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Abstract

Veterinary systems biology is an innovative approach that integrates biological data at the molecular and cellular levels, allowing for a
more extensive understanding of the interactions and functions of complex biological systems in livestock and veterinary science. It
has tremendous potential to integrate multi-omics data with the support of vetinformatics resources for bridging the phenotype–
genotype gap via computational modeling. To understand the dynamic behaviors of complex systems, computational models are
frequently used. It facilitates a comprehensive understanding of how a host system defends itself against a pathogen attack or operates
when the pathogen compromises the host’s immune system. In this context, various approaches, such as systems immunology,
network pharmacology, vaccinology and immunoinformatics, can be employed to effectively investigate vaccines and drugs. By utilizing
this approach, we can ensure the health of livestock. This is beneficial not only for animal welfare but also for human health and
environmental well-being. Therefore, the current review offers a detailed summary of systems biology advancements utilized in
veterinary sciences, demonstrating the potential of the holistic approach in disease epidemiology, animal welfare and productivity.
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INTRODUCTION
The welfare of animals is intertwined with human and environ-
mental welfare. The majority of human diseases originate from
animals; therefore, human health is closely linked with animal
health and the environment (https://www.fao.org/one-health/en;
accessed on 8 February 2023).The bond between livestock and
humans has played an important role since the ancient times.
The livestock on which the society depends for dairy and other
food products are often overlooked. However, they form a bond
with their owners (https://cvm.msu.edu/news/perspectives-
magazine/perspectives-fall-2018/the-bond-between-humans-
and-livestock; accessed on 08/02/2023). Because of their key
roles in human nutrition and health as well as the environment,
the health and welfare of livestock are of great importance [1].
Therefore, a holistic approach to veterinary research is needed to
meet the demands of the growing population in a sustainable
manner [2]. Systems biology is a well-established discipline
in biomedical science and has a substantial track record of
success in solving complex biological problems [3–5]. Given
that over 60% of human diseases originate from animals, it is
crucial to adopt novel and innovative computational modeling
approaches in veterinary science to comprehend the intricate

nature of host–pathogen interactions for the sake of animal
and human health [6]. To understand the connection between
animal, human and environmental health, the concept of One
Health has been introduced. It aims to visualize the health
of ecosystems comprehensively and in a timely manner, with
the goal of achieving optimal health and sustainability for
all simultaneously [7, 8]. Consequently, the veterinary science
community has embraced these approaches in their research,
leading to the emergence of the concept of veterinary systems
biology, which primarily focuses on livestock to provide high-
quality veterinary services [2].

Systems genetics can help to gain insights into livestock health,
productivity and disease epidemiology [2, 9]. Systems genetics is a
field that combines genetics, genomics, systems biology and phe-
nomics [9]. The alternation in genotype or phenotype due to biotic
factors, such as diseases, or abiotic stresses, like temperature and
cold, can increase the mortality rate in livestock [10, 11]. This can
be overcome through computational modeling utilizing genotypic
and phenotypic data, which can assist in the management and
development of protocols for proper nutrition [10, 12]. Besides,
we can predict survival by combining genotypic and phenotypic
information [13].
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Figure 1. A systems biology approach provides a comprehensive understanding of host–pathogen interactions through the integration of multi-omics
data, identifying key genes/proteins and related information to improve the health and welfare of livestock.

It is now possible to conduct a comprehensive analysis through
integration of multi-omics datasets generated by genomics,
transcriptomics, proteomics, metabolomics and other omics
studies with systems biology [2, 14]. However, there are also
some disadvantages. It can be technically complex, requiring
specialized expertise and computational resources [2]. Addition-
ally, the large-scale data generated by omics technologies can
be challenging to analyze, integrate and interpret accurately.
Furthermore, the cost of multi-omics analysis can be a limiting
factor in livestock research [2, 14–16].

The benefits of multi-omics analysis in deciphering certain
diseases in livestock are significant. By integrating data from
different omics layers, we can gain a more comprehensive under-
standing of the molecular mechanisms underlying diseases [2].
This integrated approach allows us to identify complex networks,
decoding the causes of diseases and visualizing potential molec-
ular targets for drug discovery and developing more effective vac-
cines [2, 15, 17–19]. Combined multi-omics analysis also improves
the accuracy and robustness of biomarker discovery efforts in
livestock, leading to more reliable diagnostic tools and predictive
models. Ultimately, the use of multi-omics in livestock research
can contribute to improved disease management, breeding strate-
gies and overall livestock health and welfare [15, 16, 20–22]. There-
fore, the goal of veterinary systems biology analyses is to identify
key components associated with the phenotypes of interest using
relevant statistical methods and extensive network analysis [23].
It will be necessary to integrate statistical techniques with com-
putational analyses for handling the big data in veterinary science
(Figure 1) [14, 23, 24].

