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Abstract: Adlay is an annual plant known for its abundant bioactive compounds and diverse
pharmacological activities. Coixol, a key component found in various parts of adlay, significantly
contributes to its biological activity. This study was conducted to extract adlay sprouts and seeds
using different solvents (methanol and ethanol) and extraction methods (reflux and ultrasonic
extraction). The extracts were then evaluated for their total polyphenol and flavonoid contents, as
well as antioxidant ability (DPPH and ABTS+). Additionally, the coixol content of these extracts was
analyzed using HPLC/DAD analysis. The results showed that the extraction methods and solvents
used impacted the bioactive compounds and their activities in the samples. Adlay sprouts exhibited a
higher compound content and stronger antioxidant capacity than adlay seeds. Moreover, a substantial
amount of coixol was found in the sprouts, while it was not detected in the seeds. This study
emphasizes the importance of selecting appropriate extraction methods to optimize the biological
activities of adlay sprouts and seeds. Adlay sprouts, with their enriched phytochemical compounds
and enhanced antioxidant ability, could serve as a valuable material for health product applications.
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1. Introduction

Oxidation is a crucial process in various domains such as food, chemicals, and living
systems. However, a notable consequence of this process is the generation of free radi-
cals, specifically reactive oxygen species (ROS) [1]. Additionally, significant amount of
ROS are produced within the human body as a result of natural physiological processes,
interactions with the external environment, and dietary practices, posing potential risks
such as damage to proteins, lipids, and nucleic acids [2]. These contributions from ROS
extend to phenomena like food spoilage, the deterioration of chemical materials, and the
development of over a hundred human disorders [3,4]. Nevertheless, the introduction of
antioxidant substances can mitigate the oxidation process. Even at low concentrations,
these compounds can substantially delay or completely prevent the oxidation of easily
susceptible substrates [5]. Recently, the isolation, characterization, and widespread applica-
tion of natural compounds possessing antioxidant properties have been demonstrated in
various medical contexts [6]. Numerous methods are employed to assess the effectiveness
of natural antioxidants, including assays such as the ferric reducing antioxidant power
assay [7], the β-carotene/linoleic acid assay [8,9], the Rancimat method [10], the inhibition
of low-density lipoprotein oxidation [11], and the 2,2-diphenyl-1-picrylhydrazyl (DPPH)
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assay [12]. This array of methods is necessary due to the complex nature of the analyzed
substrates, often presenting as intricate mixtures with numerous compounds exhibiting
diverse functional groups, polarities, and chemical behaviors [13].

Phenolic compounds, prevalent in plants, constitute a diverse group of chemical
compounds distinguished by the presence of one or more phenol rings in their molecular
structure. These compounds, known for their aromatic nature, exhibit varied chemical
properties. The term “phenolic compounds” functions as a comprehensive label for a di-
verse array of molecules, each possessing unique structures and functional groups [14–16].
Renowned for their antioxidative attributes, phenolic compounds showcase a range of
biological activities that offer potential advantages for human health [17]. Their ability
to safeguard cells and tissues from oxidative stress, neutralizing harmful free radicals
that can harm DNA, proteins, and lipids, underscores their significance. Additionally, the
consumption of dietary sources rich in phenolic compounds has been linked to numerous
health benefits, including reduced susceptibility to chronic ailments such as cardiovascular
diseases, malignancies, and neurodegenerative conditions. Furthermore, these compounds
may exhibit anti-inflammatory and antimicrobial effects [18,19].

Within the complex biochemical milieu of adlay, coixol, a phenolic compound, assumes
significance as a by-product of 2,4-dihydroxy-7-methoxy-2–11-24-benzoxin-3-(4H)-one.
This key glucoside, inherent in growing monocotyledonous plants like adlay, plays a
crucial role in providing protection against pathogens and herbivores [20–22]. It has been
reported to demonstrate antibacterial and antifungal activities, and the ability to prevent
convulsions [23–25]. Additionally, there is suggestive evidence indicating that coixol may
regulate gene expression and the production and secretion of mucin by directly acting on
airway epithelial cells [26].

