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A B S T R A C T

In this paper, we present a novel method for point cloud registration in large-scale 3D scenes. Our approach is
accurate and robust, and does not rely on unrealistic assumptions. We address the challenges posed by scanning
equipment like LiDAR, which often produce point clouds with dense properties. Additionally, our method is
effective even in scenes with low overlap rates, specifically less than 30%. Our approach begins by computing
overlap region-based correspondences. This involves extracting deep geometric features from point cloud pairs,
which is especially beneficial in enhancing registration performance in cases with low overlap ratios. We then
construct efficient triplets that vote in the 6D Hough space, representing the transformation parameters. This
process involves creating a quartet from overlap region-based correspondences and then forming a final triplet
following a sampling process.

To mitigate ambiguity during training, we use similarity values of the triplet as features of each vote when
configuring votes for network input. Our framework incorporates the architecture of the Fully Convolutional
Geometric Features (FCGF) network, augmented with a transformer’s attention mechanism, to reduce noise in
the voting process.

The final stage involves identifying the consensus of correspondence in the Hough space using a binning
approach, which enables us to predict the final transformation parameters. Our method has demonstrated state-
of-the-art performance on indoor datasets, including high overlap ratio data like 3DMatch and low overlap
ratio data like 3DLoMatch. It has also shown comparable performance to leading methods on outdoor datasets
like KITTI.
1. Introduction

Point cloud registration is a fundamental task to align a pair
of three-dimensional (3D) scenes, and plays an important role in
various 3D applications including: 3D reconstruction (Geiger et al.,
2011; Chowdhury et al., 2021), simultaneous localization and mapping
(SLAM) (Salas-Moreno et al., 2013; Zhang and Singh, 2015; Kim et al.,
2018), and augmented reality (AR) (Azuma, 1997). Typical registration
methods first assign coarse correspondences, and then align point
clouds by estimating the rotation and translation in the 3D space (Choy
et al., 2019b; Bai et al., 2020; Cao et al., 2021; Choy et al., 2020; Bai
et al., 2021) (see Fig. 1).

Under challenging circumstances such as partially overlapped re-
gions and feature ambiguity, a point cloud registration method cannot
avoid outliers in the generated correspondences (Chen et al., 2022). To
minimize distance between correspondences and to reject correspon-
dence outliers, there are two approaches: (i) feature learning-based
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and (ii) end-to-end learning-based methods. The former extracts dis-
criminative features using a learnable model, based on which robust
correspondences are generated, and the transformation matrix can be
predicted using various optimizer methods (e.g. RANSAC).

On the other hand, the latter approach generates correspondences
using a priori learned features and predicts optimal transformation
parameters. This is achieved by filtering out correspondence outliers
through a learnable transformation estimation process. However, a lim-
itation of these end-to-end learning-based methods is the assumption of
a high overlap ratio between point cloud pairs, which may not always
be realistic.

In this paper, we introduce a method that accurately estimates the
transformation between point clouds, effectively rejecting correspon-
dence outliers without relying on such assumptions. Our method pre-
dicts the most effective transformation by finding a consensus among
valid correspondences in overlapped regions, utilizing Hough voting.
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Fig. 1. Pairwise point cloud registration results of DGR, DHVR and ours on 3DLoMatch. Our method is robust in low overlap regions compared to the rest.
The approach for predicting valid correspondences in these regions
draws inspiration from the works of (Yew and Lee, 2020). Additionally,
our method for estimating the best consensus between correspondences
through Hough voting is influenced by the Deep Hough Voting for
Registration (DHVR) method (Lee et al., 2021).

However, as our proposed method is based on voting, it is cru-
cial to clearly differentiate it from DHVR, the latest in voting-based
approaches. Our method introduces unique improvements and varia-
tions, distinguishing it from existing techniques in both approach and
efficacy.

1. In DHVR, the creation of triplets involves randomly selecting
three points from the initial matches, which can include outliers.
This leads to the possibility of having triplets that include corre-
spondences with a large distance between them. To overcome
this challenge, we put forward a solution that converts the
distance between the correspondences into a probability, which
is then used as the basis for the sampling process. With the
proposed scheme, we can eliminate correspondences that have
a significant distance from a randomly selected group of four
correspondences.

2. To mitigate the impact of noise introduced by the acquisition
of high-dimensional matrices, DHVR used the Simple Network
of Fully Convolutional Geometric Features (FCGF) to effectively
eliminate the noise. In contrast, the proposed solution combines
self-attention modules from Transformers with FCGF’s Simple
Network to eliminate the noise from the votes in an end-to-end
manner, without relying on Gaussian kernels.

The proposed algorithm consists of five steps: (i) filtering pairs of
overlapped regions based on specific features (e.g., spatial, textural)
extracted from the backbone network, (ii) selecting triplet pairs from
correspondence quartets based on a defined criterion (e.g., geomet-
ric consistency), (iii) computing transformation parameters for these
triplets and mapping these six-dimensional (6D) parameters into Hough
space, (iv) applying a specified learnable model (e.g., a neural network)
in the Hough space to refine vote values, and (v) estimating the opti-
mized transformation parameters by determining the maximum vote
value through a specific method (e.g., peak detection).

The proposed algorithm introduces two key innovations to address
the challenges in point cloud registration. Firstly, it employs a novel
2

sampling scheme that converts correspondence distances into probabili-
ties, ensuring the selection of reliable triplets while eliminating outliers.
This approach enhances the robustness of the method in challenging
scenarios with partial overlaps and feature ambiguity.

