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Abstract: We aimed to develop prediction models for clinical remission associated with adalimumab
treatment in patients with ulcerative colitis (UC) using Fourier transform–infrared (FT–IR) spec-
troscopy coupled with machine learning (ML) algorithms. This prospective, observational, multicen-
ter study enrolled 62 UC patients and 30 healthy controls. The patients were treated with adalimumab
for 56 weeks, and clinical remission was evaluated using the Mayo score. Baseline fecal samples were
collected and analyzed using FT–IR spectroscopy. Various data preprocessing methods were applied,
and prediction models were established by 10-fold cross-validation using various ML methods.
Orthogonal partial least squares–discriminant analysis (OPLS–DA) showed a clear separation of
healthy controls and UC patients, applying area normalization and Pareto scaling. OPLS–DA models
predicting short- and long-term remission (8 and 56 weeks) yielded area-under-the-curve values of
0.76 and 0.75, respectively. Logistic regression and a nonlinear support vector machine were selected
as the best prediction models for short- and long-term remission, respectively (accuracy of 0.99). In
external validation, prediction models for short-term (logistic regression) and long-term (decision
tree) remission performed well, with accuracy values of 0.73 and 0.82, respectively. This was the first
study to develop prediction models for clinical remission associated with adalimumab treatment
in UC patients by fecal analysis using FT–IR spectroscopy coupled with ML algorithms. Logistic
regression, nonlinear support vector machines, and decision tree were suggested as the optimal
prediction models for remission, and these were noninvasive, simple, inexpensive, and fast analyses
that could be applied to personalized treatments.

Keywords: prediction; adalimumab; ulcerative colitis; Fourier transform–infrared spectroscopy;
machine learning algorithms

1. Introduction

Ulcerative colitis (UC), as an inflammatory bowel disease (IBD), is a chronic disease
characterized by broad mucosal inflammation of the rectum and colon [1]. Over the past few
years, the incidence of UC has been consistently increasing, especially in Asia, including
South Korea [1].

The main goal of UC treatment is to improve the quality of life of patients by inducing
and maintaining clinical remission [2]. Anti–tumor necrosis factor-alpha (anti-TNF-α)
drugs, including infliximab, adalimumab, and golimumab, have been reported to show
efficacy in inducing remission in patients with moderate to severe UC who are refractory to
conventional drugs [3,4]. However, not all patients have successful treatment outcomes [3].
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In clinical settings, not all patients treated with anti-TNF drugs can achieve clinical remis-
sion, symptom reduction, and improved quality of life. Some patients may not respond
to the treatment at all, which is known as primary nonresponse (PNR) [5]. Additionally,
even among those who initially respond to the treatment, some may experience a loss of
response (LOR) over time and may not be able to maintain remission within a year [6]. The
incidence of PNR to anti-TNF drugs has varied between clinical trials and clinical practice,
with rates ranging from 10 to 20% and 13 to 30%, respectively. Despite the widespread use
of these drugs, there is currently no consensus on the rate of LOR to TNF-α antagonists [7].
For example, some studies have reported that a dose increase after 12 weeks of therapy
is required in 23–46% of patients, while others have reported that drug discontinuation
occurs in 5–13% of patients [7]. The predictors of anti-TNF therapy outcomes may help in
selecting patients who are likely to achieve and maintain clinical remission without wasting
unnecessary medical resources and time and without resulting in adverse events.

The efficacy of anti-TNF therapy in patients with IBD can be predicted using a va-
riety of factors from both clinical (gender, patient factors, age, weight, disease duration,
phenotype, smoking status, and medical comorbidities) and experimental (immunological
markers, genetic markers, microbiome analysis, endoscopic evaluation, and serological
markers) perspectives using invasive or noninvasive biological samples [8]. This provides
a comprehensive approach to optimizing responses to anti-TNF therapy and managing
the disease effectively [8]. Several studies have explored the use of anti-TNF drugs for
treating UC and have incorporated machine learning (ML) algorithms to analyze the data
collected. This approach has important implications for clinical decision-making, as it
has the potential to assist healthcare providers in determining which patients may benefit
from the continued use of costly medications [9]. For example, a study using ML and data
from the first 6 weeks of vedolizumab therapy for UC showed an accurate prediction of
corticosteroid-free endoscopic remission after 52 weeks [10]. Also, the effect of azathioprine
on mucosal healing in patients with IBD has been evaluated by employing artificial neural
networks to predict mucosal remission [11]. Furthermore, as a tool to assist in therapeutic
decisions, an ML model was developed to predict disease activity in UC patients treated
with anti-TNF-α drugs [12]. ML-based analysis of gene expression and DNA methylation
in blood samples of IBD patients was employed for early prediction of therapy response
to anti-TNF (infliximab) treatment in IBD patients [13]. However, most such prediction
strategies have limitations in their application in real clinical settings, and there is no single
marker satisfying all criteria available as an optimal prognostic predictor [14]. However, the
study platforms used to gather this information can be challenging and laborious as they
require specialized techniques, equipment, and personnel to collect and analyze samples,
such as endoscopic evaluation, microbiome analysis, and serological markers. Additionally,
the high costs of sample collection, processing, and analysis may limit the use of these
study platforms in routine clinical practice. Also, these studies may require long inspection
times, which can be a limiting factor for patients and healthcare providers.