Adlay or Job’s tears, otherwise commonly known as Coix lacryma-jobi L. var. ma-yuen
Stapf., stands as a prominent annual plant within the grass family (Poaceae) and is widely
cultivated in East and Southeast Asia [27,28]. Beyond its agricultural significance, adlay
has made notable inroads into various consumable forms, including beverages, snacks,
and traditional medicines [29]. The seeds derived from the adlay plant are commonly used
as a cereal grain and have a mild, nutty flavor, making them highly versatile for various
culinary applications, similar to other grains like rice or barley. The cultural importance
of adlay in Asian gastronomy is particularly evident in regions such as China, Japan, and
Korea, where it is embraced for its medicinal properties [30,31].

The seeds of adlay contain a wide range of health-beneficial bioactive components,
such as protein, polysaccharides, polyphenols, coixenolide, and oil. Traditionally, these ele-
ments have been harnessed in oriental medicine for centuries, with adlay being employed to
treat conditions such as edema, rheumatism, and neuralgia [32,33]. Scientific investigations
have expanded our understanding of the therapeutic potential inherent in adlay seeds,
showcasing their ability to prevent tumor formation, reduce inflammation, ameliorate
metabolic syndrome, and regulate the gastrointestinal tract [34–36]. The accumulating body
of evidence also underscores adlay’s antioxidant and anti-inflammatory properties, its anti-
cancer potential, antimicrobial activity, immunomodulatory effects, and cardiometabolic
benefits [37–40]. In response to its perceived nutritional and health advantages, adlay seeds
are progressively gaining recognition within the food industry.

Adlay sprouts, the young and tender shoots emerging from germinated adlay seeds,
result from the sprouting process, wherein seeds are soaked and allowed to germinate [41].
This process enhances the digestibility of seeds and grains by activating enzymes that
break down complex compounds into simpler forms. As a result, adlay sprouts emerge
as nutrient-rich entities, boasting a composition replete with vitamins, minerals, and
antioxidants [42]. The inclusion of flavonoids and phenolic compounds further augments
their potential for promoting health and well-being [43,44].

The present study embarked on a comprehensive exploration, extracting methanol
(MeOH) and ethanol (EtOH) extracts from both adlay sprouts and seeds, employing diverse
extraction methods such as reflux extraction and ultrasonic extraction. Subsequent analyses
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included assessments of their total polyphenol and total flavonoid contents, coupled with
evaluations of their antioxidant capabilities using the ABTS+ and DPPH methods. Notably,
the amount of coixol in these extracts was meticulously quantified using high-performance
liquid chromatography (HPLC) coupled with a diode array detector (DAD). This meticulous
approach aspires to unravel the intricate nutritional and bioactive profile of adlay, shedding
light on its multifaceted potential applications in promoting human health.

2. Materials and Methods
2.1. Plant Materials

The adlay sprouts utilized in this experiment were cultivated under conditions of
27 ◦C temperature and 98% humidity, with irrigation applied three times and illumination
provided by a metal halide lamp of 100 µmol/m2/s. Sprouts were harvested on the 9th
day after germination following pre-hydration, as detailed in a previous experiment [15].
Adlay sprouts exhibited the initial signs of germination as light green shoots on the second
day after sowing. By the third day, these sprouts had developed into a shape with an above-
ground part measuring approximately 2.75 cm in length. The length of the aboveground
part expanded from 15 cm to 20 cm over the course of 7 to 9 days after sowing (Figure 1).
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Figure 1. Adlay sprouts.