Secondly, the algorithm combines self-attention modules from
Transformers with FCGF’s Simple Network to eliminate noise in the
voting process in an end-to-end manner. By bypassing the reliance on
Gaussian kernels, this integration enhances the accuracy of the trans-
formation parameter estimation, making it more suitable for real-world
applications with noisy data.

These innovations set the proposed method apart from the latest
voting-based technique, DHVR, and make it a more robust and accurate
solution for point cloud registration in large-scale 3D scenes.

2. Related work

Point cloud registration aims to estimate a three-dimensional (3D)
rigid transformation between two sets of point clouds, which are re-
ferred to as  (the source) and  (the target). The objective is to
transform  in such a way that it aligns or overlaps optimally with
 . This transformation involves a rotation matrix 𝐑 that belongs to the
special orthogonal group SO_3, and a translation vector 𝐭 from the real
number space R3.

The problem of point cloud registration seeks to determine the pa-
rameters of this rigid transformation. This is mathematically expressed
as finding the minimum of the following equation:

argmin
𝐑,𝐭

1
𝑁

∑

𝐱∈ ,𝐲∈
|𝐑𝐱 + 𝐭 − 𝐲|2, (1)

where 𝑁 denotes the number of points in each set of the point clouds.
The goal is to minimize the average squared distance between the
points in the transformed source cloud 𝐑𝐱 + 𝐭 and the points in the
target cloud 𝐲.

2.1. Local registration

As the first seminal approach to local point cloud registration,
the classic iterative closest point (ICP) aims to minimize the distance
between corresponding points through iteratively updating the trans-
formation (Besl and McKay, 1992). There are many variants of ICP
to overcome the limitations of its original version. To make the ICP
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more robust, Chetverikov et al. proposed Trimmed ICP (TrICP) that
rejected outliers by applying continuous least trimmed squares (LTS) to
all phases of the operation (Chetverikov et al., 2002; Besl and McKay,
1992). Picky ICP tried to reject all the points except minimum-distance
correspondences (Zinßer et al., 2003), and Almhdie et al. used a com-
prehensive look-up matrix to find the best correspondence (Almhdie
et al., 2007). Rusinkiewicz improved the registration performance in
the case with noise and partial overlap using a symmetric loss func-
tion (Rusinkiewicz, 2019). However, the ICP and its variants have
common drawbacks: (i) complexity increases with the number of points
for the nearest correspondences estimation in their inner loops and
(ii) dependence on the optimal initialization.

2.2. Global registration

RANdom SAmple Consensus (RANSAC) is the most popular ap-
proach to global registration by (i) iteratively sampling sets of can-
didate correspondences, (ii) performing pair-wise alignment, and (iii)
evaluating the result of alignment (Fischler and Bolles, 1981). Yang
et al. adopted the branch-and-bound strategy to obtain the optimal
transformation. Yang’s method provides a globally optimal solution to
3D ICP point-set registration (Go-ICP) and is faster than RANSAC (Yang
et al., 2015). Zhou et al. sped up the global registration process using
second-order gradients (Zhou et al., 2016). However, its performance
depends on the quality of extracted features. Another Yang et al.
formulated the registration problem using truncated least squares (TLS)
and achieved high robustness against outliers using a general graph
algorithm called TEASER (Yang et al., 2020). Chen et al. proposed
the second-order spatial compatibility measure to compute similar-
ity between correspondences (Chen et al., 2022). These registration
approaches commonly increase computational cost to overcome vari-
ous challenges of the point cloud registration problem such as noise
variation, outliers, density variation, and partial overlap.

2.3. Feature-learning based methods

Traditional feature-based methods used hand-crafted feature extrac-
tions. Rusu et al. proposed fast point feature histograms (FPFH) (Rusu
et al., 2009), and Salti et al. proposed SHOT (Salti et al., 2014).
Both of them used RANSAC to perform registration. Early learning-
based methods use deep neural networks (DNNs) to extract features,
and then RANSAC-based correspondence generation and transforma-
tion estimation are separately performed afterward. After Zeng et al.
proposed 3DMatch (Zeng et al., 2017), various learnable models ex-
tracted features using neural networks (Choy et al., 2019b; Wang and
Solomon, 2019; Bai et al., 2020; Cao et al., 2021). Choy et al. used
a 3D fully convolutional network to extract geometric features in the
single path with a novel learning loss function (Choy et al., 2019a,b).
To efficiently extract features from point clouds, the proposed solution
adopted Minkowski Convolutional Neural Networks used in Choy et al.
(2019a). These networks can perform high-dimensional matrix oper-
ations in the complex input space of point clouds, and thus provide
an ideal fit for the proposed model. The network was used without
any modifications. Bai et al. also proposed a new learning method
based on a 3D fully convolutional network to predict detection score
and description features (Bai et al., 2020).