Fourier transform–infrared (FT–IR) spectroscopy can provide helpful information
about the chemical structures and compositions of biological samples at the molecular
level [15]. In the field of gastroenterology, several studies have been conducted on human
and animal feces, serum, and colon biopsies using FT–IR and Raman spectroscopy for colitis
screening, IBD and cancer diagnosis, and treatment efficacy monitoring [16–19]. However,
to our knowledge, no published study has investigated prediction models for the efficacy
of anti-TNF treatment in patients with IBD using fecal samples and FT–IR spectroscopy.

In metabolomics studies, ML algorithms have been widely used to solve data classifi-
cation and regression problems [20]. For linear data, partial least squares (PLS)–regression
or PLS–discriminant analysis (DA) were considered the gold standards for binary clas-
sification with their easy interpretation and dimension reduction [21,22]. On the other
hand, for nonlinear data, random forest (RF), kernel support vector machines (SVMs), and
artificial neural networks, have been suggested for use in clinical metabolomics [23]. In
ML, predictors are variables or features used to predict outcomes of interest. Predictors are
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used to learn the relationships between inputs (features) and outputs (groups) so that the
model can make predictions about new or unseen data [24].

Furthermore, the spectral features of fecal samples for predicting anti-TNF treatment
efficacy were investigated. The main aim of our study was to explore the application of
FT–IR spectroscopy in developing a practical method for predicting treatment outcomes of
anti-TNF drugs in a rapid and noninvasive manner.

2. Materials and Methods
2.1. Participant Recruitment and Study Design

Adult patients (>18 years of age) were eligible for enrollment in this study. Fecal
samples from 62 UC patients and 30 healthy controls (HCs) collected for previous clinical
research were used in this study [25]. All UC patients were of moderate to severe active
disease status, defined as a Mayo score [26] from 6 to 12, with an endoscopic subscore
of at least 2 despite conventional therapy with a regimen based on 5-aminosalicylic acid,
corticosteroids, and azathioprine/6-mercaptopurine. Patients with the following clinical
features were excluded: malignancy; severe infection, such as active tuberculosis, invasive
fungal infection, or opportunistic infection; enrollment in other clinical trials; and pregnancy
or breastfeeding. Patients were excluded if they chose to withdraw from the study or were
judged to be ineligible by the investigators. The HC group included people without
abnormalities among those who visited the hospital for the health screening and provided
stool samples. Adalimumab treatment was administered not only as maintenance therapy
but also as induction therapy at 160 mg at week 0 and 80 mg at week 2, followed by
administration of 40 mg every 2 weeks as maintenance therapy from week 4. In Table 1,
27.4% of patients had already used steroids before starting adalimumab administration.
Therefore, the doses of all patients on corticosteroids were tapered to discontinuation within
2 months. Escalating the dosage of adalimumab to 40 mg every week was permitted if
patients showed inadequate responses with conventional adalimumab therapy (40 mg every
2 weeks), and discontinuation of adalimumab was also permitted, based on a physician’s
judgment, for patients with inadequate responses despite dose escalations [25]. Previous
use of anti-TNF-α agents other than adalimumab was permitted if the use had been
discontinued due to PNR, LOR, or intolerance. This study was approved by each center’s
institutional review board, and written informed consent was obtained from all participants
(Chung-Ang University Hospital Institutional Review Board No. C2015020 (approval on
13 March 2015)). The overall workflow of the study is shown in Figure 1.

Table 1. Demographics and baseline clinical characteristics of patients with UC.

Characteristic Patients with UC (n = 62)

Female/Male, n 20/42
Age, mean ± SD, years 45.6 ± 14.9
Body mass index, mean ± SD, kg/m2 23.2 ± 3.9
Mayo score, mean ± SD 8.5 ± 1.3
Partial Mayo score, mean ± SD 6.0 ± 1.2
Endoscopic finding, n (%)

Moderate 33 (53.0)
Severe 29 (47.0)

Disease location, n (%)
Proctitis 13 (21.0)
Left-sided colitis 29 (47.0)
Extensive colitis 20 (32.0)

Fecal calprotectin, mg/kg
Mean ± SD 668.7 ± 509.5
Median 543.1

C-reactive protein, mg/dL
Mean ± SD 5.3 ± 14.2
Median 0.9
IQR 3 (0.19–3.19)
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Table 1. Cont.

Characteristic Patients with UC (n = 62)

Albumin, g/dL
Mean ± SD 3.8 ± 0.6
Median 4.0

Concomitant medication (overlapped), n (%)
5-Aminosalicylate 51 (82.3)
Methotrexate 2 (3.2)
Azathioprine/6-Mercaptopurine 30 (48.4)
Systemic corticosteroid 17 (27.4)

Prior anti-tumor necrosis factor therapy, n (%)
1 medication 12 (19.4)
≥2 medications 0 (0)

IQR, interquartile range; SD, standard deviation; UC, ulcerative colitis. All values are mean ± standard deviation
unless otherwise noted.
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Figure 1. Study design for investigating prediction models (using FT–IR spectroscopy coupled with
machine learning algorithms) for clinical remission associated with adalimumab treatment in patients
with ulcerative colitis. DT, decision tree; FT–IR, Fourier transform–infrared; HC, healthy controls;
KNN, K-nearest neighbors; LR, logistic regression; OPLS–DA, orthogonal partial least squares–
discriminant analysis; RF, random forest; SVM, support vector machine; UC, ulcerative colitis.