2.2. Chemicals and Apparatus

The extraction solvents were MeOH and EtOH (Pyeongtaek, Republic of Korea). HPLC
was performed using an Agilent 1260 Infinity II Quat Pump (Santa Clara, CA, USA), and
DAD WR detector (Santa Clara, CA, USA) with INNO C18 column (25 cm × 4.6 mm, 5 µm).
HPLC-grade solvents were MeOH, water, trifluoroacetic acid (TFA), and acetonitrile (ACN)
of J. T. Baker (Radnor, PA, USA). Coixol (Figure 2) was provided by the Natural Product In-
stitute of Science and Technology (www.nist.re.kr; accessed on 1 December 2023), Anseong,
Republic of Korea.
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2.3. Sample Extraction

The adlay sprouts (SP) and seeds (S) underwent a meticulous process, in which they
were finely crushed and extracted with MeOH and EtOH using two extraction methods:
reflux extraction and ultrasonic extraction. Samples were extracted for 3 h at 80 ◦C and 3 h
at 50 ◦C using a reflux extractor and ultrasonic extractor, respectively. The names of the
samples were assigned based on the extraction method and solvent used, and these are
presented in Table 1. The extraction yields were computed and are provided in Table 2.

Table 1. Sample information and extraction details.

Sample Plant Part Solvent Extraction Method

SPM1

Sprouts

MeOH
Ultrasonic extractionSPE1 EtOH

SPM2 MeOH
Reflux extractionSPE2 EtOH

SM1

Seeds

MeOH
Ultrasonic extraction

SE1 EtOH
SM2 MeOH

Reflux extractionSE2 EtOH
Note: The abbreviated names are derived from the plant part, solvent, and extraction method used; SP: sprout;
S: seed; M: methanol; E: ethanol; 1: ultrasonic; 2: reflux. Hence, SPM1 stands for sprout extracted with methanol
using ultrasonic extraction. The rest of the samples follow the same naming pattern.

Table 2. Extraction yield.

Sample Dry Sample (g) Extract (g) Yield (%)

SPM1 2.0 0.5 25.0
SPE1 2.0 0.4 20.0
SPM2 4.0 1.1 27.5
SPE2 4.0 1.0 25.0
SM1 2.5 0.2 8.0
SE1 2.5 0.3 12.0
SM2 5.0 0.3 6.0
SE2 5.0 0.3 6.0

The meanings of the abbreviated sample names are the same ones as shown in Table 1.

2.4. Total Polyphenol Content

The total polyphenol content in the samples was determined by adding 40 µL of 2 N
Folin–Ciocalteu reagent (Sigma-Aldrich, St. Lewis, MO, USA) to 60 µL of each sample.
Subsequently, 100 µL of 7.5% Na2CO3 was added, and the mixture was allowed to react at
room temperature in the dark for 30 min [45]. The absorbance was measured at 760 nm
using a microplate reader (Epoch; BioTek, Winooski, VT, USA). The total polyphenol content
was computed based on a standard curve constructed using different concentrations of the
standard compound—tannic acid (TA).

2.5. Total Flavonoid Content

The total flavonoid content in the samples was determined by adding 100 µL of 2%
AlCl36H2O to 100 µL of the extract; followed by incubation for 10 min [45]. The absorbance
was read at 430 nm using a microplate reader. The total flavonoid content was calculated
based on a standard curve constructed using different concentrations of the standard
compound—quercetin (QE).

2.6. ABTS+ Radical Scavenging Assays

ABTS+ and potassium persulfate were dissolved in distilled water (pH 7.4) to the
concentration of 7.4 and 2.6 mM, respectively. The solutions were then stored in a dark
place at 4 ◦C for 24 h. Then, 10 µL of each sample was combined with 200 µL of an ABTS+
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stock solution, prepared by diluting it with distilled water to achieve an absorbance of
1.00 ± 0.2 at 734 nm. Following a 30 min incubation in darkness, the concentration of the
residual radicals was measured at 734 nm using a microplate reader [45,46]. To assess the
ABTS+ radical scavenging activity, the following formula was used:

[ABTS+ radical scavenging activity (%) = (Blank O.D − Sample O.D)/Blank O.D × 100]

As a positive control, ascorbic acid at a concentration ranging from 0.0–0.2 mg/mL
was employed. The results were expressed as the sample concentration required for 50%
inhibition (IC50) of the ABTS+ radicals.