On the other hand, Cao et al. computed final correspondences using
confidence scores and then estimated the optimal transformation using
singular value decomposition (SVD) without using RANSAC (Cao et al.,
2021). Cao’s method tried to find point pairs using a cross-attention
matrix that combines low- and high-level contextual information. Wang
et al. used learned point-wise features to generate correspondences and
to predict the relative pose (Wang and Solomon, 2019). Since these
two methods used a learning feature extraction network for point-to-
point matching instead of the entire registration, their performance
is degraded when the distribution of training data is not sufficiently
3

similar to the target data.
2.4. End-to-end learning methods

The main idea of the end-to-end learning-based registration method
is to obtain the transformation parameters between a pair of point
clouds as input to the neural network to generate correspondences.
To solve the registration problem, we combine registration-related
optimization theories with deep neural networks. Aoki et al. proposed
PointNetLK that uses Lucas-Kanade registration to find the best trans-
formation matrix that aligns the point cloud in the feature space using
PointNet (Aoki et al., 2019). However, this method proceeds repetitive
learning to find the optimal twist parameters, resulting in increased
computational complexity. Yuan et al. learns point correspondences
using the Gaussian mixture model (GMM) (Yuan et al., 2020). They
optimized the GMM to predict the optimal transformation. To re-
move outliers, Pairs et al. used a 3D regression network (3DRegNet)
that finds the final set of candidates by classifying inlier and outlier
pairs (Pais et al., 2020). Choy et al. used a six-dimensional convolu-
tional network to predict the correspondence confidence and performed
robust gradient-based 𝑆𝐸(3) optimization using differentiable weighted
Procrustes algorithm-based pose estimation (Choy et al., 2020). How-
ever, 3DRegNet and DGR have a common problem of ignoring the
properties of rigid transformation due to powerful additional informa-
tion. Bai et al. proposed PointDSC that develops spatial consistency
to prune outlier correspondences (Bai et al., 2021). Lee et al. applied
Hough voting to decide a good consensus between candidate pairs (Lee
et al., 2021). Chen et al. proposed consensus encoding unit (CEU) to
generate distinguishable features from putative sets of correspondences,
lightened the spatial attention model for better pairs and performed
classification using instance-unique channel attention that combined
spatial and channel attention (SCS) (Chen et al., 2021).

2.5. Hough voting

Hough transform (HT) converts pattern recognition problems in the
image into a peak detection problem in the feature space (Hough,
1962). Ballard et al. generalized the HT to locate various objects in
the image (Ballard, 1981).

Hough transform-based voting method to detect objects, called
Hough voting, consists of learning and inference steps (Leibe et al.,
2008): (i) Given an image set containing a labeled object bounding
box, the learning step generates a mapping between image patches
and the offsets from the corresponding object center in the form of
a codebook. (ii) The inference step first selects points-of-interest, and
extracts patches from the neighbor of the points. Next, the vote is
calculated from the offset between the extracted patches and codebook
patches. If the two patches are identical, a vote cluster is generated
in the center of the corresponding object. Finally, the object bounding
box is detected by tracking the center of objects with the maximum
vote cluster.

Qi et al. applied the traditional Hough voting method to the point
cloud object detection problem (Qi et al., 2019). Qi’s method generated
votes using a deep neural network instead of a codebook to reduce the
feature ambiguity using larger receptive fields. It can also augment vote
locations using feature vectors.

The Hough voting technique has been widely employed for detect-
ing and recognizing geometric primitives in point cloud data. Limberger
et al. utilized Hough voting to convert the problem of detecting planar
regions in unorganized point clouds into a peak detection problem
in the feature space. This approach enabled the robust identification
of planar surfaces (Limberger and Oliveira, 2015). Building upon this
framework, Birdal et al. extended the Hough voting approach to fit
generic primitive shapes to point cloud data, allowing for the fitting
of various types of quadrics. By leveraging the Hough voting method,
accurate shape estimation and reconstruction from point cloud informa-
tion were achieved (Birdal et al., 2019). Further advancements were

made by Raffo et al., who introduced a localized voting procedure
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Fig. 2. The proposed method. We perform local feature-based matching between point cloud pairs using a set of triplets. Each triplet is cast with sparse Hough space divided by
bin. We enhance the Hough space by integrating the attention mechanism from Transformers with FCGF’s Simple Network using the proposed solution, effectively reducing noise
from the Hough voting space. Finally, the bin with the maximum vote is used as the final conversion parameter.
based on the Hough voting approach. Their method focused on fitting
and recognizing simple geometric primitives, such as lines and circles,
in segmented 3D point clouds.

Another approach enhanced the detection and recognition of geo-
metric primitives in point cloud data by leveraging localized voting.
According to Raffo et al. (2022), this technique has been successfully
applied to simpler geometric primitives, including planes, cylinders,
cones, spheres, and tori. More recently, Romanengo et al. (2023)
extended the application of Hough voting to more complex geometric
primitives. Their study focused on the detection and recognition of
generalized cylinders, generalized cones, surfaces of revolution, helical
surfaces, and helical strips. The Hough voting technique, known for its
ability to handle noise and partial observations, proved effective in reli-
ably detecting and recognizing these complex shapes, as demonstrated
in their work.

The proposed method introduces an innovative end-to-end learning-
based framework for point cloud registration, utilizing Hough voting as
a key component. Initially, we generate correspondences by extracting
point features from a backbone network. Following this, we enhance
the voting process by augmenting features related to the transformation
parameters, using information derived from triplet correspondences. To
improve the quality of our results, we filter out low-quality votes. This
is achieved by combining an attention mechanism, inspired by Trans-
formers, with the Simple Network from Fully Convolutional Geometric
Features (FCGF). This integration is a crucial aspect of our proposed
solution.

3. Methodology

The proposed point cloud registration algorithm consists of (i) fea-
ture extraction and matching, (ii) correspondences sampling for effec-
tive triplet, (iii) transformation of 6D parameters into the Hough space,
and (iv) learning-based refinement of the Hough space as shown in
Fig. 2.