Several diseases cause high mortality rates in livestock, result-
ing in enormous losses to farmers; thus, therapies are urgently
needed to suppress disease progression and aid organisms in
recovering from abnormal conditions [2, 25].The cost of devel-
oping new drugs is high since a drug overdose can cause tox-
icity and side effects, resulting in long-term safety procedures
in clinical studies [25, 26].The study of disease mechanisms and
drug responses is facilitated by the analyses of multi-omics data.
While single-omics data analysis focuses on a specific aspect and
provides a smaller amount of information with lower complexity
[14, 25], systemic gene regulation suggests that genes act as a
part of complex networks, not alone, to perform cellular func-
tions [25, 27]. A comprehensive analysis and prediction based on
complex cellular networks requires the integration of multi-omics
datasets, for example, those on transcription factors, genes and
their expression products [28, 29]. Therefore, data from omics-
based experiments can be used to predict potential molecular
interactions in livestock systems and help visualize their dynamic
behavior under various conditions and at distinct times with
respect to external factors [2, 14]. Such modeling approaches are
crucial for building a framework to fill the phenotype–genotype

gap in disease epidemiology and for animal welfare using systems
biology tools and databases (Table 1).

Integrative systems biology (top-down approach)
and predictive systems biology (bottom-up
approach)
Integrative and predictive systems biology are powerful approaches
and have tremendous potential for the investigation of novel
information and visualization of biological systems [73–76].
Several articles have discussed the fundamental concepts about
these approaches [4, 14]. Basically, we analyze and integrate
the data generated by genomics, transcriptomics, proteomics
and other omics-based studies to make novel discoveries under
integrative systems biology. Predictive systems biology, on the
other hand, aims to construct a computational model with known
components identified through integrative systems biology to
predict the dynamic nature of biological systems to develop future
strategies for the animal welfare [2, 14].

SYSTEMS BIOLOGY FOR THE INTEGRATION
OF MULTI-OMICS DATA TO BRIDGE THE
PHENOTYPE–GENOTYPE GAP
There has been an explosion of high-throughput techniques in
recent years. High-throughput experiments are particularly use-
ful in obtaining a comprehensive picture of the physiological traits
such as skin temperature of livestock in response to dynamic envi-
ronmental changes [23]. These innovations and next-generation
technology have transformed veterinary science in the era of big
data. However, a general framework is still lacking for linking
physiological traits to deoxyribonucleic acid variants [23, 77]. In
order to better understand how genotype is translated into phe-
notype, systems biology approaches can be utilized. An effective
method for linking a particular genetic background to a disease
or a trait is to conduct genome-wide association studies (GWAS).
Nevertheless, single-omics data offer limited insights into bio-
logical mechanisms, and to enhance the precision of predict-
ing the link between genotype and phenotype, it is essential to
incorporate multi-omics data [23, 78, 79]. Several studies have
demonstrated the utility of systems biology in integrating multi-
omics data. Our lab has previously conducted a study that utilized
GWAS and network analysis to identify specific chromosomal
regions and potential candidate genes that could have an impact
on milk production phenotypes in a population of Korean Hol-
stein cattle [80]. Naserkheil et al. (2022) identified the key genes
and pathways via multi-omics analysis for the prevention and
treatment of mastitis in dairy cattle [79]. In addition, a recent
report provides a comprehensive resource for studying functional
genomics in cattle and highlights the importance of integrating
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Table 1: Comprehensive list of commonly utilized vet/bioinformatics tools and database resources within the domain of veterinary
systems biology including brief descriptions and links

S.N. Tool/database Application Link(s) Reference(s)

1 R/Bioconductor Statistical computing and graphics platform and
collection of open-source software packages widely
used in systems biology for analysis and
visualization of multi-omics data.

https://www.r-project.org/
https://www.bioconductor.org/

[30–32]

2 CellDesigner Graphical modeling and simulation tool for creating
and analyzing biological networks.

https://www.celldesigner.org/ [33, 34]

3 Cytoscape Visualization and analysis of molecular interaction
networks, such as protein–protein interactions and
metabolic networks.

https://cytoscape.org/ [35]