2.7. DPPH Radical Scavenging Assays

DPPH (200 µL, 0.2 mM; Sigma-Aldrich, St. Lewis, MO, USA) was dissolved in MeOH,
and 10 µL of each extract was added to this solution. Following a 30 min incubation
in darkness, the absorbance of the remaining radicals was measured at 514 nm using a
microplate reader [45,46]. To assess the DPPH radical scavenging activity, the following
formula was employed:

[DPPH radical scavenging activity (%) = (Blank O.D − Sample O.D)/Blank O.D × 100]

As a positive control, ascorbic acid was employed. The results were reported as the
IC50 values.

2.8. Preparation of Samples and Standard Solutions for HPLC Analysis

Adlay sprout and seed extracts (6 mg) and coixol (0.5 mg) were dissolved in MeOH
(1 mL). Subsequently, the solutions underwent 15 min of sonication, and were filtered
using 0.45 µm PVDF membrane filter (Cat No. 6779, Piscataway, NJ, USA).

2.9. HPLC Conditions

Adlay samples were quantitatively analyzed using a reversed-phase HPLC system
equipped with an INNO C18 column (25 cm × 4.6 mm, 5 µm). The column’s temperature
was set to 30 ◦C. The mobile phase consisted of 0.1% TFA in water (A) and ACN (B). Elution
was performed using a gradient system. The gradient elution conditions were 95% A from
0 to 5 min, 80% A at 15 min, 70% A at 25 min, 55% A at 30 min, and 0% A from 40 to 45 min.
The sample injection volume was 10 µL, the mobile phase flow rate was 1.0 mL/min, and
the detector wavelength was set to 290 nm.

2.10. Calibration Curve

The coixol standard solutions were serially diluted to six concentrations (15.625–500 µg/mL)
for the construction of the calibration curve. The linearity of the calibration curve was
assessed by determining the correlation coefficient (R-value). The content of coixol was
then computed using the equation of the calibration curve. In the calibration correction
function, the concentration (µg/mL) was plotted on the X-axis, the peak area on the Y-axis,
and the value to be substituted as the mean value (n = 3) ± standard deviation.

2.11. Statistical Analysis

All statistical analyses were performed using the software Minitab 16.0. Significant
differences between the results were calculated by using anova analysis (ANOVA) and
multiple comparisons of the Tukey test, with a significance level of p < 0.05.

3. Results
3.1. Total Polyphenol and Total Flavonoid Contents

The detailed examination of the results presented in Table 3 revealed a wide-ranging
spectrum for both total polyphenol and total flavonoid contents within adlay sprouts and
seeds. Our analysis revealed a range in total polyphenol content of 1.77 to 62.05 mg TAE/g
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of extract and a range of 1.75 to 17.89 mg QE/g of extract for total flavonoid content.
Notably, the majority of sprout samples exhibited higher amounts of both total polyphenol
and total flavonoid contents compared to the seed samples. Despite observed differences in
total polyphenol content among various sprout and seed samples, a meticulous statistical
analysis revealed that these disparities were statistically insignificant. Thus, the variations
in the solvent used and extraction methods did not exert a discernible impact on the total
polyphenol content in either the sprout or seed samples.

Table 3. The total polyphenol and flavonoid contents in samples.