2.2. Patient Assessments

Disease severity was evaluated using the Mayo scoring system. Short-term (at week 8)
and long-term (at week 56) clinical remission were evaluated using Mayo scores and a
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partial Mayo scores according to the following criteria: Mayo score ≤2 points without a
subscore >1 point, and partial Mayo score of 0 or 1 point. Patient demographic and anthro-
pometric data (sex, age, and body mass index (BMI)) and baseline clinical characteristics,
which included disease-related (disease severity, disease location, and endoscopic findings),
laboratory (fecal calprotectin (FC), C-reactive protein (CRP), and serum albumin), and drug
history information, were also evaluated before initiating treatment. The full and partial
Mayo scores are tools used to evaluate the severity of symptoms in patients with IBD.
At 8 weeks, since all patients underwent endoscopy, full Mayo scores were used, and at
56 weeks, more patients did not undergo endoscopy, so partial Mayo scores were used. The
full Mayo score is a comprehensive evaluation including endoscopic findings; the partial
Mayo score focuses on specific symptoms and does not include endoscopic findings.

2.3. Fecal Sample Collection and FT–IR Spectroscopy Analysis

The collected baseline fecal samples from the UC (n = 62) and HC (n = 30) groups
were frozen and stored at −20 ◦C immediately after collection, and then frozen samples
in aluminum foil bags were transferred to the laboratory within 10 min. After thawing at
a low temperature (4 ◦C) to prevent metabolic changes, the samples were diluted 10-fold
with phosphate-buffered saline (pH 7.4) and stored at −80 ◦C for further analysis. Frozen
samples were lyophilized for 48 h to remove the strong and broad absorption bands derived
from water in fecal samples and to improve the IR intensities of all other components [27].
Dried samples were stored at −80 ◦C until FT–IR spectroscopy analysis.

Spectroscopy analysis was performed on an FT–IR Nicolet spectrometer (Thermo
Scientific, Waltham, MA, USA) equipped with a diamond crystal cell attenuated total
reflection (ATR) accessory. Dried samples were loaded onto the ATR crystal and measured
under the following analytical conditions: resolution of 4 cm−1, 32 scans, and mid-infrared
region of 4000–400 cm−1. Nine replicates of the instrumental analysis were performed for
each sample. To prevent unwanted contamination between samples, the ATR crystal was
cleaned with ethanol, and a new background spectrum was measured after measuring each
sample. Quality control (QC) samples, which were randomly selected from the HC group,
were evaluated after the analysis of every 10 samples to confirm the instrumental stability
and analytical reliability of the study.

2.4. Spectral Data Processing

The acquired FT–IR spectra were preprocessed using OMNIC9 software (version 9.3.30,
Thermo Fisher Scientific, Waltham, MA, USA) to improve spectral interpretation before
statistical and ML analyses. Nine replicate spectra from each sample were averaged into
three spectra (using the statistical spectra function) for further analysis. These spectra were
subjected to baseline correction, which is the attenuated total reflection (ATR) correction
algorithm in OMNICTM 6.2 software for Thermo Scientific NicoletTM FT-IR spectrometers,
to compensate for the effects of variation in the penetration depth of the infrared beam and
shift in the infrared absorption band. Derivative spectra were also obtained by applying
first and second derivatives (Savitzky–Golay, 7 points, and 3 polynomial order).

The FT–IR spectra had 7201 wavelengths, where each wavelength was considered a
feature and all features (predictors) were used for model establishment without feature
selection. For statistical and ML analyses, preprocessed FT–IR spectra were converted to
comma-separated value files with absorbance values. Four normalization methods (area,
min-max, amide, and vector) were applied by manual calculation. In area normalization,
the absorbance at each wavenumber was divided by the sum of the total absorbance (for all
wavenumbers) of the spectrum in each sample. For min-max normalization, minimum ab-
sorbance was subtracted from each absorbance and then divided by the difference between
the maximum and minimum absorbance. Amide normalization selected the maximum
absorbance in the amide I region (1650–1600 cm−1). Thereafter, minimum absorbance (in
the entire region) was subtracted from each absorbance and then divided by the difference
between the maximum absorbance (amide I region) and minimum absorbance (entire
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region). For vector normalization, first- and second-derivative spectra were used, and each
derivative value was divided by the Euclidean norm [28].

2.5. Development of Prediction Models by ML Algorithms

The orthogonal PLS–DA (OPLS–DA) model was established using SIMCA software
(version 15, Umetrics, Umeå, Sweden). The optimal components were selected using
the autofit function in SIMCA. Good fitness (R2Y) and predictability (Q2Y) of the model
were evaluated (R2Y and Q2Y values of 1 indicate the perfect model). A permutation test
and 10-fold cross-validation (CV) were performed to prevent overfitting of the model. In
permutation testing, intercept values of R2Y and Q2Y below 0.4 and 0.05, respectively,
indicate a valid model. A cross-validated analysis of variance test was performed to
evaluate the significance of the Q2Y (p < 0.05).

The OPLS–DA model performance was evaluated in terms of various parameters (ac-
curacy, precision, recall, F1_score, and receiver operating characteristic (ROC]-area under
the curve (AUC)) by manual calculation using prediction value (ypred) in SIMCA. Predic-
tion models implying other ML algorithms (logistic regression (LR), K-nearest neighbors
(KNN), decision tree (DT), RF, and SVM) were developed using SciKit-Learn software (version
0.24.0) package (Scikit-Learn, http://scikit-learn.org/ (accessed on 24 May 2021); Python Soft-
ware Foundation, https://www.python.org/ (accessed on 15 September 2021)). The optimal
parameters of each method were selected by GridSearchCV in the SciKit-Learn library [29].