4 NetworkAnalyzer Cytoscape application designed to analyze
biological networks and compute network topology.

https://apps.cytoscape.org/apps/
networkanalyzer

[36]

5 cytoHubba Cytoscape application employed for investigation of
hub nodes and sub-networks within complex
interactomes.

https://apps.cytoscape.org/apps/cytohubba [37]

6 Omics Visualizer Cytoscape application utilized for the visualization
and analysis of several data associated with the
same node.

https://apps.cytoscape.org/apps/
omicsvisualizer

[38]

7 MATLAB Mathematical modeling and simulation analysis of
biological systems.

https://www.mathworks.com/products/
matlab.html

[39]

8 VaxiJen Tool for prediction of protective antigenicity. https://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html

[40]

9 NetMHCpan Tool for prediction of CTL epitope. https://services.healthtech.dtu.dk/services/
NetMHCpan-4.1/

[41]

10 NetMHCIIpan Tool for prediction of HTL epitope. https://services.healthtech.dtu.dk/services/
NetMHCIIpan-2.1/

[42]

11 ABCpred Tool for prediction of B-cell epitope. https://webs.iiitd.edu.in/raghava/abcpred/
ABC_submission.html

[43]

12 AllerTOP Tool for allergenicity prediction. https://www.ddg-pharmfac.net/AllerTOP/ [44]
13 AllergenFP Tool for allergenicity prediction. https://ddg-pharmfac.net/AllergenFP/ [45]
14 JCat Codon adaptation tool. https://www.jcat.de/Start.jsp [46]
15 AlphaFold Protein three-dimensional structure prediction tool. https://github.com/google-deepmind/

alphafold
[47]

16 AutoDock Vina Tool used for molecular docking and virtual
screening.

https://vina.scripps.edu/ [48, 49]

17 pkCSM ADMET prediction tool. https://biosig.lab.uq.edu.au/pkcsm/ [50]
18 Gromacs Tool used for MD simulation. https://www.gromacs.org/ [51, 52]
19 SnapGene Tool used for in silico cloning and other application. https://www.snapgene.com/ [53, 54]
20 C-ImmSim Tool used for immune response simulation using

vaccine construct.
https://kraken.iac.rm.cnr.it/C-IMMSIM/ [55]

21 BioGRID Curated database on protein–protein, genetic and
chemical interactions in various organisms,
including livestock animals, can be utilized for
network analysis and identification of drug targets.

https://thebiogrid.org/ [56]

22 KEGG Holds information on pathways, networks and
functions of genes and proteins in various
organisms for systems biology analysis.

https://www.genome.jp/kegg/ [57]

23 STRING Provides data on protein–protein interactions,
functional associations and regulatory networks for
various applications.

https://string-db.org/ [58]

24 Reactome Curated pathway database offers user-friendly
bioinformatics tools that enable the visualization,
interpretation and analysis of pathways, supporting
several research activities including genome
analysis, modeling and systems biology.

https://reactome.org/ [59]

25 BioModels Holds mathematical models of biological systems,
which can be utilized for modeling and simulation
analysis, testing hypotheses and designing new
experiments.

https://www.ebi.ac.uk/biomodels/ [60]

26 Sequence Read Archive Stores high-throughput sequencing data and
provides a platform for researchers to submit their
own data and access data submitted by others for
comprehensive analysis.

https://www.ncbi.nlm.nih.gov/sra [61]

(Continued)
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Table 1: Continued

S.N. Tool/database Application Link(s) Reference(s)

27 Gene Expression Omnibus
(GEO)

GEO is a database hosted by NCBI that holds gene
expression data.

https://www.ncbi.nlm.nih.gov/geo/ [62]

28 ArrayExpress A database holds high-throughput functional
genomics data.

https://www.ebi.ac.uk/biostudies/
arrayexpress

[63]

29 Protein ANalysis THrough
Evolutionary Relationships
(PANTHER)

PANTHER is a database supporting high-throughput
analysis.

https://www.pantherdb.org/ [64]

30 MetaCyc A database contains experimentally elucidated
metabolic pathways.

https://metacyc.org/ [65, 66]

31 Molecular INTeraction
database (MINT)

MINT contains information on protein–protein
interactions determined by experimental methods
from scientific literature.

https://mint.bio.uniroma2.it/ [67]

32 BRENDA A database contains functional data related to
enzymes.

https://www.brenda-enzymes.org/ [68]

33 Protein Data Bank (PDB) PDB holds experimentally determined
macromolecular structures alongside predicted
structure models.

https://www.rcsb.org/ [69]

34 AlphaFold Protein
Structure Database

A database holds modeled 3D protein structures. https://alphafold.ebi.ac.uk/ [70]

35 ZINC A database of commercially accessible small
molecules/compounds for molecular docking and
structure-based virtual screening.

https://zinc20.docking.org/
https://cartblanche22.docking.org/

[71, 72]

multi-omics data for a more complete understanding of livestock
systems [81].