3.1. Feature extraction

To generate the initial correspondences, we used the fully convo-
lutional 3D feature descriptor (FCGF) (Choy et al., 2019b). The FCGF
takes sparse tensors as input to produce a 32-dimensional descriptor for
each point corresponding to the single-pass sparse point cloud. Given
a pair of point cloud,  = {𝐱𝑖 ∈ R3

|𝑖 = 1, 2,… , 𝑁} and  = {𝐲𝑗 ∈
R3

|𝑗 = 1, 2,… ,𝑀}, local features are extracted from each point cloud.
4

Using the extracted features, the top-1 nearest neighbor is selected to
generate point pairs from  to  and the corresponding counter pairs
from  to  . Let 𝑁→ and 𝑁→ be the numbers of correspondence
from  to  and from  to  , respectively. Then we have a set of initial
candidate correspondences, denoted as , having 𝑁 = 𝑁→ +𝑁→
elements.

3.2. Correspondences sampling for effective triplet

Let 𝐟𝐱𝑖 and 𝐟𝐲𝑗 respectively represent descriptor vectors of 𝐱𝑖 ∈ 
and 𝐲𝑗 ∈  , then we define the set of correspondences from  to  as


 = {(𝐱𝑖, 𝐲𝑗 )|(𝐱𝑖, 𝐲𝑗 ) ∈  × }, (2)

where (𝐱𝑖, 𝐲𝑗 ) = nn(𝐟𝐱𝑖 , 𝐟𝐲𝑗 ) and nn(⋅, ⋅) is the nearest neighbor search
operator (Johnson et al., 2019). The similarity calculation method
proposed in Johnson et al. (2019) is the best fit for our paper, which
utilizes the distance between correspondences as a feature. It has the
advantage of being faster and more efficient in terms of GPU consump-
tion compared to the widely used Euclidean method. Next, we adopted
the fast global registration (FGR) (Zhou et al., 2016) and deep Hough
voting for robust global registration (DHVR) (Lee et al., 2021) for
the Hough voting step from three unique candidate correspondences.
To remove triplets including spurious correspondences, we perform a
simple tuple test. FGR proposes the use of triplets to calculate the
optimal transformation matrix. It generates the triplet by randomly
selecting three points from the initial correspondences, which can result
in the inclusion of correspondences with a large distance between them.
This method can impair the performance of point cloud registration.
To address this issue, this paper proposes a two-step sampling process
of the initial correspondences to generate triplets that have outliers
removed. The triplet test proposed by FGR is considered the optimal
solution for removing outliers from the triplets. Therefore, we adopted
FGR to remove outliers from the triplets generated using the proposed
solution. This task can be summarized as: (i) construction of overlap
correspondence and (ii) triplet filtering. To construct the overlap cor-
respondence ′, we extract pairs in the overlap region of the initial
correspondences . The distance between extracted pairs is defined as
𝐷(

 ) = {𝑑1, 𝑑2,… , 𝑑𝑁}, and the probability of the 𝑖th pair distance is

𝑝(𝑑𝑖) =
𝑑−1𝑖

∑𝑁
𝑖=1 𝑑

−1
𝑖

,
𝑁
∑

𝑖=1
𝑝(𝑑𝑖) = 1 (3)

We construct ′ using the high-probability pairs based on top-𝑘. Since
the original DHVR randomly extracts initial triplets from correspon-
dences, the triplets may include pairs with a large distance. To avoid
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Fig. 3. Architecture of the refinement network. The numbers in each layer represent the kernel size, stride, and channel size, respectively. The network has 6D U-shaped sparse
attention convolutional layers with skip connections.
this problem, we initially construct quartets and finally reject one with
the largest distance. For triplet filtering, we adopt the simple tuple test
used in DHVR, where the distance set function is defined as

𝐷(
 ) = 

 = {𝑑𝑖 ∈ R|∀𝑖 ≠ 𝑗, 𝑑𝑖 = |‖𝐱𝑖 − 𝐱𝑗‖ − ‖𝐲𝑖 − 𝐲𝑗‖| ∧ 𝑑𝑖 < 𝜃}, (4)

where 𝜃 represents the distance threshold, and the upper bound of
spatial hashing error which is approximately equal to 3 times the
voxel size, such as 3 × 𝑣. The tuple test is efficient when rotation and
translation are invariant to the point-to-point distance (Zhou et al.,
2016).

3.3. Transformation of 6D parameters to the Hough space

We used Hough voting as an optimal consensus method to predict
rotation and translation parameters between overlap correspondences
′. To represent parameters of the rotation and translation in the
3D space, we used the axis-angle representation with six degrees of
freedom (Yang et al., 2015).

We construct a discretized 6D parameter space using rotation bin
𝑏𝐫 , translation bin 𝑏𝐭 , which is a discrete unit, to construct Hough voting
consisting of the transformation parameters of each candidate overlap
correspondences ′. The purpose of this process is to identify bins with
transformation parameters that best represent Hough voting for final
transformation parameter prediction.

Using Axis-angle presentation, we can represent the 3D vector 𝐫 ∈
R3 as a rotation as

‖𝐫‖ = arccos
Tr(𝐑) − 1

2
, 𝐫

‖𝐫‖
= 1

2 sin 𝜃

⎡

⎢

⎢

⎣

𝐑32 − 𝐑23
𝐑13 − 𝐑31
𝐑21 − 𝐑12

⎤

⎥

⎥

⎦

, (5)

where 𝐫∕‖𝐫‖ represents the rotation axis, ‖𝐫‖ the rotation angle, and
TR(⋅) the trace of the matrix. In the axis-angle representation, the
3D rotation is located in a sphere with radius 𝜋, and the translation
parameters are in a bounded cube [−𝜉, 𝜉]3 (Yang et al., 2015).