Sample Total Polyphenol Content
(mg TAE/g Extract)

Total Flavonoid Content
(mg QE/g Extract)

SPM1 50.91 ± 8.10 a 6.42 ± 0.73 c

SPE1 60.05 ± 4.57 a 17.89 ± 2.16 a

SPM2 62.05 ± 5.38 a 11.72 ± 0.75 b

SPE2 54.14 ± 3.80 a 14.64 ± 2.42 ab

SM1 3.02 ± 1.68 a 5.32 ± 1.53 ab

SE1 2.95 ± 2.18 a 6.58 ± 2.40 a

SM2 1.77 ± 2.02 a 4.53 ± 0.98 ab

SE2 2.49 ± 1.28 a 1.75 ± 0.22 b

The data represent the mean value ± SD of triplicates. The meanings of the abbreviated sample names are the
same ones as shown in Table 1. Note: TAE, tannic acid equivalent; QE, quercetin equivalent. a–c Different letters
in the same column of the same sample indicate significant statistical differences (p < 0.05).

For total flavonoid content in the sprout samples, SPE1 (17.89 mg QE/g extract) had
the highest content, followed by SPE2 (14.64 mg QE/g extract) and SPM2 (11.72 mg QE/g
extract), and SPM1 had the lowest (6.42 mg QE/g extract). Notably, the differences between
SPE1 and SPE2, as well as between SPE2 and SPM2, were deemed statistically insignificant.
However, variations among SPE1, SPM2, and SPM1 were identified as being statistically
significant. Therefore, EtOH extraction emerged as the preferred strategy for achieving an
elevated total flavonoid content in sprout samples.

Turning to the seed samples, SM1 (5.32 mg QE/g extract) yielded lower results than
SE1 (6.58 mg QE/g extract). However, SM2 (4.53 mg QE/g extract) had a higher total
flavonoid content than SE2 (1.75 mg QE/g extract) but was still lower than SE1. Addi-
tionally, the differences between SM1, SE1, and SM2 as well as between SM1, SM2, and
SE2, were statistically insignificant. In contrast, differences between SE1 and SE2 were
statistically significant. Hence, for high levels of total flavonoids, seed samples should not
undergo EtOH extraction under reflux conditions.

3.2. Antioxidant Activity

DPPH is commonly used in laboratory experiments to assess the antioxidant activity
of different substances [47]. As a stable free radical with a distinctive deep purple color and
an unpaired electron, DPPH is highly reactive. Antioxidants contribute to the reduction in
DPPH by donating an electron, resulting in a color change to yellow, quantifiable through
spectrophotometry [48]. The degree of this color change is directly linked to the antioxidant
activity of the tested compound.

Similar to DPPH, ABTS+ is frequently employed in laboratory experiments to evaluate
antioxidant activity [49]. In its oxidized state, ABTS+ transforms into a stable radical
cation, displaying a distinctive blue-green color attributed to unpaired electrons. When
antioxidants are introduced into a solution containing ABTS+, they contribute electrons
to the radical, leading to its reduction and a subsequent color change from blue-green to
colorless [50].

In general, adlay sprouts exhibited significantly stronger antioxidant abilities than
adlay seeds; however, both were weaker than ascorbic acid (Table 4). Regarding the sprout
samples, results from both the ABTS+ and DPPH methods indicated that those extracted
with MeOH under reflux extraction had the lowest antioxidant capacity. Meanwhile, the
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antioxidant abilities of sprout samples extracted by other methods showed statistically
insignificant differences. Consequently, extracting sprout samples with MeOH under reflux
conditions results in diminished antioxidant ability.

Table 4. Antioxidant activity (ABTS+ and DPPH) of adlay extracts.

Sample ABTS+ (IC50, mg/mL) DPPH (IC50, mg/mL)

SPM1 3.16 ± 0.43 b 6.94 ± 0.29 b

SPE1 2.73 ± 0.26 b 7.20 ± 0.55 b

SPM2 5.47 ± 0.44 a 12.28 ± 0.81 a

SPE2 2.41 ± 0.30 b 6.00 ± 0.22 b

SM1 8.84 ± 0.11 c 27.30 ± 1.50 b

SE1 22.55 ± 1.38 a 49.38 ± 1.92 a

SM2 7.77 ± 0.57 c 22.85 ± 3.19 b

SE2 11.32 ± 0.42 b 44.78 ± 2.66 a

Ascorbic acid 0.11 ± 0.00 0.15 ± 0.01
The data represent the mean value ± SD of triplicates. The meanings of the abbreviated sample names are the
same ones as shown in Table 1. a–c Different letters in the same column of the same sample indicate significant
statistical differences (p < 0.05).

