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Abstract

Purpose

To prospectively evaluate whether Lung-RADS classification and volumetric nodule assess-

ment were feasible with ultralow-dose (ULD) chest CT scans with deep learning image

reconstruction (DLIR).

Methods

The institutional review board approved this prospective study. This study included 40

patients (mean age, 66±12 years; 21 women). Participants sequentially underwent LDCT

and ULDCT (CTDIvol, 0.96±0.15 mGy and 0.12±0.01 mGy) scans reconstructed with the

adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and DLIR. CT image quality

was compared subjectively and objectively. The pulmonary nodules were assessed visually

by two readers using the Lung-RADS 1.1 and automatically using a computerized assisted

tool.

Results

DLIR provided a significantly higher signal-to-noise ratio for LDCT and ULDCT images than

ASIR-V50 (all P < .001). In general, DLIR showed superior subjective image quality for

ULDCT images (P < .001) and comparable quality for LDCT images compared to ASIR-V50

(P = .01–1). The per-nodule sensitivities of observers for Lung-RADS category 3–4 nodules

were 70.6–88.2% and 64.7–82.4% for DLIR-LDCT and DLIR-ULDCT images (P = 1) and

categories were mostly concordant within observers. The per-nodule sensitivities of the

computer-assisted detection for nodules�4 mm were 72.1% and 67.4% on DLIR-LDCT

and ULDCT images (P = .50). The 95% limits of agreement for nodule volume differences

between DLIR-LDCT and ULDCT images (-85.6 to 78.7 mm3) was similar to the within-scan

nodule volume differences between DLIR- and ASIR-V50-LDCT images (-63.9 to 78.5
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mm3), with volume differences smaller than 25% in 88.5% and 92.3% of nodules, respec-

tively (P = .65).

Conclusion

DLIR enabled comparable Lung-RADS and volumetric nodule assessments on ULDCT

images to LDCT images.

Introduction

Large-scale randomized controlled trials have proven that lung cancer screening using low-

dose chest CT (LDCT) scans reduces lung cancer mortality by 20–33% in high-risk groups

[1,2]. Several countries have implemented LDCT-based lung cancer screening programs,

increasing the use of LDCT scans, which are assessed in terms of the Lung Imaging Reporting

and Data System (Lung-RADS) categorization or nodule volumetry [3,4]. LDCT scans are also

widely used to evaluate various lung diseases since LDCT is easily accessible while providing

similar diagnostic performance and less radiation exposure compared to standard-dose CT

scans [5]. A recent study by Sakane et al. reported no damage of human DNA from a single

low-dose CT scan [6]. However, lung cancer CT screening and pulmonary disease evaluations

may often involve the frequent use of follow-up CT scans [7], and the safety of the cumulative

radiation exposure remains underexplored.

Ultra-low-dose chest CT (ULDCT) scans are a potential option to reduce radiation expo-

sure. ULDCT scans of the thorax deliver a lower effective dose (0.20–0.49 mSv) than LDCT

scans (about 3 mSv) [8–11]. However, ULDCT scans are inevitably accompanied by higher

image noise than LDCT scans, hampering image interpretation. Various image reconstruction

methods, including model-based iterative reconstruction, have been attempted for ULDCT

scans to mitigate the image noise compromise. Recently, a deep learning image reconstruction

(DLIR) system was commercialized by GE (TrueFidelity, GE Healthcare), based on a vast

amount of training data of standard-dose phantom and patient CT images reconstructed by

filtered back projection [12]. Indeed, a few studies have reported that DLIR could provide bet-

ter image quality of thoracic LDCT and ULDCT scans than the pre-existing iterative recon-

struction method [13–15]. Nevertheless, whether DLIR enables Lung-RADS classification and

volumetric evaluation of pulmonary nodules in ULDCT scans remains unknown.

Our study aimed to prospectively evaluate whether Lung-RADS and volumetric nodule

assessments were feasible in DLIR-ULD CT scans.

