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Abstract—Time-slotted communication is used in countless
protocols and systems. IEEE 802.15.4e time-slotted channel hop-
ping (TSCH) is one of those examples which has shown re-
markable performances in the literature. However, time-slotted
systems have one fundamental drawback: a slot is predefined
to be sufficiently long enough to accommodate one exchange
of a maximum-sized packet and an acknowledgment. If most
packets in the system are far smaller than the maximum, a
significant amount of residue time within each slot is wasted,
leading to corresponding loss in effective data rate. To address
this fundamental challenge, we propose utility-based adaptation
of slot-size and aggregation of packets (ASAP) which reduces
wasted time in slotted systems to improve throughput and
latency. ASAP consists of two orthogonal approaches: slot-length
adaptation (SLA) dynamically adapts timeslot length to actual
packet size distribution, and utility-based packet aggregation
(UPA) transmits aggregated packets in multiple consecutive slots
to maximize slot utility. We case-study ASAP in the context of
TSCH. We implement ASAP on real embedded devices, and
evaluate on large-scale testbeds using state-of-the-art schedulers
to demonstrate a 2.21x improvement in throughput as well as a
78.7% reduction in latency.

Index Terms—Time-slotted communication, residue time,
throughput, latency, time-slotted channel hopping (TSCH)

I. INTRODUCTION

Time-slotted communication has been long-loved by various
communication protocols and systems. It synchronizes the net-
work, divides time into slots, and a communication transaction
occurs within each timeslot. In contrast to asynchronous ran-
dom access approaches such as pure ALOHA and carrier sense
multiple access (CSMA) [1], time-slotted communication can
easily coordinate communication or better allocate resources
between devices given that there is a coordinator/master to
manage the synchronization. Therefore, it can improve relia-
bility and throughput by preventing collisions and interference
due to uncoordinated transmissions, and also reduce energy
waste attributed to redundant rendezvous attempts or idle
listening.

IEEE 802.15.4e time-slotted channel hopping (TSCH) [2],
a MAC protocol for low-power and lossy network (LLN), is
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Fig. 1: Time usage breakdown of a regular TSCH Tx and Rx slot
(of 10 ms) according to packet size, including ACK in the opposite
direction. There are a lot of idle time (in white color) within a slot.

one of those examples. It has been designed to satisfy the
growing demand for more reliable and energy-efficient LLNs
in emerging Internet of Things (IoT) applications such as
industrial IoT [3]–[8], in-vehicle IoT [9], [10], environmental
monitoring [11]–[14], home IoT [15], and health IoT [16]–
[18]. TSCH brings the benefits of time-slotted communication
to LLN, and its channel hopping allows the network to
become more robust to external interference or multi-path
fading through frequency diversity. As such, TSCH has shown
remarkable performance in the literature [19]–[26].

However, time-slotted systems have one fundamental draw-
back: ‘a slot’ is predefined to be sufficiently long enough to
accommodate one exchange of a maximum-sized packet and
an acknowledgment (ACK)1. If most packets in the system are
much shorter than the maximum, substantial amount of residue
time within each slot are wasted, leading to corresponding
amount of loss in effective data rate. The same is true for
TSCH. Fig. 1 plots the time usage breakdown of a TSCH slot
according to data packet length, for both transmission (Tx)
side and reception (Rx) side including ACK, measured from
an actual testbed experiment. Idle time ratio increases to almost
50% as the packet size decreases; i.e., nearly half of the time
may be wasted (§II-C). This means, conceptually, a 250 kbps
IEEE 802.15.4 PHY can only achieve up to ∼125 kbps effec-
tive data rate using TSCH.

A naive approach would be to shorten the time-slot length.
But to what size? Obviously, a size smaller than the packets
would break the basic assumptions of slotted operation. What
if the system has mix of packet sizes from small to big?
Furthermore, what if the application running on the network
(and thus the packet sizes) changes after configuring the slot
size? or if multiple applications are running concurrently?

1There are variant systems where multiple slots can be assigned for a large
transaction (e.g., cellular), but the fundamental concept still holds.
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Fig. 2: Example of UPA’s packet aggregation and batch transmission
(bottom) compared to the default slotted operation of TSCH (top).

These questions cannot be answered using a pre-configured
fixed size slot.

To address this fundamental challenge, we propose “utility-
based adaptation of slot-size and aggregation of packets”
(ASAP), a scheme that enables time-slotted systems to operate
more time-efficiently by reducing the idle residue time and
improving the time utility of the slots. ASAP consists of two in-
dependent and orthogonal methods: (1) slot-length adaptation
(SLA) adjusts timeslot length network-wide according to the
distribution of packet and ACK sizes observed in the network.
(2) utility-based packet aggregation (UPA) aggregates packets
and transmits them in a batch over multiple consecutive slots
when and only when beneficial in terms of slot-utility. Both
methods aim to minimize wasted time and maximize slot
utility, thus achieving higher throughput and lower latency than
the fixed-size time-slotted operation.

Fig. 2 exemplifies how UPA operates compared to the
default TSCH. We define ‘slot utility’ as the ratio of number
of packets transmitted to the number of slots used for those
transmissions. Assume that a Tx node has three packets to
send to a Rx node, and one slot is scheduled for the link
in each slotframe as in Fig. 2. The default TSCH behaviour
would be to send three packets using three slots (slot utility
of one) over three slotframes2. Instead in UPA, the Tx and
Rx nodes first exchange one packet and an ACK through
which they negotiate whether additional batch transmission
is doable and can be advantageous in terms of slot utility. If
batch transmission is determined to be beneficial, then the Tx
node sends the remaining two packets immediately in a batch,
and the Rx node acknowledges the result with a block ACK. In
this way, UPA finishes transmissions of three packets in two
slots within a slotframe, thus increasing the slot utility from
1 to 1.5 (3 packets over 2 slots) and reducing latency to less
than half (within one slotframe, see Fig. 2). By reducing the
number of slots required per packet, this increase in slot utility
allows acquiring additional resources for other transmissions
and delivering multiple packets faster in terms of both datarate
(less residue time) and latency (less slotframes).

We case-study ASAP in the context of TSCH. We implement
ASAP on real embedded IEEE 802.15.4 devices using Contiki-
OS [27], and evaluate on multiple large-scale topologies in the
FIT/IoT-LAB public LLN testbed [28] with various state-of-
the-art TSCH schedulers. Results show that ASAP improves

2We provide background on TSCH and its terminology in §II-A.
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throughput and reduces latency of TSCH network by up to
2.21x and 78.7% respectively. Given that our approaches are
not limited to TSCH but can be applied to other time-slotted
communication protocols and systems, we believe ASAP can
be a generic solution to the fundamental challenge of time-
slotted communication.
Our contributions can be summarized as follows.
• We present an analysis of time usage breakdown in TSCH

through real measurements to demonstrate the time wastage
in slotted communication.

• We propose ASAP, consisting of SLA and UPA, to address
the problem in the context of TSCH. SLA adjusts timeslot
length network-wide according to the distribution of packet
sizes observed in the network, and UPA aggregates packets
and transmits them in a batch over multiple consecutive slots
based on slot-utility to minimize time waste due to slotted
communication.

• We evaluate ASAP via a proof-of-concept implementa-
tion on real embedded devices in multiple sizeable pub-
lic testbeds, and compare it against recent state-of-the-
art approaches to demonstrate significant improvement in
throughput and latency.
The remainder of this paper is organized as follows. We

present the background and motivation in §II, and discuss
related work in §III. We present the design of ASAP in §IV,
and evaluate ASAP in §V. Finally, §VI concludes the paper.

II. BACKGROUND AND MOTIVATION

We first provide a brief introduction of TSCH and repre-
sentative TSCH schedulers that we case-study on. We then
describe the problem and motivation of this work.

A. Time-Slotted Channel Hopping (TSCH)

TSCH is a MAC protocol standardized in IEEE 802.15.4e
[2] that combines time-slotted communication and channel
hopping. TSCH synchronizes the network, and devices com-
municate in a time-slotted manner to improve reliability and
energy efficiency. Channel hopping enables TSCH to be robust
to external interference and fading through channel diversity.

As Fig. 3 illustrates, TSCH divides time into timeslots. The
length of a timeslot is typically set to 10 ms, sufficiently long
enough for exchanging a maximum-sized (128 Bytes) frame
and an ACK of up to 70 Bytes. Each timeslot has an absolute
slot number (ASN), which is initialized to zero at the beginning
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of the network and then sequentially incremented. A set of
timeslots constructs a slotframe, which is repeated in time and
functions as a unit of TSCH schedule. The number of timeslots
in a slotframe is called slotframe length (LSF). Then, time
offset (to) is a relative position of a specific timeslot within a
slotframe calculated as,

to = mod(ASN, LSF). (1)

Each schedule has a channel offset (co) used for channel
selection in TSCH’s channel hopping. TSCH decides which
channel to operate in each timeslot based on the following
calculation,

Channel = Listc[mod(ASN + co, sizeof(Listc))] (2)

where Listc is a set of channels to be used and sizeof(Listc)
is the number of channels in Listc. As ASN increases, each
timeslot with a particular co hops over different channels. Even
on a timeslot with the same ASN, different co leads to the
usage of distinct channels.