When voting in the 6D Hough space, two-parameter spaces are
overlapped and the translation parameters may be unbounded (Lee
et al., 2021). To solve that problem, DHVR used sparse 6D Hough space
which can separate overlapped spaces using discrete bins and can bind
the translation parameters. The sparse 6D Hough space, denoted as ,
can represent all transformation parameters between a point cloud pair
and can aggregate votes in the form of bins in the set of triplets. We
can express each triplet as

𝐓̂𝑖 = min
𝐓∈𝑆𝐸(3)

∑

′
‖𝐓(𝐱) − 𝐲‖ (6)
5

(𝐱,𝐲)∈𝑖
where ′
𝑖 represents the 𝑖th triplet, and 𝐓 ∈ 𝑆𝐸(3) represents the

transformation parameters estimated from point cloud pairs. We used
Procrustes method to obtain 𝐓̂𝑖 (Gower, 1975). 𝐓̂𝑖 consists of rotation
𝐑̂𝑖 and translation 𝐭̂𝑖, and can be obtained as

𝐑̂𝑖 = 𝐕diag(1, 1, |𝐕𝐔𝑇
|)𝐔𝑇 , and 𝐭̂𝑖 = 𝐲̄𝑖 − 𝐑̂𝑖𝐱̄𝑖, (7)

and the cross-covariance matrix 𝜞 is expressed as

𝜞 =
𝑁
∑

𝑖=1
(𝐱𝑖 − 𝐱̄𝑖)(𝐲𝑖 − 𝐲̄𝑖)𝑇 , (8)

where singular value decomposition 𝜞 = 𝐔𝜮𝐕𝑇 is used to decompose
𝜞 ∈ R3×3, and 𝐱̄i, 𝐲̄i ∈ R3 represent the centroid of point clouds 𝑖,𝑖.
If we transform the rotation matrix 𝐑̂𝑖 as (4), we can have an axis-angle
representation of the rotation and translation for voting. 𝐯𝑖 in the 6D
Hough space can be expressed as

𝐯𝑖 = concat(⌊
𝐫𝑖
𝑏𝐫

⌋, ⌊
𝐭𝑖
𝑏𝐭
⌋), (9)

where ⌊⋅⌋ represents the floor operation, 𝑏𝐫 , 𝑏𝐭 hyper-parameters repre-
senting the bin size of rotation and translation, and 𝐯𝑖 consists of their
concatenation. We used feature similarity values of correspondences in
each triplet as a voting value (Li et al., 2020; Chen et al., 2022). We
observed that accurate prediction was possible when the bin size was
set to a sufficiently small value. After transforming all the votes, we
can obtain sparse 6D Hough space of transformation parameters (see
Fig. 3).

3.4. Refinement for Hough space

After casting all the votes, the sparse Hough space may become
noisy since triplets have correspondence outliers. Furthermore, the
transformation from the continuous 6D space to the discrete Hough
space may generate additional quantization noise. To solve that prob-
lem, we refine the Hough space using a high-dimensional sparse con-
volution network, incorporating an attention module described as 𝑓𝜃 ∶
R → R. We used a simple U-shaped 6D sparse convolution network,
enhanced with an attention mechanism, to generate the refined space
as

∗ = 𝑓𝜃(). (10)

We can train 𝑓𝜃 using binary cross entropy loss

𝑏𝑐𝑒(∗,𝐓𝐺𝑇 ) =
|∗

|

∑

(𝑜𝑖 log∗
𝑖 + 1 − 𝑜𝑖 log∗𝐶

𝑖 ), (11)

𝑖=0



Engineering Applications of Artificial Intelligence 133 (2024) 107985J. Han et al.
Fig. 4. Distribution of overlapping regions for registration pairs in the 3DMatch and
3DLoMatch datasets.

where 𝐓𝐺𝑇 represents the ground truth transformation matrix, and
∗𝐶

𝑖 = 1 − ∗
𝑖 . If the 𝑖th bin of ∗ is close to 𝐓𝐺𝑇 , 𝑜𝑖 becomes close

to the unity. Otherwise, 𝑜𝑖 becomes close to zero. We additionally used
the transformation loss

𝑡𝑟𝑎𝑛𝑠(𝐑, 𝐭) = ‖𝐑𝑇
𝐺𝑇𝐑 − 𝐼‖2 + ‖𝐭𝐺𝑇 − 𝐭‖2. (12)

The total loss is the weighted sum of (11) and (12)

𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑏𝑐𝑒(∗,𝐓𝐺𝑇 ) + 𝜆𝑡𝑟𝑎𝑛𝑠(𝐑, 𝐭), (13)

where 𝛼 and 𝜆 are regularization hyper-parameters, and are experimen-
tally chosen.

4. Experiments

In this section, we describe several ways to evaluate the perfor-
mance of the proposed point cloud registration method. After sum-
marizing the datasets and implementation details in Section 4.1, we
explain various performance evaluation metrics including registration
recall, relative translation error (RTE), and relative rotation error (RRE)
in Section 4.2. Comparative experimental results are given in Sec-
tion 4.3, and the ablation study is given in Section 4.4.