The prediction models with various ML algorithms were compared in terms of perfor-
mance based on accuracy, precision, recall, F1_score, and ROC–AUC values after 10-fold
CV. In a 10-fold CV, the whole data set was divided into 10 folds, and the first fold was
used for the testing set (10% testing data); the remaining folds were used for the training
set (90% training data) [30]. This procedure was repeated 10 times, and the performance
results were averaged over the overall results. Accuracy refers to the ratio between the
correctly predicted cases and all the cases in the dataset (true positive (TP) and true neg-
ative (TN)/true positive (TP) and false negative (FN) and true negative (TN) and false
positive (FP)) [31]. Precision and recall (equal to sensitivity) are the proportion of correctly
predicted positive cases (TP) to the total predicted positive cases (TP and FP) and to the
total true-positive cases (TP and FN), respectively [30]. F1_score is the harmonic mean of
precision and recall (2 × (precision × recall)/(precision + recall]) [31]. ROC–AUC analysis
is commonly used to evaluate the prediction performance of the ROC curve at various
thresholds [32].

External validation was performed using various ML algorithms. The entire sample
(n = 62) was divided into development (n = 51) and validation (n = 11) samples by collection
sites (institutions) because of the limited availability of only a single data set [33]. Detailed
information on the samples from the development and validation models is listed in
Table S1. The performance of the prediction models (by development samples, n = 51) was
evaluated by importing external validation samples (n = 11).

Characteristic spectral features for prediction models by OPLS–DA were analyzed
using the variable importance of projection cutoff value and univariate statistical anal-
ysis, including Student’s t-test (SPSS Statistics for Windows, version 25.0, IBM Corp.,
Armonk, NY, USA) and fold-change analysis (MetaboAnalyst 5.0 (version 5.0), http:
//www.metaboanalyst.ca/ (accessed on 16 March 2021)).

3. Results
3.1. Study Population and Baseline Characteristics

The baseline clinical information of the UC group is listed in Table 1. Of the 62 patients,
42 were men, and 20 were women. The mean age was 45.6 years, and the mean BMI was
23.2 kg/m2. The mean Mayo and partial Mayo scores were 8.5 and 6.0, respectively. For
laboratory tests, the mean FC, CRP, and serum albumin were 668.7 mg/kg, 5.3 mg/dL,
and 3.8 g/dL, respectively. Clinical remission rates were 24.2% (based on full Mayo score)
and 41.9% (based on partial Mayo score) at weeks 8 and 56, respectively, which were

http://scikit-learn.org/
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http://www.metaboanalyst.ca/
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somewhat similar to the findings of our previous studies (24.0% and 41.8% at week 8 and
56, respectively) [25].

3.2. FT–IR Spectral Assignment of Fecal Samples and Discrimination of HC and Patients with UC

The averaged spectra of fecal samples from the HC and UC groups are shown in
Figure S1. The band assignment of the representative 14 peaks was performed, which were
associated with proteins, nucleic acids, lipids, and carbohydrates. Detailed information on
peak assignment and vibrational modes is listed in Table S2.

As listed in Table S3, the OPLS–DA model applying area normalization with Pareto
scaling yielded the highest R2Y (0.890) and Q2Y (0.870) values with satisfactory permutation
testing (R2Y intercept value of 0.119, Q2Y intercept value of −0.258). In the OPLS–DA
score plots, the two groups were clearly discriminated with valid permutation test plots
(Figure 2A,B).

Metabolites 2023, 13, x FOR PEER REVIEW  8  of  17 
 

 

Figure 2. Development of discrimination model and comparison of FT-IR spectral peaks of  fecal 

samples from HC and patients with UC. (A) OPLS-DA-derived score plots discriminating fecal sam-

ples from HC and patients with UC. t[1] and to[1] in the x- and y-axes represent the predictive (de-

scribing between-group variations) and orthogonal  (describing within-group variations)  compo-

nent, respectively. (B) Permutation test plots of OPLS-DA model with R2Y and Q2Y intercept values 

after 100 permutations. (C) Comparison of FT-IR spectra of fecal samples from HC and patients with 

UC applying area normalization method. FT-IR, Fourier transform–infrared; HC, healthy controls; 

OPLS-DA, orthogonal partial least squares–discriminant analysis; UC, ulcerative colitis. Significant 

differences between two groups are represented with asterisk mark (*) (p < 0.05) in student’s t test. 

Bold characters represent selected wavenumbers satisfying both VIP value over 1.0 and p-value (stu-

dent’s t test) below 0.05. 

3.3. OPLS–DA-Based Prediction Model for Clinical Remission Associated with Adalimumab 

Treatment in Patients with UC 

For short-term remission (8 weeks), the best OPLS–DA model was developed by ap-

plying area normalization and Pareto scaling, which had the highest R2Y and Q2Y values 

of 0.954 and 0.888, respectively (Table S3). Score plots showed a clear separation between 

the RM and NRM (Figure 3A). The permutation test was also satisfied with R2Y and Q2Y 

intercept values of 0.374 and −0.656, respectively (Figure 3B and Table S3).  In  the ROC 

curve analysis, the sensitivity, specificity, and AUC values were 0.84 (95% confidence in-

terval (CI), 0.71–0.98), 0.77 (CI, 0.59–0.95), and 0.76 (CI, 0.66–0.87), respectively, in the test 

set after 10-fold CV representing acceptable performance (Figure 3C). 

