (Baseline)
based on paired t-test at 95% significance level).

performance of the early fusion strategy is significantly worse
than that of the late fusion strategy based on paired t-test at
95% significance level.

Observing the results from various datasets, it is evident
that the late fusion strategy consistently outperforms early
fusion in terms of accuracy. In the case of the Ballroom
dataset, the baseline model exhibits a statistically significant
improvement with an accuracy of 58.29% over the 54.57%
achieved by the early fusion. This superiority of the late
fusion strategy also extends to the Ballroom-Extended,
FMA-SMALL, GiantStepsKey-G, GMD-G, HOMBURG,
ISMIR04, MICM, and Seyerlehner:Unique datasets. For the
EmoMusic-G and GTZAN datasets, although the baseline
model presents a slightly better performance, the difference
does not achieve statistical significance based on the paired
t-test. Meanwhile, on the Emotify-G dataset, the baseline
model exhibits an improvement in accuracy, but the lack
of the ▼ symbol suggests that this improvement is not
statistically significant. In terms of average rank, the baseline
model achieves a superior score of 1.00, indicating its
consistent effectiveness across different datasets. The early
fusion method, by contrast, has an average rank of 2.00.
Overall, these results serve to validate the superiority of
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the late fusion strategy over the early fusion, indicating
the potential of the late fusion strategy for music genre
classification across a broad range of datasets.

V. CONCLUSION
Music genre classification is garnering increasing interest in
both practical applications and academic research. Multiple
spectral features have been utilized formusic genre classifica-
tion, yet there are relatively few classification methods based
on neural networks that can handle multiple input features
concurrently. In this paper, we conducted a review of existing
MGC methods and devised a late fusion CNN to set the
baseline performance of conventional MGC methods.

The baseline model employs a late fusion strategy to
combine features extracted from multiple spectral features
into a CNN model. Through experiments and statistical tests
using 12 datasets, the superior performance of the late fusion
strategy for the MGC task was observed. In the future,
we plan to apply the late fusion strategy to other MGC tasks,
such as emotion and mood classification.
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