B. TSCH scheduling

TSCH standard defines how to perform time-slotted com-
munication and channel hopping. However, it leaves resource
scheduling (i.e., determining when (to) and on which channel
(co) for each device to communicate) as an open prob-
lem. Nevertheless, as with any other slotted communication
protocols, TSCH requires a scheduling method for efficient
and reliable packet exchange. To this end, various TSCH
schedulers have been proposed. Most TSCH schedulers can
be categorized into centralized, distributed, and autonomous
schedulers.

Centralized schedulers [29]–[33] use global network in-
formation (e.g., topology, link quality, etc.) to construct a
schedule, and distribute it to the network for each node to use.
Although they can potentially optimize the schedule based on
a global view of the network, collecting network information
and disseminating the schedule requires a huge communica-
tion overhead. With distributed schedulers [22]–[24], [34]–
[36], every node has a scheduling function that determines
its schedule based on local information or negotiation with
neighboring nodes. Although distributed schedulers can lower
control overhead compared to centralized schedulers, they
still suffer from non-negligible overhead. Lastly, autonomous
schedulers [19], [21], [25] determine a schedule according to
predetermined rules (e.g., a hash function) and self-obtainable
information (e.g., node ID) in each node. Therefore, au-
tonomous schedulers have the advantage of requiring no addi-
tional control overhead. However, since each node schedules
itself autonomously and independently, autonomous sched-
ulers inherently cannot consider the schedules or situations
of neighboring nodes [37].

It is important to note that the problem we are trying to
solve is orthogonal to how the schedulers operate. Regardless
of the type of the scheduler, residue time may always exist
under fixed-size time-slotted operation. Therefore, without
loss of generality, we select ALICE [21], a state-of-the-art
autonomous scheduler among many, to case-study ASAP. In

ALICE, nodes autonomously determine their own unicast
schedule by utilizing routing information (i.e., the node IDs of
neighboring nodes) and a hash function that is shared between
all nodes in the network. For instance, the time offset of a
unicast schedule for a directional link from node A to node B
can be calculated as;

to(A,B) = mod(Hash(α·ID(A)+ID(B)+ASFN), LSF). (3)

The coefficient α is used to differentiate traffic direction,
while ID(x) denotes the node ID of x. ASFN stands for
absolute slotframe number, which is initialized to zero at
the beginning of the network and then incremented as the
slotframe progresses. ASFN makes the outcome of the hash
function distinctive every slotframe, leading to time-varying
resource assignment. This time-varying resource assignment
prevents repetitive overlaps between resources or repeated
disruption from interference that can occur with fixed location
of resources. Since each node can obtain the node ID of its
neighboring nodes through the routing layer, ALICE no longer
requires the exchange of control messages for scheduling.

C. Problem and Motivation

Here we further analyze the time usage breakdown of a
TSCH slot in Fig. 1. To obtain the result, we measured the
execution time of various TSCH operations within a slot while
exchanging packets between two IEEE 802.15.4 M3 devices
with varying packet sizes from 48 to 128 bytes. ACK length
is set to 20 bytes, the typically used size in Contiki-OS. We
enabled the clear channel assessment (CCA) feature before
packet transmission on the Tx side, and classified the operation
times into five categories as follows:
• Transmission (TTx): Time to transmit packet or ACK.
• Reception (TRx): Time to receive packet or ACK.
• Process (Tproc): Time to pre-/post-process transmission/

reception, including the time to turn the radio on and off.
• Offset (Toffset): Required wait time to meet the predefined

operation timing, including the time to listen on wireless
channel before reception and the time to perform CCA.
Cannot be regarded as idle time.

• Idle (Tidle): Idle time without any Tx/Rx-related action.
Intuitively, smaller packet size leads to decrease in Tx/Rx

times, and thus an increase in idle time within a slot (Fig. 1).
Idle time ratio reaches almost 50% when the packet size is
at its minimum. Even with the largest packet size, ∼20% of
the timeslot is still wasted. This is because the TSCH timeslot
length is set to accommodate a maximum-sized frame and also
a maximum-sized ACK. Since the typical ACK size is far
smaller than the maximum, significant idle time exists even
when a max-sized packet is sent. In summary, 20−50% of
bandwidth is wasted in TSCH due to the fixed slot length, and
therefore, reducing the idle/residue time is crucial to increase
network throughput. This is the problem that we aim to address
in this work. Finally, although we case-study in the context of
TSCH, the problem we solve is not limited to TSCH but is
a common problem of time-slotted systems. This observation
motivated us to the design of ASAP, which we believe will
apply as a general solution to many time-slotted systems.
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III. RELATED WORK

The goal of this work is to improve the throughput of time-
slotted communication by reducing the residue time within
each slot. In TSCH where we conduct case study, various
attempts have been made to improve network throughput.

One approach is to utilize temporary resources in addition to
the ones allocated by the scheduler. TSCH standard [2] defines
the default burst transmission (DBT) method that allows using
an additional slot temporarily allocated between a sender and
a receiver if the sender has non-zero packets in its queue
toward the receiver and there is no schedule in the next slot for
both nodes. On-demand provisioning in OST [23] is similar
to DBT, but it checks the schedule of a predetermined number
of subsequent slots and uses the earliest available slot among
them to enable additional transmission.

Another approach is to adjust the amount of resources adap-
tively based on traffic load. In OST [23], each node measures
the traffic load on its links, and allocates non-overlapping
exclusive resources for each link accordingly through negotia-
tion between nodes. A3 [25] divides a slotframe into multiple
zones and assigns resources to each zone, with the number
of active zones adjusted adaptively according to the measured
traffic load on the links. However, none of the aforementioned
approaches address the residue time problem within a timeslot.

There are other approaches that utilize residue time rather
than reducing it. In [38], [39], methods are proposed to
mitigate collisions in shared slots and improve throughput by
performing additional collision avoidance during the residue
time. However, these approaches are only effective in shared
slots and the benefits may be limited when traffic load is not
heavy enough to cause collisions.

Attempts have been made to aggregate application layer
payloads from multiple nodes into a single frame in order to
increase throughput, taking advantage of the fact that packet
sizes in TSCH networks are typically short [9], [30], [40]–[42].
However, aggregation size is limited to a single frame and
is applicable only for the same application-layer destination
whereas ASAP is a link-layer solution that allows aggregating
larger number of frames and slots. The idea of frame aggre-
gation for throughput enhancement has been used in other
domains as well. For example in Wi-Fi [43], aggregated MAC
protocol data unit (A-MPDU) is a well-known approach that
combines multiple data frames into a larger frame, improving
transmission efficiency. Similar attempts have also been made
in Bluetooth [44]. However, their focus is on reducing the
header/control overhead for transmission efficiency rather than
reducing residue time within a timeslot.

IV. ASAP DESIGN

ASAP consists of two independent and orthogonal methods,
slot length adaptation (SLA) and utility-based packet aggrega-
tion (UPA), that can be enabled individually. SLA is respon-
sible for reducing residue time by dynamically adjusting the
slot length based on the current packet size distribution. UPA
further reduces residue time by aggregating and transmitting
multiple packets over consecutive slots if beneficial in terms
of slot utility. SLA and UPA complement each other, achieving
better time efficiency for slotted communication.

TABLE I: Definitions of symbols for SLA

Symbol Definition

Tdet Period at which SLA coordinator determines slot length

Tadv Advertisement duration of new slot length

tdec Moment when SLA coordinator decides to change slot length

tact Moment when the new slot length is activated and applied

T slot
default Default slot size

T slot
SLA Slot size adjusted by SLA coordinator

T TXN
default Default transaction time

T TXN
UC Transaction time for a unicast packet (including ACK)

T TXN
BC Transaction time for a broadcast packet

BUC Size of a unicast packet in bytes

BBC Size of a broadcast packet in bytes

BACK Size of an ACK in bytes

R Data rate of the PHY layer

k Percentile at which the SLA coordinator determines slot length

T TXN
UC,k Transaction time for a k-th percentile sized unicast packet

T TXN
BC,k Transaction time for a k-th percentile sized broadcasat packet

T TXN
∆ Difference between T slot

default and T slot
SLA (reducible slot length)

α, β Coefficients to determine Tadv

h The network depth

LEB EB slotframe size

... ... ... ... SC

N ... ... ... ... 