Multi-omics data integration methods
The integration of multi-omics data involves gathering high-
quality data related to genomics, transcriptomics, proteomics,
metabolomics and other omics [2, 21, 82]. This is followed by
data pre-processing and quality control analysis to remove errors
and ensure compatibility besides annotation and identification
of genes, proteins, metabolites and other components along
with predicting connections among them [21, 83]. Additionally,
several computational modeling approaches can be applied
to investigate the functional correlations [82, 83]. Network
and pathway analysis approaches aid in the construction of
networks for visualizing interactions among genes, proteins and
metabolites and in identifying hub nodes and pathways that can
assist in the development of disease management strategies [79,
84, 85]. Moreover, machine learning approaches can be utilized to
integrate multi-omics datasets. These integrated datasets can
be used to train models that help predict disease outcomes
and serve as support systems for the development of disease
prevention strategies [86–88]. Recently published multi-omics
integration and network analysis studies reveal CXCR1, HCK,
IL1RN, MMP9, S100A9, GRO1 and SOCS3 as hub genes. These
genes could be promising candidates for understanding mastitis
susceptibility and resistance in dairy cattle [79]. Multi-omics
integration, coupled with artificial intelligence, can also guide
drug discovery research [89, 90].

Network construction and analysis
Systems biology can aid in constructing and analyzing the net-
works of molecular interactions in livestock for the identification
of potential drug targets and key genes [91, 92]. By integrating
diverse types of omics data, such as genomic, transcriptomic and
metabolomic data, these networks can capture the complexity
of biological systems and reveal key regulatory factors [2, 21].

Network analysis methods can then be used to identify key molec-
ular players (hub genes) and guide the development of evidence-
based management strategies for improving animal health and
welfare [20, 24]. Recent studies based on network analysis identi-
fied the hub genes DCXR, MMP15 and MMP17 associated with sub-
acute ruminal acidosis disorder in dairy cows [93]. Besides, several
studies demonstrated the power of network analysis in livestock
research for an increased understanding of bovine respiratory
disease, PRRS in pigs and hoof disease [14, 20, 24, 93]. Therefore,
it has the potential to improve our understanding of veterinary
systems biology, which will facilitate the efficient management
and prevention of diseases [2].

Modeling and simulation analysis
Modeling and simulation analysis using systems biology can pro-
vide a comprehensive understanding of biological systems [33,
94, 95]. In the context of livestock health, these models can aid
in identifying key components involved in disease progression.
These models can also help identify potential therapeutic targets
and guide the development of veterinary medicine for improving
livestock health and welfare [96, 97]. It is important to ensure
that the model behaves like biological systems [98]. Several steps
are involved in the model validation process, including literature
mining, comparing the model output with experimental data,
sensitivity analysis, optimizing the model through parameter esti-
mation, conducting robustness testing and refining the model if
errors are observed by adjusting parameters, reaction kinetics,
to ensure accurate predictions [99–101]. A previous study estab-
lished a network-based model for simulating the transmission
of porcine reproductive and respiratory syndrome virus (PRRSV)
between farms. The study demonstrated the potential of the
model for identifying high-risk farms and evaluating the effec-
tiveness of different control measures for PRRSV transmission
[102]. Another study utilizing pharmacokinetic and pharmacody-
namic modeling and simulation of the antibiotic cyadox against
Clostridium perfringens in swine suggested that cyadox had a strong
antibacterial effect and might be a promising alternative for the
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treatment of C. perfringens infections after further validation in
clinical studies [103].