Materials and methods

The Institutional Review Board of Seoul National University Hospital approved this prospec-

tive study, and medical staff obtained written informed consent from all participants. The

study protocol was registered at the Clinical Research Information Service (CRIS, Registration

Number: KCT0004692).

Study population

The inclusion criteria were adults who visited the outpatient respiratory clinic for the first time

and planned to undergo a chest CT scan at a single tertiary hospital from February 2020

through July 2020. We excluded patients with a) a body mass index over 30 kg/m2, b) an
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inability to hold their breath sufficiently for chest CT scanning, c) a previous history of proce-

dures or operations that may affect the image quality of CT scans (e.g., central venous catheter,

defibrillator implantation, valve replacement) and d) contraindications for CT scans (e.g.,

pregnancy). 40 patients (mean age ± standard deviation, 66±12; 21 women) were included in

this study.

CT acquisition

Consecutive full-inspiratory thoracic LDCT scans at 120 kVp and ULDCT at 100 kVp were

acquired in all patients using a single CT machine (Revolution CT; GE Healthcare, Waukesha,

WI, USA) and the scanning parameters were as follows: tube voltage, 120 kVp with a mAs of

25 for LDCT, 100 kVp with a mAs of 5 for ULDCT; automatic tube current modulation; gan-

try rotation time, 280 ms; detector configuration, 128 × 0.625 mm; beam pitch, 1.53; matrix,

512x512; reconstruction increment and section thickness, 1.25 mm; noise index for LDCT, 28

and noise index for ULDCT, 33. Each CT scan was reconstructed with adaptive statistical itera-

tive reconstruction V with 50% blending with FBP (ASIR-V50), considering the results of pre-

vious studies with various ASIR-V blending levels [16,17], and DLIR-high level (DLIR-H,

TrueFidelity). Thus, four CT image series were generated per patient, resulting in 160 CT

series.

Objective and subjective image quality assessment

The objective CT image quality was calculated using the signal-to-noise ratio (SNR) on a pic-

ture archiving and communication system (PACS). Two thoracic radiologists (S.H.Y and S.J.

Y.; 16 and 7 years of experience in chest CT interpretation) independently drew six circular

regions of interest (ROIs) in the lung parenchyma while avoiding vessels or visible pathology

on DLIR-LDCT and DLIR-ULDCT images. The ROIs were placed in bilateral upper, mid, and

lower lungs with similar sizes of 50–100 mm2. Then, the ROIs were copied and pasted into the

LDCT and ULDCT with ASIR-V50 images. The mean and standard deviation of the ROIs in

Hounsfield units (HU) were recorded and represented the signal and noise, respectively. The

SNR was calculated as follows: SNR = |Mean HUROI| / SDROI.

Two board-certified thoracic radiologists (H.C. and D.S.K.; 7 years of experience in chest

CT interpretation) visually examined the paired LDCT and ULDCT images reconstructed

with ASIR-V50 and DLIR-H in a random order. The captured CT images were prepared at the

aortic arch level, right middle lobar bronchus level, and right diaphragm level. The pulmonary

lesion images were also provided if they existed. The CT images were captured in the lung win-

dow setting (window level, -550 HU; window width, 1700 HU), and great vessel–level images

were also provided in the mediastinal window setting (window level, 45 HU; window width,

450 HU). The radiologists subjectively scored the image quality regarding image noise, visibil-

ity of small structures, lesion conspicuity, and diagnostic acceptability (S1 Table). They were

blinded to the radiation dose information and reconstruction algorithm.