!!"#
!$!%

!!"#!!"#

10 ms 7.76 ms

Persistent monitoring Advertisement

Determine slot length Apply slot length

SC SLA coordinator

N Non-coordinator

"!"& "$&# Time

Timeslot

Fig. 4: SLA’s slot length adaptation process.

A. SLA Design

SLA operates in a centralized manner where a designated
coordinator is responsible for managing the slot length adap-
tation. SLA operates in three phases:

1) SLA coordinator persistently monitors the packet size dis-
tribution of the network.

2) Then, it periodically determines an appropriate slot length.
3) If the SLA coordinator decides to change the slot length,

the new slot length and its activation time is advertised
throughout the network. Then, once the activation time is
reached, all nodes apply the new slot length simultaneously.

By repeating this procedure, SLA adapts the slot length to the
packet size distribution in the network at run-time to reduce
wasted residue time. It leverages the fact that any time-slotted
system would require some form of coordinator or master that
synchronizes the network. We describe the details of SLA using
an illustration in Fig. 4. Table I lists the definitions of symbols
used in SLA.
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Fig. 5: Illustration of SLA’s slot length decision for adjustment.

Persistent monitoring: To determine an appropriate slot
length for the entire network, the SLA coordinator needs to
know the distribution of packet sizes generated throughout the
network. For this purpose, we take advantage of the fact that
on a multi-hop TSCH network, RPL (IPv6 Routing Protocol
for LLN) [45], [46] is the de-facto standard routing protocol,
and the TSCH coordinator operates as an RPL root3. Almost
all types of packets flow in and out through the RPL root under
most scenarios (e.g., data collection, command dissemination,
DIO/DAO, etc.), and thus the TSCH coordinator can acquire
the packet size distribution of the entire network by observing
the packets it sends and receives. Therefore, we assign the
role of SLA coordinator to the TSCH coordinator and have it
monitor the packet size distribution necessary for determining
the slot length.

In our SLA design, the SLA coordinator quantizes the
observed packet sizes into 8-byte interval bins, and uses the
longest length within each bin as a representative value. This
is to manage the packet size distribution in a memory-efficient
manner and to prevent excessively fine-grained adjustment of
the slot length. To determine for how long (Tadv) to advertise
the new slot length and when to apply it (tact in Fig. 4), the
SLA coordinator also needs to know the depth of the multi-hop
network (details explained shortly). For this purpose, our SLA
design utilizes the time-to-live (TTL) field in the IPv6 header.
The SLA coordinator monitors the number of hops each packet
traverses to derive the maximum hop distance, and use it as
the network depth. However, it is also possible to derive it
directly from RPL’s routing table.

Determination of slot length: Based on the packet size distri-
bution collected from persistent monitoring, SLA coordinator
determines an appropriate slot length periodically every Tdet.
Fig. 5 illustrates how this is done. An appropriate slot length is
determined based on the estimated transaction time required
for sending and receiving a packet. The default transaction
time (T TXN

default) in TSCH is 10 ms, long enough for exchanging a
pair of maximum-sized packet and ACK. However, the actual
required transaction time varies depending on the type (i.e.,
unicast or broadcast) and length of the packet. For instance,
a unicast packet requires a transaction time of T TXN

UC for both
packet and ACK, whereas a broadcast packet requires T TXN

BC

3DODAG root in RPL’s terminology

without an ACK, calculated as,

T TXN
UC = Tproc + Toffset + (BUC +BACK)/R (4)

T TXN
BC = Tproc + Toffset +BBC/R (5)

where BUC, BBC, and BACK represent the total bytes in each
corresponding packet type, including both the packet body and
control fields such as the preamble. R is the data rate of the
PHY layer, which is 250 kbps for IEEE 802.15.4 PHY. Tproc
and Toffset denote the total process and the total offset time
within a slot, respectively, as defined in §II-C. We note that
the sum of Tproc and Toffset is nearly constant (Fig. 1) regardless
of whether SLA is used. Therefore, the transaction time can
be determined by adjusting BUC and BACK, or BBC according
to the desired packet size.

Then, what packet size should SLA adjust the slot length
to? We propose a simple yet effective ‘k-th percentile pol-
icy.’ From the packet size distribution, the SLA coordinator
determines the k-th percentile size separately for unicast and
broadcast packets. Based on their sizes, data rate, and pre-
defined offset times, the coordinator calculates the transaction
times of each type, denoted as T TXN

UC,k and T TXN
BC,k , respectively.

Finally, the coordinator selects the larger value between the
two as the target transaction time to which to match the new
slot length (T slot

SLA). As a result, SLA can reduce residue time by
T TXN
∆ , the difference between the default and target transaction

times.

Advertising and applying the new slot length: When the
SLA coordinator decides to change the slot length, the new slot
length must be advertised and applied throughout the network.
SLA updates the slot length of all nodes at once. This design
choice considers that synchronization in a TSCH network
occurs across multiple hops. Gradually changing the slot
length may break the synchronization, as nodes may have to
maintain synchronization with nodes with different slot lengths
at the same time. For this simultaneous activation, the SLA
coordinator must determine when the new slot length should
be applied. As illustrated in Fig. 4, if the SLA coordinator
decides to change the slot length at tdec and determines the
advertisement duration Tadv, then the endpoint of this adver-
tising period becomes the activation time as, tact = tdec +Tadv.
Then, the new slot length and its activation time are advertised
throughout the entire network during Tadv, and all nodes apply
the new slot length simultaneously when tact is reached.

Then, what should Tadv be? SLA coordinator must determine
an appropriate Tadv that ensures all nodes in the network
are aware of the new slot length and the activation time. To
achieve this, we consider how our SLA design propagates such
information. In a TSCH network, network synchronization
information is propagated through a control message called
Enhanced Beacon (EB). Starting from the TSCH coordinator,
all TSCH nodes periodically transmit EBs, and each node
maintains synchronization by listening to EBs. Our SLA design
adds the new slot length and the activation time in this EB.
When the new slot length and the activation time are deter-
mined, the SLA coordinator begins to transmit EBs containing
this information. Then, all nodes that receive the new slot
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TABLE II: Definitions of symbols for UPA

Symbol Definition

TN Time taken for negotiation phase

TN
proc Process time (Tproc) in negotiation phase

TN
offset Offset time (Toffset) in negotiation phase

TB Time taken for batch transmission phase

TUC
B (i) Time taken to send the i-th unicast packet

in batch transmission phase

TB,UC
proc (i) Process time (Tproc) for the i-th unicast packet

transmission in batch transmission phase

TB,UC
offset (i)

Offset time (Toffset) for the i-th unicast packet
transmission in batch transmission phase

TBA
B

Time taken to send the block ACK
in batch transmission phase

TB,BA
proc

Process time (Tproc) for block ACK
in batch transmission phase

TB,BA
offset

Offset time (Toffset) for block ACK
in batch transmission phase

BUC(i) Size of the i-th unicast packet in bytes

BACK Size of the ACK for the first negotiation packet in bytes

BBA Size of the block ACK in bytes

R Data rate of the PHY layer

n Number of packets in Tx node’s queue

TUPA(n) Time required for transmitting entire n packets

SUPA(n) Slots required for transmitting entire n packets

length and the activation time via EBs also transmit EBs
including this information during Tadv.

Considering this advertisement procedure, SLA coordinator
determines Tadv to be long enough to ensure that all nodes
in the network can acquire the information. Specifically, the
SLA coordinator uses the network depth obtained during the
persistent monitoring. Assume that the network depth is h hops
and every TSCH node has resources to send EBs at a period
of LEB slots. Then, considering that all nodes transmit EB at
every resource for EB transmission during the advertisement
period, all nodes can receive at least one EB after LEB ·h slots.
Based on these observations, the SLA coordinator calculates
the required advertisement duration Tadv as,

Tadv = (α · LEB · h+ β)× (current slot length) [ms] (6)

where α and β are coefficients considering re-transmissions 4.

B. UPA Design

UPA presents another approach to minimize residue time
by aggregating multiple packets and transmitting them over
multiple (but fewer) consecutive slots to fully utilize the time
within the slots. fewer slots, it would be possible to effectively
reuse the previously wasted residue time in each slot and
increase effective data rate. To realize this, UPA requires two
phases as shown in the earlier example Fig. 2: (1) utility-
based negotiation and (2) batch transmission. Table II lists the
definitions of symbols used in UPA.
Slot utility-based negotiation: UPA aggregates packets only
when there is a gain in terms of slot utility. To achieve this, the

4α and β are both set to 1 in our experiments.