Concerning the seed samples, both the ABTS+ and DPPH assays revealed that SM1 and
SM2 exhibited stronger antioxidant activity than SE1 and SE2. Furthermore, the difference
between SM1 and SM2 was statistically insignificant. Thus, extraction with MeOH using
either ultrasonic or reflux is proved to be the suitable approach for obtaining adlay seed
extracts with a strong antioxidant capacity.

3.3. HPLC Analysis

The coixol content in all adlay samples was determined using HPLC/DAD analysis.
As a result, coixol was identified with a retention time of 25.45 min, and the method
demonstrated excellent linearity, indicated by an R-value of 1.00. The chromatogram and
calibration equation for coixol are presented in Figure 3 and Table 5.
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Table 5. The calibration curve for coixol.

Compound tR Calibration Equation Correlation Factor, R-Value

coixol 25.45 Y = 24.092X + 169.16 1.0000
Y = peak area, X = concentration of standards (µg/mL). R-value = correlation coefficient of five calibration data
points (n = 3).

Based on the retention time, in the experiment which used the matrix spike samples,
UV spectrum, and calibration equation, the presence of coixol in the chromatograms of all
samples was determined (Figures 4 and 5), and its contents were calculated (Table 6).

In general, the analysis revealed that the coixol content in the sprout samples ranged
from 29.97 to 34.81 mg/g extract, while coixol was not detected in the seed samples. Among
the two extraction methods employed, SPM2 (32.36 mg/g extract) and SPE2 (34.81 mg/g
extract) exhibited a higher coixol content compared to SPM1 (29.97 mg/g extract) and
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SPE1 (33.17 mg/g extract). Particularly noteworthy was the observation that SPE2 showed
a higher coixol content than SPM2. It can be observed that extraction with EtOH under
reflux conditions is a suitable method for optimizing the extraction of sprouts to enhance
antioxidant ability.
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Figure 5. HPLC chromatograms of seed samples SM1 (a), SE1 (b), SM2 (c), and SE2 (d). The meanings
of the abbreviated sample names are the same ones as shown in Table 1.

Table 6. Coixol content in adlay extracts.

Samples Coixol (mg/g Extract)

SPM1 29.97 ± 0.20 d

SPE1 33.17 ± 0.22 b

SPM2 32.36 ± 0.22 c

SPE2 34.81 ± 0.06 a

SM1 ND
SE1 ND
SM2 ND
SE2 ND

The data represent the mean value ± SD of triplicates. The meanings of the abbreviated sample names are the
same ones as shown in Table 1. ND: not detected. a–d Different letters in the same column of the same sample
indicate significant statistical differences (p < 0.05).

4. Discussion

Ultrasonic extraction and reflux extraction are both methods which are used in the
process of extracting compounds from various substances. Ultrasonic extraction involves
the use of ultrasonic waves to create cavitation in the solvent, leading to the formation and
collapse of bubbles [51]. This process generates intense local heating and pressure changes,
facilitating the extraction of compounds from the material [52]. It typically operates at lower
temperatures, thereby reducing the risk of degradation in heat-sensitive compounds [53].
In contrast, reflux extraction involves the boiling of a solvent to generate vapor, which rises
through a condenser and then returns to the sample as a liquid. This continuous cycle
enhances extraction efficiency but requires higher temperatures due to the boiling of the
solvent, potentially affecting the stability of certain compounds [54,55].
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Due to the differences between the two extraction methods, the total polyphenol,
flavonoid, and coixol contents, as well as the antioxidant capacity of both the sprout
and seed samples, varied. It can be observed that the optimized solvent and extraction
method which was appropriate for adlay sprouts was EtOH and reflux extraction. Mean-
while, for seed samples, extraction with MeOH, employing either ultrasonic or reflux
methods, exhibited higher total polyphenol and flavonoid contents and demonstrated
a stronger antioxidant ability. This underscores the importance of tailoring solvent and
extraction methods based on specific preferences, intended applications, and available
equipment, ensuring the development of effective extraction strategies aligned with the
desired outcomes.