For long-term remission (56 weeks), the best OPLS–DA model was selected by ap-

plying amide normalization and unit variance scaling with R2Y and Q2Y values of 0.461 

and 0.327, respectively (Table S3). Score plots showed a clear separation between the RM 

and NRM (Figure 4A). The permutation test was also satisfied with R2Y and Q2Y intercept 

values of 0.161 and −0.273, respectively (Figure 4B and Table S3). The ROC curve analysis 

showed  acceptable  performance  of  the model, with  sensitivity,  specificity,  and AUC 

Figure 2. Development of discrimination model and comparison of FT-IR spectral peaks of fecal
samples from HC and patients with UC. (A) OPLS-DA-derived score plots discriminating fecal
samples from HC and patients with UC. t[1] and to[1] in the x- and y-axes represent the predictive
(describing between-group variations) and orthogonal (describing within-group variations) compo-
nent, respectively. (B) Permutation test plots of OPLS-DA model with R2Y and Q2Y intercept values
after 100 permutations. (C) Comparison of FT-IR spectra of fecal samples from HC and patients with
UC applying area normalization method. FT-IR, Fourier transform–infrared; HC, healthy controls;
OPLS-DA, orthogonal partial least squares–discriminant analysis; UC, ulcerative colitis. Significant
differences between two groups are represented with asterisk mark (*) (p < 0.05) in student’s t test.
Bold characters represent selected wavenumbers satisfying both VIP value over 1.0 and p-value
(student’s t test) below 0.05.

The characteristic peaks discriminating the UC and HC groups were as follows: more
intense peaks in UC—1437 cm−1, lipid; 1408 cm−1, fatty acid and amino acid; 1316 cm−1,
protein; 1244 cm−1, DNA, and more intense peaks in HC—3271 and 1629 cm−1, protein;
1149 cm−1, carbohydrate (Tables S2 and S4). QC samples were tightly clustered in principal
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component analysis score plots representing instrumental stability and the reliability of the
analysis (Figure 2). Our study identified that more intense peaks associated with proteins
(1.37-and 1.38-fold change versus HC), amino acids (1.26-fold change versus HC), lipids
(1.20-fold change versus HC), and DNA (1.29-fold change versus HC) were found in fecal
samples of UC patients, and less-intense peaks of amino acids (0.99-fold change versus
NRM on W56) and more-intense peaks of carbohydrates (1.21-fold change versus NRM
on W8, 1.24-fold change versus NRM on W56) were characterized in fecal samples of RM
(Table S4).

3.3. OPLS–DA-Based Prediction Model for Clinical Remission Associated with Adalimumab
Treatment in Patients with UC

For short-term remission (8 weeks), the best OPLS–DA model was developed by
applying area normalization and Pareto scaling, which had the highest R2Y and Q2Y values
of 0.954 and 0.888, respectively (Table S3). Score plots showed a clear separation between
the RM and NRM (Figure 3A). The permutation test was also satisfied with R2Y and Q2Y
intercept values of 0.374 and −0.656, respectively (Figure 3B and Table S3). In the ROC
curve analysis, the sensitivity, specificity, and AUC values were 0.84 (95% confidence
interval (CI), 0.71–0.98), 0.77 (CI, 0.59–0.95), and 0.76 (CI, 0.66–0.87), respectively, in the test
set after 10-fold CV representing acceptable performance (Figure 3C).
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score plots discriminating baseline fecal samples from RM and NRM at 8 weeks with adalimumab
treatment. t[1] and to[1] on the x- and y-axes represent the predictive (describing between-group
variations) and orthogonal (describing within-group variations) components, respectively. (B) Permu-
tation test plots of the OPLS–DA model with R2Y and Q2Y intercept values after 100 permutations.
(C) Sensitivity, specificity, and AUC values in the ROC curve analysis of all spectral data discrim-
inating baseline fecal samples from RM and NRM at 8 weeks with adalimumab treatment. The
95% confidence interval shown in parentheses. (D) Comparison of the FT–IR spectra of baseline
fecal samples from RM and NRM, applying the area normalization method. AUC, area under the
curve; FPR, false-positive rate; FT–IR, Fourier-transform infrared; NRM, patients not in remission;
OPLS–DA, orthogonal partial least squares–discriminant analysis; RM, patients in remission; ROC,
receiver operating characteristic; TPR, true-positive rate. Significant differences between two groups
are represented with asterisk mark (*) (p < 0.05) in student’s t test. Bold characters represent selected
wavenumbers satisfying both VIP value over 1.0 and p-value (student’s t test) below 0.05.

For long-term remission (56 weeks), the best OPLS–DA model was selected by ap-
plying amide normalization and unit variance scaling with R2Y and Q2Y values of 0.461
and 0.327, respectively (Table S3). Score plots showed a clear separation between the RM
and NRM (Figure 4A). The permutation test was also satisfied with R2Y and Q2Y intercept
values of 0.161 and −0.273, respectively (Figure 4B and Table S3). The ROC curve analysis
showed acceptable performance of the model, with sensitivity, specificity, and AUC values
of 0.93 (CI, 0.86–0.99), 0.59 (CI, 0.47–0.71), and 0.75 (CI, 0.68–0.81), respectively, in the test
set after 10-fold CV (Figure 4C).