Slot 
utility

Bit
sequence

Number of 
packets

100000001 000000001

100000010 010000002

1.500000011 010000003

1.3300000100 010100004

1.6700000101 010100005

200000110 010100006

Timeslot

Data packet ACK Block ACK

Fig. 6: Example of impact of UPA’s packet aggregation on slot
utility and bit sequence.

Tx and Rx nodes must determine whether batch transmission
is doable and beneficial. However, there is an information
asymmetry between the Tx and Rx. Only the Tx node knows
the number of packets it wishes to transmit and the size of
each packet, and thus only the Tx can estimate the slot utility
depending on the number of packets to aggregate. On the other
hand, queue status of the Rx node may limit how many packets
can be received in a batch, and the Tx node does not know
this. Therefore, the Tx and Rx nodes first perform a negotiation
whenever there is more than one packet to be sent in the Tx
queue. Tx node estimates the slot utilities for varying number
of aggregated packets, and informs them to the Rx node. Then,
the Rx node selects the number of packets that maximizes the
slot utility within its buffer availability.

Specifically, the Tx node constructs a slot-utility information
block (SIB) to represent the slot utility according to the number
of packets to be aggregated as exemplified in Fig. 65. SIB
consists of two bit sequences (the two 8-bit sequences shown
on the right table in Fig. 6). The first 8-bit sequence in blue
contains the total number of packets pending in the Tx node,
and the second 8-bit sequence in red represents the increments
in the number of required slots according to the number of
aggregated packets. For example, when the number of queued
packets is six in Fig. 6 (bottom row), the first 8-bits in blue
simply encode six in binary (000001102). The second 8-bit
sequence in red (01010000) is interpreted from left-to-right:
• ‘0’ at the first bit means that no additional slot is needed to

send one packet. (one slot total, utility=1).
• ‘1’ at the second bit means that one additional slot is needed

to send two packets (two slots total, utility=1).
• ‘0’ at the third bit means that no additional slot is needed

to send three packets (two slots total, utility=1.5).
• ‘1’ at the fourth bit means that one additional slot is needed

to send four packets (three slots total, utility=1.33).
• ‘0’ at the fifth bit means that no additional slot is needed to

send five packets (three slots total, utility=1.67).
• ‘0’ at the sixth bit means that no additional slot is needed

to send six packets (three slots total, utility=2).
This encoding allows the receiver to calculate the slot utility
for all cases and choose the number of packets that maximizes
slot utility subject to it’s RX buffer size limit (or whatever
policy that it wishes to enforce).

5The example in Fig. 6 is simplified to a uniform packet size, but the actual
implementation reflects the individual (possibly distinct) packet sizes during
slot utility calculation
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In detail, the increment in the number of required slots
(the second 8-bit sequence in red) according to the number
of aggregated packets and their packet sizes is calculated as
follows: Assume total of n packets in the Tx node’s queue.
The time it takes for the negotiation to complete (TN), i.e., the
time duration until the Tx node receives an ACK from the Rx
node for the first packet, is calculated as,

TN = TN
proc + TN

offset + (BUC(1) +BACK)/R (7)

where TN
proc and TN

offset denote the total process and offset times
within the negotiation phase. BUC(i) represent the total bytes
of i-th packet, including both the packet body and the control
fields such as preamble.

When the Tx node sends i-th unicast packet during a batch
transmission, the additional time required until the end of
transmission (TUC

B (i)) is calculated as,

TUC
B (i) = TB,UC

proc + TB,UC
offset +BUC(i)/R (8)

where TB,UC
proc and TB,UC

offset denote the total process and offset
times while sending the i-th packet.

Once all n packets have been sent, the Rx node sends a
block ACK to the Tx node. The time taken for exchanging a
block ACK at the end of the batch transmission (TBA

B ) can be
modeled as,

TBA
B = TB,BA

proc + TB,BA
offset +BBA/R (9)

where TB,BA
proc and TB,BA

offset denote the total process and offset
times while exchanging the block ACK at the end of the batch
transmission. Then the total time required for transmitting the
entire n packets (i.e., TUPA(n)) via UPA can be derived as,

TUPA(n) = TN + TB = TN +

n∑
i=2

TUC
B (i) + TBA

B (10)

and the number of slots according to the number of aggre-
gated packets (i.e., SUPA(n)) is derived as,

SUPA(n) = ⌈TUPA(n)/(current slot length)⌉. (11)

We note that BACK, BBA, and all the process and offset
times in Eqs. (7) to (11) are predefined constants. Therefore,
the Tx node can estimate the slot utility according to the
number of aggregated packets only by considering BUC(i).
When aggregating packets, if the number of required slots
(i.e., SUPA(n)) increases, the bit of the second bit sequence
corresponding to the packet count is set to one; otherwise,
it is set to zero. Then, SIB is sent by piggybacking on the
triggering (first) unicast packet.

In the example of Fig. 6, five packets are pending in
addition to the triggering packet, and the number of slots
required increases by one when sending one or three additional
packets. Accordingly, Tx node can construct a bit sequence
representing the increase in the number of slots as indicated
by the red bits. Then the number of aggregated packets is
represented in the first bit sequence as shown by the blue
numbers.

Upon receiving the SIB, the Rx node can calculate the
slot utility for each number of aggregated packets. Rx node

restores SUPA(n) for each value of n from the received SIB,
and calculates the slot utility as n/SUPA(n). Then, the Rx node
selects the number of packets that maximizes the slot utility
within its buffer limit (l), by solving the following problem:

argmax
2≤n≤l

n

SUPA(n)
(12)

The Rx node chooses zero as a means of denying the request
for packet aggregation if there is no way to improve slot
utility or when there are insufficient space available in the
Rx buffer to accommodate the aggregated packets. In such
circumstances, the Rx node selects zero without the need
to solve Eq. (12). Then the selected number of packets to
aggregate is conveyed to the Tx node through ACK. Since the
negotiation information are piggybacked on unicast and ACK
packets, no additional control packet is required.
Batch transmission: Upon agreement from the negotiation,
the Tx and Rx nodes start batch transmission and reception.
For each batch, the Tx node assigns a separate batch sequence
number to the packets. Then, since the Rx node knows in
advance how many packets will be received in the current
batch, it can detect packet loss(es) using this sequence number.
Reception status of the packets within a batch is then converted
into a bit sequence, and sent back as a block ACK. Upon
receiving the block ACK, Tx node finds the transmission result
of each packet from the bit sequence, and re-enqueues the lost
packets for retransmission.

However, since the batch transmission of UPA is performed
beyond the slot originally scheduled for the Tx and Rx nodes
of UPA, it may overlap with the schedules of other links.
If the overlapped schedules are executed simultaneously, a
collision will occur. The collision can reduce the number of
packets successfully delivered by UPA, decreasing the slot
utility. Therefore, we enable non-participants to avoid collision
with UPA’s batch transmission through CCA. Specifically, we
modify and apply the CCA operation proposed in [47] to fit
the operation procedure and timing of UPA.

C. ASAP: SLA and UPA Together

Now we explain how the two independent and orthogo-
nal methods, SLA and UPA, coexist and function together
as ASAP. We use Fig. 7 for this purpose. As indicated
in Fig. 7a, SLA and UPA can be independently applied to
TSCH. Specifically, SLA reduces residue time through slot
length adjustments, while UPA focuses on enhancing slot
utility through utility-based packet aggregation. Moreover,
when both methods are simultaneously implemented in ASAP,
they enhance the overall time efficiency of the network. Fig. 7b
demonstrates the transmission of six packets between a Tx
node and an Rx node through TSCH, SLA, UPA, and ASAP.
We assume that one slot is scheduled for the link in each
slotframe. The slot size is 10 ms in TSCH and UPA, while
it is adjusted to 8 ms by SLA in SLA and ASAP. The Tx
node has six packets in its queue, and we assume the Rx node
determines to accept five in a batch considering its Rx buffer
availability. In the case of TSCH, the transmission of these
packets spans six slotframes. SLA also requires six slotframes
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SLA
• Slot length adaptation
• Reduce residue time

UPA
• Utility-based 
packet aggregation
• Increase slot utility

TSCH
• Time-slotted 
communication
• Fixed slot size

ASAP
• SLA and UPA together
• Improve time-efficiency

(a) Functional flow of ASAP

…

…
…

…

Slotframe 1 Slotframe 2 Slotframe 3 Slotframe 4 Slotframe 5

Slotframe 1

UPA

SLA

ASAP

Slotframe 2 Slotframe 3 Slotframe 4 Slotframe 5 Slotframe 6

Data packet ACK Block ACK Scheduled slot Unscheduled slot

TSCH

Time

Slotframe 6

Slotframe 7

(b) An example of transmitting six packets in TSCH, UPA, SLA, and ASAP

Fig. 7: Examples of the operation of TSCH, UPA, SLA, and ASAP.

to transmit all packets, similar to TSCH. However, the use
of shorter slot length in SLA results in a reduced overall
transmission time compared to TSCH. On the other hand,
UPA efficiently aggregates five packets in the first slotframe,
achieving a slot utility of 1.67 (five packets transmitted over
three slots). The sixth packet is then transmitted in the second
slotframe. In the context of ASAP, it follows a similar approach
to UPA, aggregating the first five packets within the initial
slotframe, resulting in a slot utility of 1.67. It then completes
the transmission of the sixth packet in the second slotframe.
However, ASAP achieves even faster packet delivery compared
to UPA due to the smaller slot size managed by SLA. We note
that the tiny delay introduced before the first packet in both
UPA and ASAP are due to the offset time required for CCA.