Nodule detection and Lung-RADS evaluation by readers

One board-certified thoracic radiologist (S.J.Y.) reviewed 40 DLIR-LDCT scans thoroughly

and detected nodules of Lung-RADS 1.1 category 3 or over for gold standard. The latter two

thoracic radiologists (H.C. and D.S.K.) independently reviewed pairs of 40 DLIR-LDCT and

40 DLIR-ULDCT series on the PACS using Lung-RADS 1.1 in random order. The radiologists

detected nodules of Lung-RADS 1.1 category 3 or over as follows: solid nodules with a mean

diameter�6 mm, part-solid nodules with a total diameter�6 mm with a solid component <6

mm, nonsolid nodules with a diameter�30 mm.
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Volumetric nodule evaluation

Nodule volumetry was conducted using the vendor-provided Lung VCAR (volume computer-

ized assisted reporting, version 14.0–8.11, GE Healthcare), which is an automatic CT lung

nodule detection tool designed to detect and quantify nodules to assist the readers. Two radiol-

ogists (S.H.Y. and S.J.Y.) prepared gold-standard nodules in consensus with a maximal axial

diameter�4 mm and recorded the CT characteristics of the nodules (solid, subsolid, calcified).

Twelve patients’ CT scans were excluded due to multiple lung nodules (more than 20) due to

pulmonary tuberculosis (n = 7), non-tuberculous lung disease (n = 4), and hematolymphangi-

tic metastasis (n = 1). Of the remaining 28 patients, eight patients had no lung nodules�4 mm

in diameter. As a result, 43 lung nodules (solid, 18; subsolid, 7; calcified, 18) from 20 patients

were included in the VCAR evaluation (Fig 1). VCAR produced the maximum x-axis diameter

and volume of the nodules (Fig 2). The Lung-RADS 1.1 category by volume of each nodule

was also recorded.

To evaluate the reliability of Lung VCAR’s nodule detection and volume measurement abil-

ity, we additionally applied LuCAS (Monitor Corporation, Seoul, Korea), a deep-learning

based CAD for nodule detection and segmentation, on LDCT scans with ASIR-V50 recon-

struction and compared the nodule detection sensitivity and measured volume of the 43 lung

nodules.

Fig 1. Flowchart of participants and lung nodules included for the nodule detectability and Lung-RADS category evaluation. VCAR = volume

computerized assisted reporting.

https://doi.org/10.1371/journal.pone.0297390.g001
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Statistical analysis

The objective data are expressed as means ± standard deviations. For objective and subjective

image quality assessment, the LDCT and ULDCT scans—each with two reconstruction algo-

rithms—were compared using repeated-measures analysis of variance and post-hoc pairwise

comparisons after Bonferroni correction. A Bonferroni-corrected p value of<0.008 (0.05/6)

was considered to indicate statistical significance. Additionally, for the subjective image quality

assessment, interobserver agreement was calculated using intraclass correlation coefficients

(ICCs) with a two-way model on each quality assessment subject. An ICC of 0.76–1.0 indicates

excellent agreement; 0.40–0.75, fair to good agreement; < 0.40, poor agreement [18]. Reader

agreement between LDCT and ULDCT for the Lung-RADS 1.1 nodule classification was eval-

uated using Cohen’s kappa: < 0.21, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60,

Fig 2. Detection and volumetric measurement of a lung nodule by VCAR. Ultralow-dose chest CT scan with deep learning image reconstruction-high

level of a 60-year-old female patient with a 1.7-cm solid nodule with a spiculated margin at the right upper lobe (A). Lung volume computerized assisted

reporting (VCAR) software automatically detected the right upper lobe nodule and depicted it as a red dot on three-dimensional air maximal intensity

projection view (B) and axial maximum intensity projection view (C). The nodule was segmented (D), reconstructed as three-dimensional volume

rendering image (E), and the x-, y-, and z-axis diameter, volume, and mean attenuation of the nodule were calculated.

https://doi.org/10.1371/journal.pone.0297390.g002
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moderate agreement; 0.61–0.80, substantial agreement; 0.81–1.00, almost perfect agreement

[19,20]. The McNemar test was conducted to compare the nodule detection sensitivities of

each radiologist and VCAR between DLIR-LDCT and DLIR-ULDCT and to compare the nod-

ule detection sensitivity of VCAR and LuCAS. Bland-Altman plots were used to evaluate dif-

ferences in nodule volume and diameters among ASIR-V50-LDCT, DLIR-LDCT, and

DLIR-ULDCT, and the chi-square statistic was used to compare the proportion of nodules

with changes of volume more than 25% or diameter more than 1.5 mm. All statistical analyses

were performed using MedCalc software version 20.011 (MedCalc Software Ltd, Belgium).