4.1. Implementation and dataset details

Indoor Benchmarks: 3DMatch and 3DLoMatch We used two stan-
dard datasets including 3DMatch (Zeng et al., 2017) and 3DLoMatch
(Huang et al., 2021) to evaluate our algorithm. As used in the official
data split, 3DMatch uses a total of 62 scenes, including 46 scenes for
training, 8 scenes for validation, and 8 scenes for testing. We sampled
down the point cloud to a 5 cm voxel grid. 3DLoMatch, which contains
point cloud pairs with a low overlap ratio, was evaluated using the
protocol proposed in Lee et al. (2021). 3DMatch consists of point
cloud pairs with an overlap ratio of 30% or more, while 3DLoMatch
consists of point cloud pairs with an overlap ratio of less than 30%. The
distribution of overlapping regions for registration pairs in the 3DMatch
and 3DLoMatch datasets is shown in Fig. 4.

We generate training data by applying less rigid transformations for
augmentation.
Outdoor Benchmarks: KITTI odometry KITTI odometry conducts
registration performance evaluation using a point cloud measured by
precise LiDAR and a stereo sequence composed of ground truth po-
sitions provided by a GPS (Pathak et al., 2010). KITTI consists of
22 sequences including 11 sequences with ground-truth (00-10) and
another 11 without ground-truth (11–21). We used sequences 00-05 for
training, 06-07 for validation, and 08-10 for testing. We set the voxel
size to 30 cm and sampled down the voxel-grid.
6

Table 1
Number of points in overlapping regions for 3DMatch and 3DLoMatch datasets.

3DMatch 3DLoMatch

Average 2640.12 1938.86

Implementation Details We trained the refinement network using an
Adam optimizer with a learning rate of 0.001 and weight decay of
0.0001 for 10 epochs (Kingma and Ba, 2014). We used bin sizes of
𝑏𝐫 = 0.02 rad, 𝑏𝐭 = 0.02 m for 3DMatch datsets, and 𝑏𝐫 = 0.005 rad,
𝑏𝐭 = 0.05 m for KITTI. The batch size was set to 6 for the 3DMatch
dataset and 2 for the KITTI dataset. All the experiments were conducted
on a personal computer with an Intel i9-10900KF CPU, 32 GB RAM, and
NVIDIA RTX 2080Ti.

4.2. Evaluation metrics

We used two evaluation metrics to quantify the error between
the transformation prediction of our algorithm and the ground-truth
rigid transformation. The relative rotation error (RRE) evaluates the
isotropic error (Yew and Lee, 2020), whereas the relative translation
Error (RTE) (Yew and Lee, 2020) evaluates the 𝓁2 error and can be
expressed as (14) and (15):

RRE(𝐑̂) = arccos
Tr(𝐑̂⊤𝐑∗) − 1

2
, (14)

and

RTE(𝐭̂) = ‖𝐭̂ − 𝐭∗‖22. (15)

Registration recall refers to the percentage of successfully sorted
point clouds. Pairwise registrations were considered successful only if
RRE and RTE were below the thresholds.

4.3. Comparative experiment

Evaluation on indoor dataset For the evaluation of the indoor dataset,
we used the 3DMatch benchmark dataset consisting of 8 scenes. We em-
ployed the official implementation of the FCGF descriptor and utilized
pre-trained weights from the 3DMatch model with a consistent voxel
size of 5 cm.

We compared the performance of our algorithm with traditional
methods and deep learning-based methods that include state-of-the-art
methods. The thresholds of RTE and RRE were respectively set to 30 cm
and 15◦ for successful registration, and experiments were conducted
using the set of parameters that gives the highest performance. The
number and ratio of points within the overlapping regions, as well
as experimental outcomes based on sampling methods (both proposed
and baseline), are presented. Table 1 illustrates the count of points
in the overlapping areas for each dataset used in the testing phase.
Concurrently, Fig. 4 displays the proportion of overlap for each dataset.
Comparison with traditional and learning-based methods We com-
pared 13 point cloud registration methods including RANSAC, SM,
FGR, Super4PCS, Go-ICP, Point-to-Point and Point-to-plane based ICP,
TEASER, 𝑆𝐶2-PCR, DCP, PointNetLK, DGR, DHVR, and PointDSC.

Eight of them are traditional methods, and five of them are deep
learning-based methods. RANSAC and FGR used FPFH as a descriptor
for generating corresponding points. We used a pre-trained model of
learning-based methods for the best performance. We chose DGR and
DHVR as the baseline since they focus on removing outliers among
point cloud registration methods based on deep learning.

We used a learned FCGF descriptor to generate initial putative
correspondences. The proposed method is different from other papers
as it goes through a process of sampling correspondences that belong
to the overlap region. This process can remove the outliers present
in the initial correspondence. And, by using a different triplet gener-
ation method than DHVR, we can remove correspondences with long
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Table 2
Comparison of state-of-the-art learning-based methods and our method using the 3DMatch dataset.