V. EVALUATION

To evaluate ASAP, we first investigate whether each indi-
vidual key techniques, SLA and UPA, operate according to
its design purpose. Then, we conduct an ablation study to
verify the efficacy of ASAP by examining the synergistic
collaboration between SLA and UPA. Finally, we compare
ASAP against two state-of-the-art TSCH schedulers, ALICE
and ALICE with A3 (referred to as A3 in the rest of this
paper), in addition to ALICE with the IEEE 802.15.4 default
burst transmission (DBT).

A. Implementation and experiment setup

We implement ASAP6 on M3 board using Contiki-NG7 [27].
For the comparison schemes, we use the publicly available
implementations of ALICE8, DBT9, and A310, which are also
implemented in Contiki-NG. The slot length is set to 10 ms
by default, and we set the slotframe lengths of EB, broadcast,
and unicast slotframes to 397, 17, and 20 slots, respectively,
referring to the configuration in the A3 paper [25]. For channel
hopping, we utilize the four IEEE 802.15.4 channels 15, 20,
25, 26. For the routing layer, we use RPL storing mode [48]
and MRHOF with ETX [49] for the objective function in
RPL. We enable the DAO-ACK option in RPL to promote

6https://github.com/Hongchan-Kim/ASAP
7https://github.com/iot-lab/iot-lab-contiki-ng
8https://github.com/skimskimskim/ALICE
9It is included in the implementation of Contiki-NG.
10https://github.com/skimskimskim/A3
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Fig. 8: Node deployment topology at Grenoble and Lille testbeds.
In both testbeds, the node marked in yellow (located in the upper
left corner for both testbeds) serves as the root.

reliable downward routing and resource scheduling. We set
the transmission power of each node to -17 dBm.

We conduct experiments on the FIT/IoT-LAB testbed [28],
a large-scale public testbed, at three sites: Lyon, Grenoble,
and Lille. Lyon testbed was used for the preliminary study in
Fig. 1 and the evaluation of UPA in §V-C. Grenoble and Lille
testbeds were used to assess the performance of ASAP in a
multi-hop topology utilizing 79 M3 nodes at each site. Fig. 8
depicts the physical deployment topology of the 79 nodes at
Grenoble and Lille. At Grenoble, the nodes are arranged in two
narrow and long rows, while at Lille, the nodes are distributed
almost evenly in a rectangular grid shape. Approximately 8-
hop routing topology is formed at Grenoble, while a 3-4 hop
topology is formed at Lille. Through experiments in these two
sites with very distinct characteristics, we comprehensively
verify the performance of ASAP.

With this setup, we focus on two application scenarios: data
collection (upward traffic) and data dissemination (downward
traffic) with varying traffic loads. In the upward scenario, each
node periodically transmits data packets to the root node. In
the downward scenario, the root transmits data packets to each
non-root node periodically in a round-robin fashion. Unless
specified explicitly, data transmission lasts for 30 minutes
in each experiment run, and sufficient time is provided for
initialization and bootstrap before starting data transmission.
For each experimental case, we repeat the experiment three
times.

Here we list the key performance metrics for evaluation:
• App. layer goodput is the end-to-end per-minute packet

goodput for each node excluding losses and retransmissions.
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Fig. 9: Real-time operation of SLA: Evolution of slot length over
time in accordance to payload (packet) size changes.
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Fig. 10: Performance of SLA with varying k-percentile values vs.
ALICE, at the Grenoble testbed, for data collection scenario.

• Per-hop latency is obtained by dividing the end-to-end
latency of each data packet by the path length it traverses.

• End-to-end packet delivery ratio (PDR) is the PDR of
data packets from/to each node to/from the root node.

• Slot length is calculated as the average length of the slots
in which data packet transmission occurs.

• Slot utility is calculated as the number of packets transmit-
ted per slot with UPA.

• Duty cycle is calculated as the ratio of the time the radio
is on to the total operating time of the network.

B. Performance of SLA

We first verify the proper functioning of SLA’s slot length
adaptation across the entire network, and evaluate the impact
of k in k-th percentile policy in a data collection scenario at
the Grenoble site.
Network-wide slot length adaptation: To verify whether SLA
operates correctly at run-time across the network, we conduct
a four-hour experiment in which the packet size varies over
time. During four hours, each node periodically transmits a
total of 960 data packets to the root node while changing the
payload length to 63, 14, 46, and 30 bytes every 240 packets.
We set the relevant SLA parameters as follows: Tdet is set to
5 minutes, and α and β are both set to 1, which are used to
determine Tadv based on the depth of the network. We apply
the same parameters in the subsequent experiments. The k for
the k-th percentile policy is set to 90. TSCH slot length is
initially set to 10 ms.

Fig. 9 plots the time-evolution of slot length in accordance
to payload size changes over time, together with the timing
of SLA’s slot length determination and activation actions. SLA
coordinator continuously monitors the packet size distribution

and periodically determines the appropriate slot length, as indi-
cated by the black dashed line. Whenever there is a change in
the distribution, the SLA coordinator detects it and adjusts the
slot length accordingly. The SLA coordinator also determines
the activation time, represented by the pink dashed line. After
all nodes in the network advertise the new slot length and
activation time, the new slot length is applied simultaneously at
the designated time. The overall result demonstrates that SLA
successfully adjusts the slot length whenever the packet size
decreases or increases. We note that at the first determination
point of SLA, the slot length decreases even though the packet
length remains the same. This happens because the original
slot length of 10 ms is adjusted to fit the data packets of 63
bytes payload.
Choice of an appropriate k for the k-th percentile policy:
The k-th percentile policy serves as a reference for adjusting
the slot length based on the packet size distribution, and
impacts the performance of SLA. Therefore, choosing an
appropriate k value is crucial. In most of our experiments, a
single-size data packet is used. While data packets constitute
the majority of total packets, there are also RPL control
packets (DIS, DIO, DAO, and DAO-ACK) and TSCH control
messages (e.g., EB), which may be larger or smaller than the
data packet size. Thus, we need to find an appropriate k value
that results in a good slot length for improved performance.

Fig. 10a plots the average adjusted slot length according
to the value of k in the data collection (upward) scenario at
the Grenoble testbed when the traffic load is 4 packets per
minute per node. The payload size is 14 bytes, resulting in
a maximum data packet size of 67 bytes, with an ACK of
20 bytes. If these sizes are used as a reference, SLA adjusts
the slot length to 6.736 ms (§IV-A). We found that a value of
k=90 is appropriate for SLA to adjust the slot length to the data
packet size. k larger than 90 (e.g., 100) will end up setting the
slot length to the infrequent but large control packets, while
smaller k has no effect due to large number of data packets.
Therefore, we set k to 90 in the subsequent experiments.
For example, Fig. 10b plots the goodput of SLA with k=90
and ALICE as a function of traffic load (same experiment
as Fig. 10a). By dynamically adjusting the slot length, SLA
improves goodput compared to ALICE which uses a fixed
10 ms slot. In a more complex scenario where data packets of
several different sizes coexist, selecting an optimal value for
k can be a more challenging issue. We leave this as a future
work.

C. Performance of UPA

Next, we measure the maximum achievable slot utility of
UPA depending on the packet size and number of slots, and
also investigate the time usage breakdown of UPA to attain
insights into how the slot utility gain is achieved. For these
experiments, we use two nodes at the Lyon site and fix the
TSCH slot length to 10 ms.