Results

Demographics

Table 1 shows the characteristics of the study participants. The mean and standard deviation

of body mass index was 23.7±3.3 kg/m2 (Table 1). The mean and standard deviation of the

CTDIvol and DLP values were 0.96±0.15 mGy and 40.53±6.04 mGy�cm for the LDCT scans

and 0.12±0.01 mGy and 5.09±0.40 mGy�cm for the ULDCT scans, respectively. When a con-

version factor of 0.014 mSv/mGy�cm was applied, the mean effective doses were 0.57±0.08

mSv and 0.07±0.01 mSv for LDCT and ULDCT, respectively [21].

Objective and subjective image quality assessment

The results of the objective image quality assessment are presented in Table 2. DLIR-H pro-

vided significantly lower image noise and higher SNR in both LDCT and ULDCT scans than

ASIR-V50 (all P< .001). DLIR-LDCT showed significantly lower noise and significantly higher

SNR than DLIR-ULDCT (both P< .001).

Table 2 also summarizes the results of the subjective image quality assessment. In both

LDCT and ULDCT, DLIR-H yielded better results in terms of image noise, small structure vis-

ibility, lesion conspicuity, and diagnostic acceptability than ASIR-V50 (Figs 3 and 4). Neverthe-

less, regarding LDCT, image noise (P = .01), visibility of small structures (P = 1), lesion

conspicuity (P = 1), and diagnostic acceptability (P = .18) did not significantly differ between

ASIR-V50 and DLIR-H. In the ULDCT scans, the image noise, visibility of small structures,

and diagnostic acceptability were significantly superior in DLIR-H compared to ASIR-V50 (all

P< .001). When comparing LDCT and ULDCT scans reconstructed by DLIR-H, LDCT

showed significantly superior results in all categories (all P < .001). The ICC for interobserver

agreement was excellent for image noise and diagnostic acceptability (0.82 and 0.86,

Table 1. Characteristics of study participants.

Variables All Participants

(n = 40)

Age (y) * 66±12

Sex †

Women 21 (53)

Men 19 (47)

Height (cm)* 161.5±8.0

Weight (kg)* 62.0±11.2

Body mass index (kg/m2)* 23.7±3.3

* Data are means ± standard deviations.
† Data are number of patients with percentage in parentheses.

https://doi.org/10.1371/journal.pone.0297390.t001
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respectively) and fair to good for visibility of small structures and lesion conspicuity (0.67 and

0.73, respectively).

Nodule detectability and Lung-RADS categorization by readers

The radiologists’ sensitivity for nodule detection is summarized in Table 3. Of the 80 CT scans,

which included 40 patients’ LDCT and ULDCT scans with DLIR-H reconstruction, 17 nodules

belonged to Lung-RADS 1.1 category 3 or over: 10 category 3 nodules, five category 4A nod-

ules, one category 4B nodule, and one category 4X nodule (Fig 1). Radiologists’ nodule detec-

tion sensitivities did not significantly differ between DLIR-LDCT and DLIR-ULDCT (Reader

1, P = 1; Reader 2, P = 1).

In terms of Lung-RADS 1.1 categories, the two radiologists did not detect or down-catego-

rized three and two nodules each in DLIR-ULDCT compared to in DLIR-LDCT (S2 Table).

Two nodules were up categorized from category 4A to 4B in DLIR-ULDCT compared to

DLIR-LDCT by reader 2 (S2 Table). The reader agreement between LDCT and ULDCT was

0.73–0.76 (substantial agreement).