Recall (% ↑) RTE (cm ↓) RRE (◦↓) Time (s)

SM (Leordeanu and Hebert, 2005) 86.57 7.07 2.29 0.03
FGR (Rusu et al., 2009) 42.7 10.6 4.08 0.31
TEASER (Yang et al., 2020) 85.77 8.66 2.73 0.07
𝑆𝐶2-PCR (Chen et al., 2022) 93.28 6.55 2.08 0.11
RANSAC-2M (Fischler and Bolles, 1981) 66.1 8.85 3.00 1.39
RANSAC-4M 70.7 9.16 2.95 2.32
RANSAC-8M 74.9 8.96 2.92 4.55

Super4PCS (Mellado et al., 2014) 21.6 14.1 5.28 4.55
Go-ICP (Yang et al., 2015) 22.9 14.7 5.38 771.0
ICP(P2Point) (Zhou et al., 2018) 6.04 18.1 8.25 0.25
ICP(P2Plane) (Zhou et al., 2018) 6.59 15.2 6.61 0.27

DCP (Wang and Solomon, 2019) 3.22 21.4 8.42 0.07
PointNetLK (Aoki et al., 2019) 1.61 21.3 8.04 0.12
DGR (Choy et al., 2020) 85.2 7.73 2.58 0.70
DHVR (Lee et al., 2021) 91.4 6.61 2.08 0.46
PointDSC (Lee et al., 2021) 92.85 6.51 2.08 0.10

Our 95.82 6.11 2.14 0.53
Table 3
Quantitative results on 3DLoMatch dataset.

FCGF (Choy et al., 2019b) Predator (Huang et al., 2021)

Recall (% ↑) RTE (cm ↓) RRE (◦↓) Recall (% ↑) RTE (cm ↓) RRE (◦↓)

FGR 19.99 12.98 5.28 35.99 11.64 4.77
RANSAC 46.38 13.11 5.00 64.85 11.04 4.28
PointDSC 56.09 10.39 3.87 68.89 9.6 3.43
DHVR 54.41 12.56 4.14 65.41 12.33 4.97

Our 78.95 12.04 3.95 83.8 9.32 3.19

Table 4
Scene-specific statistics for the 3DMatch and 3DLoMatch datasets.

3DMatch 3DLoMatch

PointDSC DHVR Our PointDSC DHVR Our

Kitchen 97.81 97.83 99.60 63.24 62.67 77.71
Home 1 96.44 96.79 96.79 48.45 46.02 52.60
Home 2 80.21 78.85 80.29 57.96 54.35 57.83
Hotel 1 97.54 98.67 98.23 61.78 62.39 70.18
Hotel 2 92.31 95.19 95.19 53.87 56.33 72.78
Hotel 3 92.59 90.74 94.44 54.67 51.02 71.43
Study 87.95 89.73 92.81 44.98 42.08 66.67
MIT lab 79.92 77.92 87.01 39.61 37.50 61.11

Average 92.45 92.61 94.39 53.07 54.18 67.38

distances between them which correspond to outliers in the triplets.
Through this method, we can obtain triplets with outliers removed,
allowing us to get the optimal transformation matrix.

As shown in Table 2, our method achieved a higher registration
recall improvement than other methods. In registration recall, our
method achieves more than 1.97% and 1.74% higher performance than
PointDSC, a state-of-the-art method based on learning, and 𝑆𝐶2-PCR,
a state-of-the-art method based on tradition, respectively. Compared to
the baseline DGR of our paper, the recall was higher than 7.6% and
higher performance than DHVR’s recall was 3.4%.

Moreover, our algorithm was evaluated using the 3DLoMatch
dataset because it aims to improve registration performance on point
cloud datasets with low overlap rates without unrealistic assumptions
of existing registration methods. Because our algorithm generated
correspondences focused on the overlap, we achieved higher perfor-
mance than other methods on the 3DLoMatch dataset. FCGF and
Predator (Huang et al., 2021) were used as feature descriptors, and
other methods used for comparison in this experiment were set to the
conditions that respectively give the highest performance.

As shown in Table 3, in the case of FCGF descriptor, our method
achieved approximately 20% improvement in registration recall, and
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Fig. 5. Updated pairwise registration results on the 3DLoMatch dataset.

in the case of Predator descriptor, more than 15% improvement in
registration recall.

Table 4 shows the proposed approach where to measure the re-
silience of the proposed model against others, we added noise points
into the 3DMatch and 3DLoMatch datasets. This intervention subse-
quently influenced a scene-specific registration recall. As shown in
Table 4, to test the robustness between our model and other models,
we generated noise points on the 3DMatch and 3DDoMatch datasets,
resulting in a scene-specific registration call.

Fig. 5 shows the alignment of a pair of point clouds with a low-
overlap ratio using our method.
Evaluation on Outdoor Dataset We conducted experiments using
KITTI, an outdoor dataset. We compared and analyzed traditional and
learning-based methods including state-of-the-art methods. Traditional
methods used FGR, 𝑆𝐶2-PCR, and RANSAC, while learning-based meth-
ods used DGR, DHVR, and PointDSC. Similar to other methods, the
thresholds of RTE and RRE were set to 60 cm and 5◦ for successful
registration, and experiments were conducted under the conditions set
for the best performance.

As shown in Table 5, compared with the traditional method 𝑆𝐶2-
PCR of the previous highest performance, our algorithm has lower
errors in RTE and RRE, while they have the same registration recall.
Our method has nearly twice as low errors in RTE than DGR and the
state-of-the-art learning-based method PointDSC. However, compared
to DHVR, our algorithm achieves 1% lower performance in the regis-
tration recall, but ours can have a higher recall through each threshold
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Fig. 6. Pairwise registration results on the KITTI odometry dataset.
Table 5
Registration recall for the KITTI dataset.