Fig. 11a plots the maximum achievable slot utility of UPA
as a function of packet size and number of slots used for
aggregation. For example, if UPA utilizes five consecutive
slots, slot utility can go up to 2.8 by aggregating 14 minimum-
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(a) Slot utility vs. packet size and num. of slots
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Fig. 11: Performance of UPA: maximum slot utility and an example of aggregating seven packets to reduce residue time.
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(a) Goodput, 14 bytes, upward
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(b) Goodput, 14 bytes, downward
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(c) Goodput, 63 bytes, upward
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(d) Goodput, 63 bytes, downward
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(e) Latency, 14 bytes, upward
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(f) Latency, 14 bytes, downward
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(g) Latency, 63 bytes, upward
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Fig. 12: Ablation study on ASAP: Goodput and latency results for upward vs. downward scenarios and 14 vs. 63 byte payloads.

sized packets. This figure can guide UPA in terms of when
and how many packets to aggregate. It shows that UPA can
achieve slot utility of 1.5∼2.8 in most cases, and smaller
packets provide more opportunity for higher improvement.
This analysis is corroborated by the time usage breakdown of
aggregating seven packets as illustrated in Fig. 11b. Following
the triggering packet and ACK, six packets are transmitted
in a batch with very short intervals, reducing the number
of slots required from seven to three∼five depending on the
packet length. For example, for the seven minimum-sized
packets, UPA can improve the slot utility to 2.33 by utilizing
3 consecutive slots.

D. Performance of ASAP: an ablation study

Next, we evaluate the performance of ASAP through an ab-
lation study with varying traffic load (from 4 to 24 packets per
minute per node) and payload length (14 bytes and 63 bytes) in
upward and downward traffic scenarios. We use ALICE as the
baseline scheduler and compare the performance of ‘ALICE
with SLA’, ‘ALICE with UPA’, and ‘ALICE with ASAP’
(referred to as SLA, UPA, and ASAP, respectively, hereafter)
with ALICE. The experiments are conducted at Grenoble.

Application layer goodput: Fig. 12a plots the goodput in the
data collection (upward) scenario with the minimum payload
length (14 bytes). ALICE performs the worst beyond traffic
load of 4 pkts/min/node, and fails to deliver a significant
number of packets as the traffic load increases. This is because,
the traffic load was higher than ALICE’s effective data rate at
the bottleneck nodes in most cases. SLA improves over ALICE,
demonstrating that SLA has successfully increased the effective
data rate by adjusting the slot length. UPA exhibits even more
improvement, showing that UPA has successfully increased the
effective data rate through packet aggregation. UPA achieves
higher improvement than SLA because UPA can flush the
bottleneck node’s queue backlog in a burst within a slotframe
whereas SLA still requires same number of slotframes as the
number of packets. The collaboration of SLA and UPA within
ASAP leads to further improvement outperforming UPA as the
traffic load increases.

Per-hop latency: Fig. 12e plots the latency result in the
collection (upward) scenario with the smallest payload length
(14 bytes). SLA achieves lower latency than ALICE by
adapting the slot length to be shorter. UPA further reduces
latency since its packet aggregation allows each packet to
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be transmitted significantly earlier than the baseline schedule.
By harmonizing the effects of these two techniques, ASAP
achieves the lowest latency.
Synergy of SLA and UPA in ASAP: Here we discuss
the combined benefits of SLA and UPA. As the slot length
decreases (by SLA), the utility of packet aggregation (by UPA)
diminishes due to fewer packets fitting in smaller slots. There-
fore, UPA becomes slightly less effective when used together
with SLA compared to UPA alone. However, SLA increases the
frequency of resource repetitions (i.e., next slotframe comes
earlier), creating more opportunities for transmissions and
aggregations in the time domain. This compensates for the
reduced slot utility. Furthermore, SLA’s shorter slot length
and more frequent opportunities improve latency by enabling
quicker transmission for all nodes. Overall, UPA and SLA
together create a synergy to improve both throughput and
latency beyond what can be done by each technique alone.
Impact of traffic direction: In the downward traffic sce-
nario, the root node generates and disseminates downward
traffic throughout the network. Since packets are distributed
to multiple nodes, aggregation opportunity in each link may
decrease, reducing the slot utility. Furthermore, the root is
the main bottleneck of throughput, resulting in an overall
decrease in goodput across all schemes as shown in Fig. 12b.
Nevertheless, SLA, UPA, and ASAP still outperforms ALICE
for the same reasons discussed earlier, with ASAP having
the highest performance. Latency improves for the downward
scenario as well, as shown in Fig. 12f. However, in contrast to
the upward scenario, downward traffic has relatively constant
per-hop latency. This is because the root node is the bottleneck,
and the nodes below the root forward fewer packets than
the root and rarely experience congestion. Thus, the per-hop
latency does not change significantly per traffic load.
Impact of packet length: We lastly explore the impact of
packet length on the performance of ASAP using experiments
with a payload size of 63 bytes. The results are plotted in
Figs. 12c, 12d, 12g and 12h. We observe that the trends for
goodput and latency remain unchanged from the experiments
with 14-byte payload, in both upward and downward traffic
scenarios. In the case of ALICE, the goodput and latency
remain almost the same because the packet length differ-
ence does not affect ALICE’s operation. However, for SLA,
UPA, and ASAP, the goodput and latency degrade slightly
as the packet size increases. This is because, with longer
packets, SLA cannot shorten the slot length as much as with
shorter packets, and UPA cannot aggregate as many packets.
Nevertheless, SLA and UPA still achieve significantly better
performance than ALICE, and so does ASAP.
Summary: Overall, the results validate the superiority of
ASAP. Across all scenarios, irrespective of traffic direction
and packet size, the proposed schemes improve effective data
rate by addressing the inefficiencies of ALICE resulting from
wasted residue time, leading to enhanced goodput and latency.
Notably, by leveraging the synergetic strengths of both SLA
and UPA, ASAP achieves the best performance. Specifically, at
a traffic load of 24 pkts/min/node, ASAP improves throughput
and reduces latency of the TSCH network by 2.21x and 78.1%,
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Fig. 13: Performance of SLA, UPA, and ASAP with varying ‘ran-
dom’ payload sizes (uniform random between 14-63B), depending
on k and Tdet configurations. The subscripts 1 and 5 in SLA and
ASAP denote that Tdet is 1 minute and 5 minutes, respectively.

respectively, compared to those of ALICE.

E. Discussion on SLA, UPA, and ASAP

So far, we examined the performance of SLA, UPA, and
ASAP using fixed-size data packets while varying the traffic
load and direction. Here we extend our evaluation to variable
packet sizes and discuss the limitations of the proposed
schemes.

To introduce variability in packet sizes, we let each node
transmit data packets with payload lengths uniform randomly
distributed between 14 to 63 bytes. We also vary the k
parameter in SLA’s k-th percentile policy from 0 to 100%,
and adjust the SLA’s adaptation interval Tdet between 1 and 5
minutes. We maintain the traffic load of 24 packets per node
per minute in upward direction to keep the network saturated.
Fig. 13 presents the results for ALICE, SLA, and ASAP.
Impact of k in SLA’s k-th percentile policy: Fig. 13a plots
slot lengths for ALICE, UPA, SLA, and ASAP according to
the k value. ALICE and UPA has fixed slot lengths regardless
of the k values since there is no adaptation. In contrast, SLA
and ASAP reduce their slot sizes as k decreases, as smaller
k prompt SLA to adapt the slot length to smaller packet
sizes. These differently adjusted slot sizes result in distinct
transmission patterns as shown in Fig. 13b. ALICE transmits
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one packet in one slot for all packets. UPA aggregates some
packets and sends them in batches while other packets are still
sent individually per slot. In SLA and ASAP, smaller k values
may lead to a larger proportion of packets being larger than a
slot, thus transmitted over the slot boundaries. However, this
minimally affects average goodput, as shown in Fig. 13c. This
is because in both SLA and ASAP, CCA effectively handles
over-the-boundary packets, resolving collisions. Furthermore,
in ASAP, UPA gains additional efficiency by aggregating long
packets with short ones, achieving higher slot utility and
improved goodput compared to SLA. Fig. 13d demonstrates
that ASAP maintains consistent latency across different k
values, while SLA’s latency decreases with smaller k. ASAP’s
low latency is primarily due to UPA’s packet aggregation, with
k having minimal impact. Conversely, in SLA, the k value
directly affects SLA’s latency, as shorter slots lead to more
frequent resource availability.

One of the challenges in implementing SLA is choosing
the appropriate value for k. The reduction in slot length
determined by k decreases the residue time for packets below
the k-th percentile but may lead to transmissions beyond
the slot boundary for packets above the 100-kth percentile.
SLA allows these transmissions, causing the next slot to be
skipped. However, this behavior is undesirable as it can result
in another residue time issue within the subsequent slot.
Therefore, selecting the right k value requires finding a bal-
ance between reducing residue time and preventing overflow.
Our experiments demonstrate that choosing an appropriate k
effectively addresses these issues while achieving the desired
performance. For instance, selecting k ≥ 80 mitigates such
problems, enhancing goodput and reducing latency compared
to TSCH, as supported by comprehensive experimental results.
Nevertheless, the optimal k value may vary depending on
network characteristics or application requirements.
Impact of SLA’s adaptation interval Tdet: As depicted in
Fig. 13e, a smaller Tdet value results in more frequent slot
length adaptations, leading to more frequent EB transmissions
as shown in Fig. 13f. However, altering Tdet does not signif-
icantly affect the adjusted slot size for both SLA and ASAP
as plotted in Fig. 13a, and it has no significant impact on
goodput nor latency as presented in Figs. 13c and 13d. This
stability can be attributed to several reasons. Firstly, in our
experiment, although individual packet sizes vary dynamically,
the overall packet size distribution remains the same (i.e., uni-
form random). Secondly, the minute-scale granularity of Tdet
is significantly larger than the packet latency of seconds or the
transmission interval of milliseconds11. Therefore, when Tdet
is small (e.g., 1 minute), SLA may respond more frequently
to temporary packet length changes compared to when Tdet is
large (e.g., 5 minutes), but the long-term performance remains
almost the same across different Tdet values.