Nodule detectability and Lung-RADS categorization by VCAR

The sensitivity of nodule detection of VCAR is summarized in Table 4. The nodule detection

sensitivity by VCAR was equivalent for DLIR-H and ASIR-V50 reconstructions in LDCT

(ASIR-V50 vs. DLIR-H, 72.1% vs. 72.1%, P = 1). In the ULDCT scans, the nodule detection

sensitivity of DLIR-H was comparable to that of ASIR-V50, (ASIR-V50 vs. DLIR-H, 65.1% vs.

67.4%, P = 1). There was no significant difference in the nodule detection sensitivity of VCAR

between the DLIR-LDCT and DLIR-ULDCT images (72.1% and 67.4%, P = .50).

There was no significant difference of nodule detection sensitivity of VCAR and LuCAS

(VCAR vs. LuCAS, 72.1% vs. 86.0%, P = .18) (S3 Table). However, LuCAS showed better per-

formance than VCAR in detection of subsolid nodules (VCAR vs. LuCAS, 14.3% vs. 100%, P =

.03) (S3 Table).

Table 2. Results of objective and subjective image quality assessment.

LDCT ULDCT P-value of paired comparisons*
ASIRV50 DLIR-H ASIRV50 DLIR-H p-value ASIRV50-LDCT

vs. DLIR-LDCT

ASIRV50-ULDCT

vs. DLIR-ULDCT

DLIR-LDCT vs.

DLIR-ULDCT

Objective analysis

Signal (HU) -887.9

±38.6

-885.11

±38.4

-860.3

±93.1

-872.12

±47.7

< .001 < .001 .01 < .001

Noise (HU) 26.9±12.5 18.9±12.7 49.1±42.3 30.8±4.8 < .001 < .001 < .001 < .001

Signal-to-noise ratio 34.8±7.1 51.2±13.1 21.5±6.4 29.1±5.4 < .001 < .001 < .001 < .001

Subjective analysis

Image noise 4.6±0.5 5.0±0.2 3.0±0.9 3.7±0.8 < .001 .01 < .001 < .001

Visibility of small

structures

4.6±0.9 4.7±0.9 2.4±1.1 3.3±0.9 < .001 1 < .001 < .001

Lesion conspicuity 4.7±0.7 4.9±0.2 2.8±1.3 3.3±1.2 < .001 1 .14 < .001

Diagnostic acceptability 4.8±0.4 5.0±0.0 3.3±0.74 3.8±0.8 < .001 .18 < .001 < .001

Data are mean ± standard deviation.

* Bonferroni corrected p value < .008 indicated a statistically significant difference.

LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose chest computed tomography, ASIR-V = adaptive statistical iterative reconstruction-V,

DLIR-H = deep-learning image reconstruction-high level, HU = Hounsfield units.

https://doi.org/10.1371/journal.pone.0297390.t002
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Fig 3. Representative images of a subsolid nodule in Low-dose and Ultralow-dose CT scans with iterative and deep-learning reconstruction algorithms.

A 72-year-old female patient with a 1.2-cm subsolid nodule in the left upper lobe underwent low-dose and ultralow-dose chest CT scans. Each CT scan was

reconstructed with adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and deep-learning image reconstruction (DLIR). DLIR showed superior

lesion conspicuity and small vessel visibility compared to the ASIR-V50 reconstruction algorithm in both low-dose and ultralow-dose chest CT scans.

https://doi.org/10.1371/journal.pone.0297390.g003
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In total, 26 lung nodules (solid, 11; subsolid, 1; calcified, 14) were detected and volume mea-

sured by VCAR in all ASIR-V50-LDCT, DLIR-LDCT, and DLIR-ULDCT reconstruction

images. When applying the Lung-RADS 1.1 categorization of noncalcified nodules based on

nodule volume, there were 10 category 2 nodules, one category 3 nodule, and one category 4B

nodule in the ASIR-V50-LDCT images (Fig 1). The Lung-RADS 1.1 categories of the 12 nod-

ules were exactly the same among ASIR-V50-LDCT, DLIR-LDCT, and DLIR-ULDCT.