Variable influence on projection (VIP) was used to investigate the peaks that contribute
most to the OPLS-DA prediction model (Table S4). For short-term remission (8 weeks),
peaks associated with proteins (VIP value: 1.46), DNA (VIP value: 1.68), and carbohydrates
(VIP value: 1.60) were characterized as contributing to the discrimination between RM
and NRM. For long-term remission (56 weeks), peaks associated with triacylglycerol (VIP
value: 1.46), protein (VIP value: 1.52, 1.60), and carbohydrate (VIP value: 2.72, 2.70)
were characterized as contributing to the discrimination between RM and NRM. These
characteristic spectral peaks (with VIP value cutoff of 1.0 or higher and a p-value of less than
0.05) from fecal samples by remission period have the potential to be used as biomarkers
for predicting short- and long-term remission.
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Figure 4. Development of a discrimination model and comparison of FT–IR spectral peaks of baseline
fecal samples from RM and NRM at 56 weeks with adalimumab treatment. (A) OPLS–DA-derived
score plots discriminating baseline fecal samples from RM and NRM at 56 weeks with adalimumab
treatment. t[1] and to[1] on the x- and y-axes represent the predictive (describing between-group
variations) and orthogonal (describing within-group variations) components, respectively. (B) Permu-
tation test plots of the OPLS–DA model with R2Y- and Q2Y-intercept values after 100 permutations.
(C) Sensitivity, specificity, and AUC values in the ROC curve analysis of all spectral data discrim-
inating baseline fecal samples from RM and NRM at 56 weeks with adalimumab treatment. The
95% confidence interval shown in parentheses. (D) Comparison of the FT–IR spectra of baseline
fecal samples from RM and NRM at 56 weeks with adalimumab treatment by applying the amide
normalization method. AUC, area under the curve; FPR, false-positive rate; FT–IR, Fourier transform–
infrared; NRM, patients not in remission; OPLS–DA, orthogonal partial least squares–discriminant
analysis; RM, patients in remission; ROC, receiver operating characteristic; TPR, true-positive rate.
Significant differences between two groups are represented with asterisk mark (*) (p < 0.05) in stu-
dent’s t test. Bold characters represent selected wavenumbers satisfying both VIP value over 1.0 and
p-value (student’s t test) below 0.05.

3.4. Comparison of the Prediction Performance of Various ML Algorithms

Prediction models for short-term (8 weeks) and long-term (56 weeks) remission were
established using the entire sample (n = 62) by employing various ML algorithms, and the
prediction performance of the models after 10-fold CV was compared (Tables 2 and S5).
Notably, the ML algorithms used in the best-performing short-term (8 weeks) and long-
term (56 weeks) remission prediction models are listed in Table 2. For short-term remission,
the model with the best predictive performance on the test set was developed by applying
LR and radial basis function (rbf) SVMs with an accuracy of 0.99 (95% confidence interval
(CI), 0.98–1.01) (Table 2). Linear SVM was also a good algorithm to be applied for predicting
short-term remission (accuracy of 0.97 (CI 0.94–1.01) in the test set) (Table S5). For long-
term remission, the best prediction model was developed by rbf-SVM, revealing 0.99
(CI 0.98–1.01) in the test set (Table 2). LR, KNN, and linear SVM also showed excellent
performance for predicting long-term remission (accuracy of 0.96 (CI 0.90–1.02], 0.96 (CI
0.92–1.00), and 0.96 (CI 0.91–1.01), respectively, in the test set) (Table S5). Whereas DT, RF,
and OPLS–DA showed relatively poor performance (Table S5).

Prediction models applying LR (for short-term remission) and DT (for long-term
remission) were selected as the optimal models for external validation (Tables 3 and S6).
These models showed excellent and good performance in the internal (using development
samples, n = 51) and external validation (using validation samples, n = 11) of each model
(Table 3). As listed in Table 3, the accuracy, precision, recall, F1_score, and ROC–AUC values
for short-term remission models (by LR) were all above 0.7 when importing validation
samples (n = 11), which represents good performance. For long-term remission, the values
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of accuracy, prediction, recall, and F1_score were above 0.8 in the prediction model by DT,
and the AUC value was 0.69 in external validation samples (n = 11) (Table 3).

Table 2. Best ML algorithm with 10-fold cross-validation performance using baseline fecal samples
for remission prediction models at 8 and 56 weeks of adalimumab treatment in patients with UC.

Week 8
Parameters

Accuracy Precision Recall F1_Score ROC–AUC

Methods Train Test Train Test Train Test Train Test Train Test

LR C = 1 1.00 0.99
(0.98–1.01) 1.00 1.00 1.00 0.98

(0.93–1.03) 1.00 0.99
(0.96–1.01) 1.00 0.99

(0.97–1.01)

rbf SVM
kernel = ‘rbf’,

gamma = 0.0001,
C = 100

1.00 0.99
(0.98–1.01) 1.00 1.00 1.00 0.98

(0.92–1.03) 1.00 0.99
(0.95–1.02) 1.00 0.99

(0.96–1.02)

Week 56
Parameters

Accuracy Precision Recall F1_score ROC–AUC

Methods Train Test Train Test Train Test Train Test Train Test

rbf SVM
kernel = rbf,

gamma = 0.0001,
C = 1000

1.00 0.99
(0.98–1.01) 1.00 0.99

(0.95–1.02) 1.00 1.00 1.00 0.99
(0.97–1.01) 1.00 0.99

(0.99–1.00)

rbf, radial basis function; SVM, support vector machine; UC, ulcerative colitis. LR and SVM were performed
by SciKit-Learn software (version 0.24.0) and parameters were selected by the function of “GridSearchCV” in
SciKit-Learn software (version 0.24.0). The 95% confidence intervals are presented within parentheses.