The analysis above provides insights for another challenge
in implementing SLA: determining the appropriate value of
Tdet. The responsiveness of SLA’s adaptation varies depending
on the size of Tdet. Smaller Tdet allows SLA to adjust the

1178 nodes each transmit 24 packets per minute, resulting in an average
inter-packet interval of 31.2 milliseconds.

slot length more quickly in response to changes in packet
size distribution. However, setting Tdet too small can lead to
excessive overhead due to frequent slot length change and
advertisement, as well as the possibility of making inaccurate
judgment based on too few packet size samples. Additionally,
Tdet must be set longer than Tadv for SLA to function properly.
In our implementation, considering all these factors, we set
Tdet to 5 minutes, which is sufficiently longer than Tadv
for deep networks, provides enough samples for slot length
adjustment, and allows for slot length adaptation to occur
multiple times (at least 10) during our experiments. However,
the optimal value of Tdet may vary depending on network
characteristics or application requirements.
Impact of packet aggregation in UPA: As shown in Fig. 13b,
a significant proportion of packets are aggregated and transmit-
ted when UPA is applied (i.e., UPA and ASAP). For example,
even when k is set to zero resulting in the smallest slot size
and minimal attempt for packet aggregation, ASAP transmits
more than 28% of the packets through aggregation. As we
have already mentioned in §IV-B, batch transmission of UPA
is performed beyond the originally scheduled slot. Thus it may
overlap with the schedules of other links, possibly resulting
in a collision. To address this problem, we enabled non-
participants to avoid collision with UPA’s batch transmission
through CCA, which may lead non-participating nodes to
yield their transmissions. However, this effectively prioritizes
communication that can transmit more packets within the
same slots, aligning with UPA’s design goal to enhance
the network’s time efficiency. Furthermore, comprehensive
experimental results demonstrate that despite the potential for
collisions, UPA achieves improved goodput, latency, and PDR
compared to when UPA is not applied.

The second challenge in implementing UPA is the overhead
introduced by packet aggregation. During UPA operation, all
frames add an extra 6 bytes. In our proof-of-concept imple-
mentation, these 6 bytes include the field header/termination
for the IEEE 802.15.4e information element (IE) to comply
with the IEEE 802.15.4 header format. It is important to note
that these extra 6 bytes represent only about 5-10% of the
packet size and just 1.92% of the default 10 ms timeslot
duration. However, UPA reduces the number of slots required
for packet transmission, which offsets this overhead. In our
evaluations, these extra bytes had no noticeable impact on
goodput, latency, nor PDR. The overhead is therefore consid-
ered acceptable and effectively contributes to improving the
time efficiency of the network.

F. Performance of ASAP: a comparative study

We now compare the performance of ASAP against other
state-of-the-art schedulers, namely ALICE, DBT, and A3.
For this purpose, we run experiments for the data collection
scenario (i.e., upward traffic) at both Grenoble and Lille sites.
While varying the traffic load, we measure the application
layer goodput, per-hop latency, end-to-end PDR, and duty
cycle.
Overall performance: As shown in Fig. 14, ASAP signif-
icantly outperforms all three baseline schemes in terms of
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Fig. 14: Performance comparison of ASAP, ALICE, DBT, and A3 at
Grenoble with dual-linear topology. ASAP achieves better goodput,
latency, and PDR with only a slight increase in duty-cycle (<1%).

goodput, latency, and PDR. ASAP enhances not only goodput
and latency but also PDR for the following reasons. In mult-
ihop TSCH networks, packet loss rate is primarily influenced
by queue losses, i.e., the number of packets lost in the
queues of forwarding nodes. ASAP achieves better PDR due
to its reduction in queue losses by reducing residue time
and increasing the effective data rate, thereby alleviating
congestion at bottleneck nodes. DBT performs similarly to
ALICE, with only minor improvements in some cases. A3,
on the other hand, exhibits notably better performance than
ALICE and DBT. Nevertheless, ASAP has significantly better
performance especially at higher traffic load. However, ASAP
exhibit a slightly higher duty cycle than other schemes. This is
because ASAP delivers more packets successfully; That is, the
radio on time is used for useful work, significantly improving
throughput.

Comparison with DBT: It is worth noting that DBT attempts
to send additional packets by recursively allocating additional
resource when a queue backlog occurs and there is no schedule
in the subsequent slot. This approach does provide DBT with
more opportunities to send packets than ALICE. However,
it does not cope with residue time within each timeslot.
Moreover, when an existing schedule is present in the subse-
quent slot, DBT prioritizes it instead of allocating additional
resource, resulting in limited improvements in reducing queue
backog or alleviating congestion at the bottleneck compared
to ALICE. In contrast, ASAP exhibits superior performance
compared to DBT (Figs. 14a to 14c), primarily due to its UPA
mechanism; i.e., it enables more packets to be transmitted in
fewer slots than DBT. Moreover, ASAP prioritizes transmis-
sions with high slot utility over the existing schedule, which
significantly enhances network time-efficiency.

Comparison with A3: A3 assigns additional periodic re-
sources based on traffic load, allowing for transmission of
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Fig. 15: Performance comparison of ASAP, ALICE, DBT, and A3 at
Lille testbed with grid-like topology. ASAP achieves better goodput,
latency, and PDR with only a slight increase in duty-cycle (<1%).

more packets compared to ALICE. In our experiments, A3 can
allocate up to four times more resources than ALICE when
needed. For this reason, A3 significantly improves goodput,
latency, and PDR performance compared to both ALICE and
DBT. Nevertheless, ASAP achieves even better performance
than A3. This is because, as the traffic load increases, A3’s
additional resource allocation will eventually reach its limit
where it becomes impossible for A3 to send more packets.
It is important to highlight that A3’s approach of allocating
additional resources is orthogonal to ASAP’s approach of
reducing residue time. There may still be a significant waste
of residue time within each slot, and ASAP can reduce residue
time and allow A3 to send more packets in such a situation.
Another limitation of A3 is the occurrence of conflicts due
to overlapping resources from different links when allocating
more resources to support higher traffic load. In such situa-
tions, efficiently utilizing residue time within each slot may
be a better solution than allocating more resources.

G. Performance of ASAP in different environment

Finally, we validate whether ASAP maintains good perfor-
mance in a different environment with drastically different
physical topology. For this purpose, we evaluate ALICE, DBT,
A3, and ASAP at the Lille testbed which has a compact grid de-
ployment (Fig. 8b) unlike the long dual-linear topology of the
Grenoble site (Fig. 8a). The network topology characteristics
of the two locations are markedly different. At Lille, the hop
distance is reduced by about half compared to Grenoble, and
the bottleneck problem becomes less severe, but more nodes
are connected to the root directly. Considering this topological
difference, we increase the traffic load up to 32 pkts/min/node
at Lille from that of 24 at Grenoble. By comparing Fig. 14
and Fig. 15, we can analyze the impact of topology on ASAP
and other compared schemes.
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As shown in Fig. 15, the performance trends among ALICE,
DBT, A3, and ASAP at the Lille site are similar to those
observed at the Grenoble site; ASAP outperforms all other
schemes. However, at the Lille site, ALICE, DBT, and A3
perform well even at much higher traffic loads than those
at the Grenoble site. This is due to the shallower topology
where many nodes can directly deliver packets to the root
node, thus have less resource shortage issues. Nonetheless,
both ALICE and DBT experience a decrease in goodput and an
increase in latency at a traffic load of 20, while A3 experiences
these issues at traffic load of 24. In contrast, ASAP maintains
goodput close to ideal and minimizes latency increase even
at traffic load of 32. Regarding the duty cycle, similar trend
but slightly lower energy consumption is observed at the Lille
testbed for the same reason of shallower network depth. To
sum up, ASAP has shown successful performances in both
linear and grid shape topologies. Based on the results, we
believe that ASAP can generalize to other topologies and
perform well in various environments.