Fig 4. Representative images of mediastinal structures in Low-dose and Ultralow-dose CT scans with iterative and deep-learning reconstruction

algorithm. A 80-year-old male patient with small amount of pericardial effusion at anterior superior aortic recess (arrow). The boundaries of anterior superior

aortic recess is well defined in the DLIR compared to ASIR-V50 reconstructed images in both low-dose and ultralow-dose chest CT scans. The boundaries of

anterior superior aortic recess is indistinguishable with the aorta and main pulmonary artery in ULDCT scan with ASIR-V50.

https://doi.org/10.1371/journal.pone.0297390.g004
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Nodule volume and diameter difference by VCAR

Bland-Altman plots between the measurements of the 26 nodules which were detected and

volume measured in all ASIR-V50-LDCT, DLIR-LDCT, and DLIR-ULDCT reconstruction

images are shown in Figs 5 and S1. The mean measurement differences and 95% limits of

agreement of nodule volumetry were 7.3 mm3 (-63.9, 78.5 mm3) between DLIR- and

ASIR-V50-LDCT, 3.9 mm3 (-33.9, 41.6 mm3) between DLIR-ULDCT and ASIR-V50-LDCT,

and -3.5 mm3 (-85.6, 78.7 mm3) between DLIR-LDCT and DLIR-ULDCT (Fig 5). The distri-

bution of nodule volume and x-axis diameter differences are shown in Figs 6 and S2.

17 nodules were detected and volume measured in both Lung VCAR and LuCAS. The

mean measurement difference and 95% limits of agreement of nodule volume was 8.0 mm3

(-146.6, 162.5 mm3). Bland-Altman plots between the volume measurements of the nodules is

in S3 Fig.

A volume difference greater than 25% occurred in 11.5% of comparisons between

DLIR-LDCT and DLIR-ULDCT scans and in 7.7% of comparisons between DLIR- and

ASIR-V50-LDCT scans; this proportion was not significantly different (P = .65) (number of

nodules with measurement difference of volume within 25% between ASIR-V50-LDCT and

Table 3. Nodule detection sensitivity of radiologists.

DLIR-LDCT DLIR-ULDCT

Per-patient sensitivity

Reader 1 69.2% (9/13) 61.5% (8/13)

Reader 2 100% (13/13) 100% (13/13)

Per- patient specificity

Reader 1 96.3% (26/27) 96.3% (26/27)

Reader 2 55.6% (15/27) 66.7% (18/27)

Per-nodule sensitivity

Reader 1 70.6% (12/17) 64.7% (11/17)

Reader 2 88.2% (15/17) 82.4% (14/17)

Per-nodule sensitivity for subsolid nodules

Reader 1 100% (7/7) 85.7% (6/7)

Reader 2 71.4% (5/7) 71.4% (5/7)

Data in parentheses are the number of patients or nodules.

LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose chest computed tomography,

DLIR-H = deep-learning image reconstruction-high level.

https://doi.org/10.1371/journal.pone.0297390.t003

Table 4. Nodule detection sensitivity of Lung VCAR.

LDCT ULDCT

Nodules ASIR-V50 DLIR-H ASIR-V50 DLIR-H

Total 72.1% (31/43) 72.1% (31/43) 65.1% (28/43) 67.4% (29/43)

Solid 77.8% (14/18) 77.8% (14/18) 72.2% (13/18) 72.2% (13/18)

Subsolid 14.3% (1/7) 14.3% (1/7) 0% (0/7) 14.3% (1/7)

Calcified 88.9% (16/18) 88.9% (16/18) 83.3% (15/18) 83.3% (15/18)

Data in parentheses in number of nodules.