Table 3. Performance characteristics (for external validation) of machine learning models to predict
short-term (week 8) and long-term (week 56) remission associated with adalimumab treatment in
patients with ulcerative colitis.

Evaluators

Week 8 (LR) Week 56 (DT)

Development Model
(n = 51) Validation

Model
(n = 11)

Development Model
(n = 51) Validation

Model
(n = 11)

Train
(95% CI)

Test
(95% CI)

Train
(95% CI)

Test
(95% CI)

Accuracy 1.00 0.99
(0.98–1.01) 0.73 0.99

(0.99–1.00)
0.90

(0.84–0.96) 0.82

Precision 1.00 1.00 0.72 1.00 0.88
(0.77–0.98) 0.82

Recall 1.00 0.95
(0.84–1.06) 0.73 0.99

(0.99–1.00)
0.93

(0.87–0.98) 0.82

F1_score 1.00 0.97
(0.89–1.04) 0.72 0.99

(0.99–1.00)
0.89

(0.82–0.96) 0.82

ROC–AUC 1.00 0.98
(0.92–1.03) 0.75 0.99

(0.99–1.00)
0.91

(0.85–0.96) 0.69

95% confidence intervals are indicated within parentheses, with the parameter values in the development model.
CI, confidence interval; LR, logistic regression; ROC–AUC, receiver operating characteristic–area under the curve;
DT, decision tree.

4. Discussion

Determining whether to use anti-TNF agents is a critical issue in the management of
UC. PNR or secondary LOR can make the patient’s treatment more complex and undermine
their quality of life [34]. For this reason, many attempts have been made to predict the
efficacy of these drugs using various parameters before treatment. However, unsatisfactory
results and lost time have hindered their clinical applications. Missing the optimal timing
for the administration of anti-TNF treatment can be associated with worsened disease
status. Thus, the ideal biomarker probably meets two conditions: reliability and a suitable
processing time. This study established a prediction model for the treatment efficacy of
anti-TNF drugs in a noninvasive, easy, simple, and rapid way with the application of FT–IR
spectroscopy for use in clinical practice.

The prediction models for short-term (by LR or rbf-SVM) and long-term (by rbf-SVM
and DT) remission showed good performance in our study. In IBD research, LR, SVM,
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and DT have been widely used to predict disease progression, course, risk factors, and
treatment outcomes [35–40]. LR is a statistical model in which the probability of the
outcome variable (dependent variables, Y) is predicted by the sigmoid function as a linear
combination of potential predictor variables (independent variables, X) [40]. It is helpful
in modeling medical problems because of the well-established methodology and intuitive
clinical interpretation of coefficients [41]. SVM attempts to find the class boundary between
two different classes through an optimal hyperplane that divides the data into two classes
while maximizing the marginal distance of the two classes and minimizing classification
errors [32,42]. For a nonlinear data set, a kernel trick can be used in SVM, which maps
the input data into a higher-dimensional space and makes the separation easier [21]. DT
provides high classification accuracy through a reliable and effective decision-making
technique with simple representations of collected knowledge [43]. It has been widely used
in various decision-making areas in the medical field [43]. It is known as an intuitive binary
logic-based predictive classification algorithm for multivariate analysis [21]. Meanwhile,
the OPLS–DA algorithm performed relatively poorly in our study; thus, it is expected
that nonlinear ML algorithms could be used as more suitable strategies for developing
prediction models.

When developing a prognostic and diagnostic prediction model, internal validation
is necessary to evaluate any optimism in the model, and external validation (using other
sample sets rather than for model development) is also recommended [33]. Prediction
models for short-term (by LR or rbf-SVM) and long-term (by rbf-SVM and DT) remission
in our study performed well for both internal validation (using the entire sample) and
external validation. For long-term remission, different algorithms, such as rbf-SVM and
DT, were, respectively, applied in our study to develop prediction models for internal and
external validation, probably due to the small sample size. Further studies are needed
to investigate and optimize prediction models better suited for long-term remission by
employing more samples collected from independent development and validation cohorts
to improve the reliability and robustness of the models.

As listed in Table S4, UC patients had more intense peaks with amino acids (1.26-fold
change versus HC) in their fecal samples, which is consistent with several studies reporting
that fecal amino acids are associated with CD severity. There was also an intense peak of
carbohydrates (1.60-fold change versus NRM on W8, 1.24-fold change versus NRM on W56)
in RM patients, which is consistent with the finding of enhanced carbohydrate metabolism
in the gut microbiome of a mouse model of IBD. Similar findings have been reported
elsewhere, indicating that fecal amino acids are positively correlated with increased CD
severity [44], and carbohydrate metabolism was enriched in the gut microbiome in an IBD
mouse model with treatment-induced remission [45].