SYSTEMS BIOLOGY APPLIED TO DISEASE
EPIDEMIOLOGY AND ANIMAL WELFARE
Systems biology can provide valuable insights into disease epi-
demiology in livestock [5, 104]. By integrating diverse types of
omics data, systems biology can identify key genes and path-
ways involved in disease susceptibility, transmission and spread.
This can aid in predicting effective interventions and guide the
management practices for improving animal health and welfare
[14, 104]. Furthermore, systems biology can provide a comprehen-
sive view of the interplay between environmental factors, animal
physiology and behavior and of how these factors can impact
animal welfare [105]. This can guide the development of evidence-
based management strategies for promoting animal welfare in
livestock production systems [2]. An integrative systems biology
study identified several key genes, such as PRDX5, RAB5C, ACTN4,
SLC25A16, MAPK6, CD53, NCKAP1L, ARHGEF2, COL9A1 and PTPRC,
as well as pathways involved in the development and progression
of mastitis, providing potential targets for future research and
therapeutics [18]. Another study identified new treatment options
by repurposing existing drugs Glibenclamide, Ipratropium, Salbu-
tamol and Carbidopa for veterinary medicine against Escherichia
coli mastitis [106]. A system-based analysis at 6, 12 and 24 h
post-infection with African swine fever virus (ASFV) revealed
1677, 2122 and 2945 upregulated differentially expressed genes
(DEGs), as well as 933, 1148 and 1422 downregulated DEGs, respec-
tively, compared to mock-infected groups. The findings indicated
a significant impact of ASFV infection on host metabolism path-
ways, immune responses and cell death pathways [107]. Pre-
vious study conducted in our lab on PRRSV infection in pigs
utilized integrated time-serial transcriptome networks to reveal
common innate immune responses across different tissues and
identify tissue-specific adaptive immune responses. The systems
biology approach uncovered distinct expression patterns, such
as antiviral signaling at 3 days post-infection, influenza A-like
responses in the lungs and downregulated AMP-activated protein
kinase (AMPK) signaling in bronchial lymph nodes. These findings
offer comprehensive insights into understanding PRRSV infection
and help in developing strategies for vaccine development [24].
Therefore, systems-based approaches coupled with vetinformat-
ics provide key insights to understand pathogenesis and highlight
potential targets for developing therapeutics for animal health
and welfare [2, 108].

Systems immunology, network pharmacology,
drug discovery and repurposing
Systems immunology and network pharmacology are powerful
approaches for drug discovery and repurposing in livestock [2,
93]. By integrating diverse types of omics data, these approaches
can identify key components and pathways involved in immune
system function and drug response [22, 109]. This can aid in iden-
tifying novel drug targets and repurposing existing drugs for use
in livestock [110, 111]. Furthermore, network pharmacology can
predict drug interactions and side effects, enabling the selection
of safe and effective drug combinations for complex diseases
[93, 112]. These approaches have the potential to accelerate the
development of new therapies for improving livestock health and
production, while reducing the use of antibiotics. Recent studies
identified several compounds with promising antiviral properties,

highlighting the potential of natural products in the development
of antiviral therapeutics against PRRSV [17, 113].

Systems vaccinology and immunoinformatics
Systems vaccinology and immunoinformatics are emerging fields
that have the potential to revolutionize vaccine development
for livestock [19, 114, 115]. By integrating diverse types of
omics data and computational modeling, these approaches can
identify key genes and pathways involved in immune system
response to vaccines [116–118]. This can aid in identifying optimal
vaccine formulations, delivery strategies and adjuvants for
inducing protective immunity in livestock [119–121]. Furthermore,
immunoinformatics can predict vaccine efficacy, safety and
potential side effects, enabling the selection of safe and effective
vaccine candidates [19]. Recent studies have demonstrated the
potential of immunoinformatics-based approaches for the design
of multiepitope vaccines against infectious bursal disease virus
for chicken [122] and mastitis for cattle [19]. Researchers utilized
immunoinformatics-based analysis to explore the impact of the
bovine viral diarrhea virus (BVDV). They identified key virulent
proteins in BVDV1 and BVDV2, highlighting the differences in
antigenicity. The study suggests sub-genotypes (1a, 1f, 1k, 2a and
2b) as potential candidates for future vaccine development [123].
A recent study investigates the worldwide economic implications
of the lumpy skin disease virus (LSDV) in cattle. The researchers
developed a multi-epitope vaccine by analyzing the LSDV
proteome, identifying four antigenic, non-homologous and highly
conserved proteins. The analysis reveals the promising potential
of the modeled subunit vaccine candidate, demonstrating its
interaction with the TLR4 receptor and marking significant
progress in the development of an LSDV subunit vaccine [124].
Besides, several studies established the use of these approaches
and pipelines in designing vaccine candidates against diseases
in humans as well as in other animals [108, 125]. Therefore,
these approaches have the potential to improve vaccine design
and accelerate the development of new vaccines for preventing
infectious diseases in livestock (Figure 2).