Method Recall (% ↑) RTE (cm ↓) RRE (◦↓) Time (s)

FGR 0.2 40.7 1.02 1.42
𝑆𝐶2-PCR 98.20 20.95 0.33 0.31
RANSAC 34.2 25.9 1.39 1.37

DGR 96.9 21.7 0.34 2.29
DHVR 99.1 19.8 0.29 0.83
PointDSC 98.02 21.03 0.33 0.45

Our 98.6 11.43 0.25 0.68

Table 6
Performance metrics on ETH dataset. Notably, all the techniques were trained using
the 3DMatch dataset.

Method Recall (% ↑) RTE (cm ↓) RRE (◦↓)

SpinNet 72.07 5.55 1.295
DIP 61.31 14.61 1.923
GeoTransformer 4.87 21.06 0.91
FCGF + PointDSC 2.81 23.42 0.57
FCGF + DHVR 38.15 14.02 1.56

FCGF + Our 77.42 17.15 2.46

adjustment of both RTE and RRE. The qualitative evaluation of our
algorithm in KITTI can be confirmed as shown in Fig. 6.

In the experiments conducted on the 3DMatch and the KITTI
datasets, multiple bin sizes were tested, and the bin size that provided
the best performance was finally selected. The selection was based on
the results obtained by comparing the performance of different bin
sizes. Evaluating various bin sizes through our experimental platform
typically requires around three to four hours.
Evaluation on Unseen Dataset We performed the test using only the
scenes from the ETH point cloud dataset that consists of 4 scenes mostly
contained several partially overlapping scans of sparse and outdoor
vegetation, such as trees and bushes (Pomerleau et al., 2012). All the
methods are trained on 3DMatch datasets and tested on an unseen
dataset. Following common practice we use only point clouds with an
overlap of 30%. The thresholds of RTE and RRE were set to 30 cm and
5◦ for successful registration. As shown in Table 6, GeoTransformer and
PointDSC achieve low recall which can be explained by the high RTE.
DHVR also achieves a higher recall than GeoTransformer and PointDSC
but achieves a lower recall than our method. The best recall is achieved
by the proposed method.

4.4. Ablation study

We conducted an ablation study using 3DMatch to understand
the important elements used in the experiment. We used the FCGF
descriptor to generate initial correspondences. Table 7 shows the result
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Table 7
A number of correspondences to construct triplets. Our method used the quartet.

Number of points Recall (% ↑) RTE (cm ↓) RRE (◦↓) Time (s)

Triplet 92.4 6.61 2.08 0.46
Quintet 93.17 8.25 2.93 0.61
Hexad 91.42 9.23 3.44 0.64
Septet 85.44 10.44 4.29 0.58

Quartet (Ours) 95.82 6.11 2.14 0.53

Table 8
Ablation study on 3DMatch. SQ: Sampling using the quartet for triplet. TL:
Transformation loss for transformation parameter training.

SQ TL Recall (% ↑) RTE (cm ↓) RRE (◦↓)

(1) 92.73 10.22 3.44
(2) ✓ 93.2 9.88 3.32
(3) ✓ 85.4 11.24 3.81
(4) ✓ ✓ 95.82 6.11 2.14

of applying a random extraction method according to the number of
points in overlap correspondences for the triplet. As shown in Table 8,
we can check the results according to the application of the module
and the loss function.
Sampling for triplet Three points are required for each point cloud
to obtain the rigid transformation parameter used for point cloud
registration. To remove the value with a large distance between pairs
before constructing the triplet, an experiment was conducted to con-
struct the triplet by randomly extracting at least 4 to 7 points from
correspondences ′. For a fair comparison, the execution was carried
out under the same implements. As shown in Table 7, we achieved
higher performance than other methods in all results except the regis-
tration time of the quartet. When three points are randomly extracted
from correspondences ′, points with a large distance between pairs
may be included. To solve that problem, we extracted four points and
eliminated the case of large distances. When configuring the triplet,
there is an improvement in registration performance. On the other
hand, if five or more points are randomly extracted and configured as
triplets, the probability of consisting only of pairs with a large distance
to the extracted pairs increases. As a result, we confirmed that both
RTE and RRE are increased, and the performance of registration recall
is degraded.
Sampling module and loss functions. We construct the quartet in
correspondences ∗ to construct an efficient triplet by casting votes in
the 6D Hough space representing the transformation parameter using
a sampling module called SQ. In addition, we used transformation loss
(TL) for accurate prediction of transformation parameters. As shown
in Table 8, we conducted a comparative experiment based on the
application of the quartet module and two losses. The experiments were
conducted using the same hyperparameters. Experiment (1) means
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DHVR, and experiment (4) means our experiment. Experiments (2) and
(4) confirmed that the loss function TL is related to the prediction of
the accurate transformation parameters.

5. Conclusion

We present a novel point cloud registration method for accurate
and robust registration in large-scale 3D scenes, without using unre-
alistic assumptions. Our network uses correspondence points existing
in overlap regions based on densely extracted features. It consists
of Hough votes and uses a learnable refinement network. A core
component of our method focuses on overlapping regions to generate
correspondences and extract four points from correspondences to pre-
dict transformation parameters. Next, we construct a triplet to have
the optimal consensus by removing pairs with a distance between
corresponding points. We then obtain the transformation parameters of
each element of the set of triplets and move them to a transformation
parameter space constructed in a sparse manner to proceed with the
vote to predict the final transformation parameters. Based on various
experimental results, we achieved state-of-the-art performance without
strong assumptions through matching with existent correspondences in
overlapping regions.
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