In an FT–IR analysis with an ATR technique, some challenges have been reported:
maintaining an intimate optical contact area between the sample and the crystal surface [46],
as well as problems concerning homogeneity and granulometry [47] derived from nonuni-
form particles of powdered samples. In our study, these challenges were overcome by
using an FT–IR-ATR instrument equipped with a pressure clamp, nine replicates of instru-
mental analysis, analysis of QC samples, and data preprocessing steps (ATR correction
and normalization-scaling). Among these, data preprocessing is crucial to compensate
for experimental bias, as IR data are easily affected by subtle changes in experimental
conditions or spectroscopy settings and can be distorted by sample-unrelated noise [48].
Normalization is helpful for reducing the peak intensity variation originating from various
sample thicknesses and pathlength variations in FT–IR analysis [49,50]. Scaling is used to
reduce the intensity variation between spectral peaks within the sample, which makes all
spectral peaks equally important to the spectrum [51]. These strategies could be suggested
as standardized operation procedures of FT–IR analysis, including sampling, experimen-
tal analysis, and data preprocessing, which can be applied to real clinical settings with
high reproducibility.



Metabolites 2024, 14, 2 13 of 16

However, this study had some limitations. The small sample size limits the reliability
and robustness of the models. Further studies with larger samples are needed to validate
the prediction models for long-term remission. In conclusion, to our knowledge, this was
the first study to investigate human fecal samples using FT–IR spectroscopy combined
with ML algorithms to develop a prediction model for clinical remission associated with
adalimumab treatment in patients with UC. With noninvasive, simple, inexpensive, fast,
and reliable analysis, FT–IR spectroscopy coupled with ML algorithms may be used in real
clinical settings to help clinicians select patients who are likely to respond to treatment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/metabo14010002/s1, Figure S1. Averaged Fourier transform–
infrared (FT–IR) spectrum of baseline fecal samples from healthy controls and patients with ulcerative
colitis. Table S1. Institutional and collection data information of samples from the development
and validation models. A, The Catholic University of Korea St. Vincent’s Hospital; B, Chung-Ang
University Hospital; C, Seoul National University Hospital; D, SNU Boramae Medical Center; E,
Ewha Womans University Mokdong Hospital; F, Chosun University Hospital; G, Daejeon St. Mary’s
Hospital; H, Severance Hospital; I, Keimyung University Dongsan Medical Center; J, Korea University
Anam Hospital; K, Inje University Seoul Paik Hospital; L, Inje University Haeundae Paik Hospital; M,
Chonnam National University Hospital; N, Kangbuk Samsung Hospital; O, Inha University Hospital;
P, Kyungpook National University Hospital; Q, KyungHee University Medical Center. Table S2.
Assignment of FT–IR spectra of fecal samples from patients with ulcerative colitis and healthy
controls. (a) Detailed information on each reference used for spectral assignment is listed in the
reference section below. Table S3. Parameters of OPLS–DA models applying various normalization
and scaling methods for discriminating baseline fecal samples in three comparison cases. CV-ANOVA,
cross validated-analysis of variance; HC, healthy controls; OPLS-DA, orthogonal partial least squares-
discriminant analysis; UC, ulcerative colitis; UV, unit variance; RM, patients in remission; NRM,
patients not in remission; W8, baseline fecal samples from patients after 8 weeks of adalimumab
treatment; W56, baseline fecal samples from patients after 56 weeks of adalimumab treatment. Bold
characters represent the best parameters of the selected model. Table S4. Comparison of absorbance
intensity of major assigned spectral peaks from fecal samples in three types of discrimination models.
HC, healthy controls; NRM, patient not in remission; RM, patient in remission; UC, ulcerative colitis;
VIP, variable importance of projection; W8, baseline fecal samples from patients after 8 weeks of
adalimumab treatment; W56, baseline fecal samples from patients after 56 weeks of adalimumab
treatment. The Direction of comparison is UC/HC and RM/NRM with a fold change threshold of
1.0. Significant differences between the two groups are indicated with asterisks (*) (p < 0.05, Student’s
t-test. Bold characters represent selected wavenumbers satisfying both VIP values over 1.0 and p-
values (Student’s t-test) below 0.05. Table S5. Comparison of 10-fold cross-validation performance, by
various machine learning algorithms using baseline fecal samples, of the remission prediction model
at 8 and 56 weeks of adalimumab treatment in patients with UC. DT, decision tree; KNN, K-nearest
neighbors; LR, logistic regression; OPLS–DA, orthogonal partial least squares–discriminant analysis;
RF, random forest; ROC–AUC, receiver operating characteristic–area under the curve; SVM, support
vector machine; UC, ulcerative colitis. LR, KNN, DT, RF, and SVM were performed by SciKit-Learn
software (version 0.24.0) and parameters were selected by the function of “GridSearchCV” in SciKit-
Learn software (version 0.24.0). OPLS–DA was performed using SIMCA software (version 15.0.2),
and the parameters were selected using the “autofit” function in SIMCA. The 95% confidence intervals
are presented within parentheses. Table S6. Comparison of the predictive performances of various
ML algorithms (with internal and external validation) of the remission prediction model at 8 and
56 weeks of adalimumab treatment in patients with ulcerative colitis. The 95% confidence intervals
are indicated within parentheses, with the parameter values in the development model. DT, decision
tree; KNN, K-nearest neighbors; LR, logistic regression; rbf, radial basis function; RF, random forest;
ROC–AUC, receiver operating characteristic-area under the curve; SVM, support vector machine;
UC, ulcerative colitis. LR, KNN, DT, RF, and SVM were performed by SciKit-Learn software (version
0.24.0) and parameters were selected by the function of “GridSearchCV” in SciKit-Learn software
(version 0.24.0).
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