DISCUSSION
Veterinary systems biology coupled with vetinformatics improve
our understanding of the complex interactions within live-
stock biological systems and provide useful information for
improving animal health and welfare [2, 5]. Essentially, vet-
informatics addresses challenges within the field of veterinary
science by employing computational methods supported by
bioinformatics resources [2]. While bioinformatics is a broad
discipline encompassing various areas of science and technology,
vetinformatics specifically focuses on veterinary science [2,
108]. It is a subject with applications in specific research
areas, similar to cropinformatics, chemoinformatics, biomedical
informatics, etc. [108]. Veterinary systems biology takes a
holistic approach to decoding livestock systems, emphasizing the
comprehensive understanding of complete biological systems
rather than studying individual genes or proteins, supported
by vetinformatics resources [2, 14, 126]. Integrating genetics,
genomics and phenomics with systems models, we can gain
a deeper understanding of the complex relationship between
genes, their functions and the resulting phenotypes or observable
traits [9, 127, 128]. This interdisciplinary approach allows for a
comprehensive analysis of genetic variations and their impact
on the overall functioning and characteristics of organisms using
systems genetics and biology [2, 9]. Therefore, the key advantage
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Figure 2. Implementation of systems biology for the identification of potential drug and vaccine candidates targeting livestock diseases.

of veterinary systems biology is its ability to integrate multi-omics
data, including genomics, transcriptomics and metabolomics
data, and other omics datasets, to construct comprehensive
models to study disease epidemiology and dissect the intricate
molecular mechanisms of host–pathogen interactions crucial to
animal welfare [14, 23, 76]. These models can be used to simulate
and visualize various biological scenarios and make predictions
using systems biology tools and databases, aiding in the
identification of key genes/proteins and pathways associated with
disease resistance and susceptibility, as well as their interplay
with external stimuli, for understanding the pathophysiology and
how these factors can impact animal welfare [25, 60, 76].

Furthermore, we emphasize the tremendous potential of
veterinary systems biology for the discovery and design of novel
therapeutics for improving livestock health [17, 113, 129]. Systems
biology includes modeling and simulation of biological systems
to identify potential therapeutic targets [24]. Therapeutic targets
can be utilized for high-throughput screening of small molecules.
This can be achieved through various techniques, including
target structure modeling, molecular docking, virtual screening,
molecular dynamics (MD) simulations and binding energy calcu-
lations. These methods help in investigating lead compounds
for drug development [103]. Furthermore, these therapeutic
targets can also play a crucial role in developing next-generation
vaccines. This involves predicting antigenicity, epitopes, designing
vaccine candidates and conducting immune simulation analyses
to ensure long-term protection. Such approaches contribute to
improving animal welfare in livestock production systems [19].

Ultimately, the aim of this review article was to emphasize
how veterinary systems biology revolutionizes our understanding
of livestock biology for bridging the gap between phenotype and
genotype and to guide the development of effective manage-
ment strategies to improve the health and well-being of livestock
[2]. As such, these approaches have the potential to contribute
to more sustainable and efficient livestock production systems,
while reducing the use of antibiotics, and maintaining human and
environmental health as well [14, 15, 19, 25, 105, 130].

CONCLUSION
Bridging the gap between the computational world and veterinary
practice in the field holds tremendous potential for advancing

veterinary systems biology. Veterinary systems biology, coupled
with vetinformatics resources, and their utilization in veterinary
biochemistry, anatomy, physiology, pharmacology and toxicology,
microbiology, pathology, parasitology, genetics and breeding and
epidemiology, as well as animal nutrition and poultry science, can
revolutionize the diagnostics, treatment and overall veterinary
practice. However, modeling and simulation of biological systems
face several challenges due to biological complexity, integration
of diverse data sets and different scales and formats. Developing
accurate models and their validation that can predict the behav-
ior of systems remain challenging. Conquering these challenges
requires interdisciplinary collaboration to develop and improve
computational methods as well as refinement in experimental
techniques. This will enhance the accuracy of computational pre-
dictions and aid in veterinary research as well as drug discovery.
Therefore, the implementation of these advancements will lead
to improved animal welfare, optimized health-care outcomes and
a brighter future for livestock productivity and sustainability.

Key Points

• The bond between livestock and humans has played an
important role since ancient times.

• More than 60% of human diseases originate from ani-
mals, posing threats to human life.

• Veterinary systems biology provides a comprehensive
understanding of host–pathogen interactions through
the integration of multi-omics data.

• Veterinary systems biology aids in the identification of
drug and vaccine candidates targeting livestock diseases.

• The well-being of livestock is interconnected with
human and environmental health.
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