In a prior study, the total polyphenol (2.71 mg/g DW) and flavonoid contents
(0.60 mg/g DW), coixol (59.70 mg/g DW), and antioxidant capacity (453.93 µg/mL) of
adlay sprouts were found to be the highest when investigating these components at various
growth stages [56]. Another study reported that the coixol content in adlay sprouts,
extracted at 80 ◦C under reflux, was 2.55 mg/g DW [33]. Additionally, adlay seeds were
reported to contain 8.58 mg GAE/g of extract of total polyphenol, 6.09 mg QE/g of extract
of flavonoid content, and 3.12 mg/mL for antioxidant ability with the DPPH assay [57].
The variations in total polyphenol, flavonoid, and antioxidant ability in adlay sprout and
seed extracts in the present study compared to previous research may be attributed to
differences in extraction conditions, such as solvent, temperature, and extraction time, as
well as variations in plant agronomic conditions, including weather, soil condition, and
sun exposure [58].

On the other hand, coixol has been proven to possess a range of pharmacological ef-
fects, including anti-inflammation, the inhibition of multiple synaptic reactions, antipyretic
properties, blood sugar concentration reduction, muscle relaxation, anticonvulsant, and
antithrombotic effects [59–61]. It has been identified in various parts of adlay, including the
root, testa, stem, seeds, and sprouts [62]. Furthermore, the coixol content in adlaysprouts
was observed to be higher than that in the seeds [41]. Nonetheless, the content of coixol
in the same plant part of adlay from different habitats varies [63]. In this study, coixol
was not detected in the seeds but was found exclusively in the sprouts. These findings
were not documented in previous studies; however, they can be explained by differences
in cultivation conditions, drying methods, preservation techniques, and adlay varieties,
which may contribute to the absence of coixol in adlay seeds.

5. Conclusions

The extraction of adlay sprouts and seeds was carried out using two solvents, MeOH
and EtOH, employing ultrasonic and reflux extraction methods. Subsequent analysis in-
volved the determination of total polyphenol and flavonoid content, as well as antioxidant
capacity using the ABTS+ and DPPH methods. Additionally, the content of coixol was
quantified using HPLC/DAD analysis. The outcomes underscore the significant impact
of both extraction solvent and method on compound content and antioxidant capacity.
For adlay sprouts, EtOH and reflux extraction emerged as the optimal method, demon-
strating superior efficacy. Conversely, in the case of adlay seeds, MeOH proved to be
the preferred solvent, yielding heightened antioxidant ability and elevated compound
contents. Notably, coixol was exclusively detected in adlay sprouts, with a peak content
recorded at 34.81 mg/g extract. Comparing the two components of adlay, sprouts exhib-
ited a more robust profile, showcasing higher bioactive compound content and enhanced
antioxidant ability in contrast to seeds. These findings carry practical implications for
selecting extraction methods tailored to specific applications. Moreover, the revelation of
substantial coixol content in adlay sprouts augurs well for their potential utilization as a
valuable natural resource. This suggests promising applications in medical, functional,
and cosmetic domains, further emphasizing the multifaceted benefits inherent in adlay
sprouts. The study not only provides essential insights for optimizing extraction processes
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but also underscores the potential of adlay sprouts as a versatile and valuable resource in
various industries.
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