VCAR = volume computerized assisted reporting, LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose chest computed tomography,

ASIR-V = adaptive statistical iterative reconstruction-V, DLIR-H = deep-learning image reconstruction-high level.

https://doi.org/10.1371/journal.pone.0297390.t004
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DLIR-LDCT, 24/26; between ASIR-V50-LDCT and DLIR-ULDCT, 22/26; and between

DLIR-LDCT and DLIR-ULDCT reconstruction, 23/26; P = .39-.68).

Furthermore, 76.9–80.7% of the nodules showed diameter differences equal to or less than

1.5 mm, and the proportions were not significantly different (number of nodules with a mea-

surement difference of the diameter in the x-axis within 1.5 mm between ASIR-V50-LDCT

and DLIR-LDCT, 21/26; between ASIR-V50-LDCT and DLIR-ULDCT, 21/26; and between

DLIR-LDCT and DLIR-ULDCT reconstruction, 20/26; P = .74–1).

Discussion

DLIR provided better SNR and subjective image scores in both LDCT and ULDCT, than

ASIR-V50. In the reader study, nodule detection sensitivities did not significantly differ

between DLIR-LDCT and DLIR-ULDCT (70.6%-88.2% versus 64.7%-82.4%, P = 1). The

Lung-RADS 1.1 categories showed substantial agreement between DLIR-LDCT and DLIR-

ULDCT for each reader (κ = 0.73–0.76). In terms of automated nodule detection by VCAR,

there was no significant difference in nodule detection sensitivities between the DLIR-LDCT

and DLIR-ULDCT images (72.1% and 67.4%, P = .50). The frequencies of volume change

>25% (11.5%, 3/26) or diameter change>1.5mm (23.1%, 6/26) between DLIR-LDCT and

DLIR-ULDCT were similar to those (7.7%, 2/26 and 19.2%, 5/26) that occurred between the

two different reconstruction algorithms of LDCT (P = .65 and P = .74). One nodule showed a

112% nodule volume difference between ASiR-V50-LDCT and DLIR-LDCT and a 140% nod-

ule volume difference between ASiR-V50-LDCT and DLIR-ULDCT, but a 13% nodule volume

difference between DLIR-LDCT and DLIR-ULDCT. The nodule was the smallest among the

26 nodules. The Lung VCAR measured volume of the nodule was 25 mm3 in ASIR-V50-LD

CT, 53 mm3 in DLIR-LDCT, and 60 mm3 in DLIR-ULDCT. A larger measurement error in

small-sized nodules by CAD was found in previous studies [16,22,23]. However, the Lung-

RADS 1.1 category of this small-sized solid nodule was 2, and despite the large percentage vol-

ume difference among ASIR-V50-LD CT, DLIR-LDCT, DLIR-ULDCT, the Lung-RADS 1.1

category did not change. Our results indicate that DLIR-ULDCT provided a comparable nod-

ule detection sensitivity and Lung-RADS categorization to DLIR-LDCT in both the reader

study and VCAR analysis.

Fig 5. Bland-Altman plots of nodule volume measurement differences. Compared to low-dose chest CT with adaptive statistical iterative reconstruction-V

50% (ASIR-V50), low-dose chest CT with deep-learning image reconstruction (DLIR) and ultralow-dose chest CT with DLIR showed a mean nodule volume

measurement difference of 7.3 mm3 (-63.9, 78.5) (A) and 3.9 mm3 (-33.9, 41.6), respectively (B). In terms of deep learning image reconstruction, low-dose chest

CT and ultralow-dose chest CT showed mean nodule volume measurement difference of -3.5 mm3 (-85.6, 78.7) (C). LDCT = low-dose chest computed

tomography, ULDCT = ultralow-dose chest computed tomography, ASIR-V50 = adaptive statistical iterative reconstruction-V 50%, DLIR = deep-learning

image reconstruction, VCAR = volume computerized assisted reporting.