VI. CONCLUSION

Time-slotted communication systems set the timeslot length
to be sufficient for transmitting a maximum-sized packet and
an ACK, resulting in a significant residue time within each
timeslot and decrease in effective data rate. To address this
problem, this paper proposed ASAP with two orthogonal ap-
proaches: SLA and UPA. SLA reduces residue time in timeslots
by adjusting the length based on the packet size distribution,
while UPA reduces residue time by aggregating multiple
packets and transmitting them in a burst over consecutive
slots. Through a case study on TSCH, we verified that ASAP
improves performance significantly compared to the state-of-
the-art TSCH schemes such as ALICE, A3 and DBT. Specif-
ically, ASAP improves throughput by up to 2.21x and reduces
latency by up to 78.7% through a synergistic collaboration of
SLA and UPA. As a future work, we plan to investigate the
performance of ASAP when applied in combination with other
orthogonal approaches (e.g., A3) and explore ways to improve
the performance of ASAP.
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“6TiSCH: Industrial performance for IPv6 Internet-of-Things networks,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1153–1165, 2019.

[5] S. Raza, M. Faheem, and M. Guenes, “Industrial wireless sensor and
actuator networks in industry 4.0: Exploring requirements, protocols, and
challenges—A MAC survey,” International Journal of Communication
Systems, vol. 32, no. 15, p. e4074, 2019.

[6] T. Watteyne, J. Weiss, L. Doherty, and J. Simon, “Industrial
IEEE802.15.4e networks: Performance and trade-offs,” in IEEE Inter-
national Conference on Communications (ICC), 2015, pp. 604–609.

[7] V. Scilimati, A. Petitti, P. Boccadoro, R. Colella, D. Di Paola, A. Milella,
and L. Alfredo Grieco, “Industrial Internet of things at work: a case
study analysis in robotic-aided environmental monitoring,” IET wireless
sensor systems, vol. 7, no. 5, pp. 155–162, 2017.

[8] H. Kim, H.-S. Kim, and S. Bahk, “MobiRPL: Adaptive, robust, and
RSSI-based mobile routing in low power and lossy networks,” Journal
of Communications and Networks, vol. 24, no. 3, pp. 365–383, 2022.

[9] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Topology Manage-
ment and TSCH Scheduling for Low-Latency Convergecast in In-Vehicle
WSNs,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp.
1082–1093, 2018.

[10] I. Khoufi, P. Minet, and B. Rmili, “Beacon advertising in an IEEE
802.15.4e TSCH network for space launch vehicles,” Acta Astronautica,
vol. 158, pp. 76–88, 2019.

[11] Z. Zhang, S. Glaser, T. Watteyne, and S. Malek, “Long-Term Monitoring
of the Sierra Nevada Nnowpack Using Wireless Sensor Networks,” IEEE
Internet of Things Journal, vol. 9, no. 18, pp. 17 185–17 193, 2020.

[12] T. Watteyne, A. L. Diedrichs, K. Brun Laguna, J. E. Chaar, D. Dujovne,
J. C. Taffernaberry, and G. A. Mercado, “Peach: Predicting frost events
in peach orchards using iot technology,” EAI Endorsed Trans. Internet
Things, vol. 2, no. 5, Dec. 2016.

[13] S. A. Malek, F. Avanzi, K. Brun-Laguna, T. Maurer, C. A. Oroza, P. C.
Hartsough, T. Watteyne, and S. D. Glaser, “Real-Time Alpine Measure-
ment System Using Wireless Sensor Networks,” Sensors, vol. 17, no. 11,
p. 2583, 2017.

[14] K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, C. Taffernaberry,
R. Leone, X. Vilajosana, and T. Watteyne, “Using SmartMesh IP in
Smart Agriculture and Smart Building Applications,” Computer Com-
munications, vol. 121, pp. 83–90, 2018.

[15] G. Yang, A. R. Urke, and K. Øvsthus, “Mobility Support of IoT Solution
in Home Care Wireless Sensor Network,” in Ubiquitous Positioning,
Indoor Navigation and Location-Based Services (UPINLBS). IEEE,
2018, pp. 475–480.

[16] A. Elsts, X. Fafoutis, G. Oikonomou, R. Piechocki, and I. Craddock,
“TSCH Networks for Health IoT: Design, Evaluation, and Trials in the
Wild,” ACM Transactions on Internet of Things, vol. 1, no. 2, pp. 1–27,
2020.

[17] P. Woznowski, A. Burrows, T. Diethe, X. Fafoutis, J. Hall, S. Hannuna,
M. Camplani, N. Twomey, M. Kozlowski, B. Tan et al., “SPHERE: A
Sensor Platform for Healthcare in a Residential Environment,” Design-
ing, Developing, and Facilitating Smart Cities: Urban Design to IoT
Solutions, pp. 315–333, 2017.

[18] A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou,
R. Piechocki, and I. Craddock, “Enabling Healthcare in Smart Homes:
The SPHERE IoT Network Infrastructure,” IEEE Communications Mag-
azine, vol. 56, no. 12, pp. 164–170, 2018.

[19] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Proceedings of the 13th ACM conference on embedded networked sensor
systems, 2015, pp. 337–350.

[20] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and I. Crad-
dock, “Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4
TSCH Networks,” in 13th International Conference on Distributed
Computing in Sensor Systems (DCOSS). IEEE, 2017, pp. 3–10.

[21] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous Link-based
Cell Scheduling for TSCH,” in Proceedings of the 18th International
Conference on Information Processing in Sensor Networks (IPSN), 2019,
pp. 121–132.

[22] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-Aware
Elastic Slotframe Adjustment in TSCH Networks,” IEEE Access, vol. 7,
pp. 130 468–130 483, 2019.

[23] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-Demand TSCH
Scheduling with Traffic-awareness,” in IEEE Conference on Computer
Communications (INFOCOM), 2020, pp. 69–78.

[24] J. Jung, D. Kim, T. Lee, J. Kang, N. Ahn, and Y. Yi, “Distributed
Slot Scheduling for QoS Guarantee over TSCH-based IoT Networks via
Adaptive Parameterization,” in ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2020, pp. 97–108.

[25] S. Kim, H.-S. Kim, and C.-k. Kim, “A3: Adaptive Autonomous Al-
location of TSCH Slots,” in International Conference on Information
Processing in Sensor Networks (IPSN), 2021, pp. 299–314.

[26] Z. Yu, X. Na, C. A. Boano, Y. He, X. Guo, P. Li, and M. Jin,
“SmarTiSCH: An Interference-Aware Engine for IEEE 802.15.4e-based
Networks,” in ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), 2022, pp. 350–362.

14

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3354051

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



[27] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, 2022.

[28] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al.,
“FIT IoT-LAB: A large scale open experimental IoT testbed,” in IEEE
2nd World Forum on Internet of Things (WF-IoT), 2015, pp. 459–464.

[29] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic Aware Scheduling Algorithm for Reliable Low-Power Multi-
Hop IEEE 802.15.4e networks,” in IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), 2012,
pp. 327–332.

[30] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized
scheduling algorithm for IEEE 802.15.4e TSCH based industrial low
power wireless networks,” in IEEE Wireless Communications and Net-
working Conference, 2016, pp. 1–6.

[31] D. Gunatilaka and C. Lu, “Conservative Channel Reuse in Real-Time
Industrial Wireless Sensor-Actuator Networks,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2018, pp. 344–
353.

[32] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A
Flexible Retransmission Policy for Industrial Wireless Sensor Actuator
Networks,” in IEEE International Conference on Industrial Internet
(ICII), 2018, pp. 79–88.

[33] O. Harms and O. Landsiedel, “MASTER: Long-Term Stable Routing
and Scheduling in Low-Power Wireless Networks,” in International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2020, pp. 86–94.

[34] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low
Latency Scheduling Function for 6TiSCH Networks,” in International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2016, pp. 93–95.

[35] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” 2019.

[36] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“LDSF: Low-Latency Distributed Scheduling Function for Industrial
Internet of Things,” IEEE Internet of Things journal, vol. 7, no. 9, pp.
8688–8699, 2020.

[37] J. Shin, H. Kim, J. Paek, and S. Bahk, “Eca: Exclusive cell allocation for
autonomous scheduling in time-slotted channel hopping,” in Proceedings
of The IEEE 20th International Conference on Mobile Ad Hoc and Smart
Systems (MASS). IEEE, Sep. 2023.

[38] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Hybrid Timeslot
Design for IEEE 802.15.4 TSCH to Support Heterogeneous WSNs,” in
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2018, pp. 1–7.

[39] J. Park, H. Kim, H.-S. Kim, and S. Bahk, “DualBlock: Adaptive Intra-
Slot CSMA/CA for TSCH,” IEEE Access, vol. 10, pp. 68 819–68 833,
2022.
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