https://doi.org/10.1371/journal.pone.0297390.g005
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Fig 6. Distribution of measurement differences of the nodule volume. Distribution of measurement differences between low-dose

chest CT with adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and low-dose chest CT with deep-learning image

reconstruction (DLIR) (A, B), low-dose chest CT with ASIR-V50 and ultralow-dose chest CT with DLIR (C, D), and low-dose chest CT

and ultralow-dose chest CT with DLIR (E, F). The majority (84.6–92.3%) of the nodules showed measurement differences of volume

within 25%. LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose chest computed tomography,

ASIR-V50 = adaptive statistical iterative reconstruction-V 50%, DLIR = deep-learning image reconstruction.

https://doi.org/10.1371/journal.pone.0297390.g006
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The Lung-RADS 1.1 categories based on the volume of 12 nodules detected by VCAR were

consistent among ASIR-V50-LDCT, DLIR-LDCT, and DLIR-ULDCT. In the observer perfor-

mance study, of the 17 nodules with Lung-RADS 1.1 category 3 or 4, three and two nodules

were down-categorized or not detected in DLIR-ULDCT compared to DLIR-LDCT by readers

1 and 2, respectively. Two nodules were up-categorized in DLIR-ULDCT compared to

DLIR-LDCT by reader 2. Therefore, the nodule management was unchanged in 76–82% of

cases. The inter- and intra-observer variability of Lung-RADS categorization is a challenge due

to the closeness of categories that are subdivided into units of millimeters or millimeters

cubed. In real clinical practice, measurement variability is inevitable. In a previous study, inter-

observer disagreement of Lung-RADS categorization was seen in 29% of cases, and 8%

resulted in different patient management [24]. Considering this variability, the agreement of

Lung-RADS categories in our study is acceptable.

According to the diagnostic reference level (DRL) guidelines published by the Korea Cen-

ters for Disease Control and Prevention in the Ministry of Health and Welfare in 2019, the

DRLs for chest radiograph posteroanterior and lateral views were 0.40 mGy and 1.26 mGy;

considering the tissue-weighting factor of the lung (0.12), the effective doses are 0.05 mSv and

0.15 mSv, respectively [21]. The effective dose of our ULDCT scans was 0.07±0.01mSv, slightly

higher than that of posteroanterior chest radiographs and slightly lower than that of chest lat-

eral views. The radiation dose of ULDCT was one-eighth of the LDCT dose. Therefore,

ULDCT with DLIR can be considered in situations requiring frequent follow-up of lung

lesions.

There are previous studies of a vendor-specific and vendor-agnostic DLIR to create high

quality images of ULDCT [25,26]. In a study by Goto et al., ULDCT with vendor-specific

DLIR (AiCE, Canon Medical Systems) showed better nodule CNR and comparable subjective

image quality assessment (noise in air, noise in soft-tissue, streak artifact, texture fineness, and

overall quality) compared to LDCT with iterative reconstruction in the phantom study [25]. In

a subjective evaluation, ULDCT with DLIR of 14 nonobese patients achieved a significantly

higher preference by radiologists compared to ULDCT with iterative reconstruction [25]. Hata

et al. proved a vendor-agnostic DLIR for noise reduction of ULDCT showed better subjective

image quality compared to the ULDCT with iterative reconstruction [26]. Also, nodule detec-

tion rate of radiologists improved in ULDCT with DLIR compared to ULDCT with iterative

reconstruction [26]. These previous studies and ours both align with the same result that

ULDCT with DLIR increases objective and subjective image quality compared to iterative

reconstruction algorithms and provides image quality comparable to that of LDCT.

There have been concerns regarding the increased radiation exposure from medical imag-

ing of pediatric populations [27]. Efforts to reduce the radiation dose in pediatric CT imaging

continued steadily and dose reduction strategies in CT imaging is expected to dramatically

reduce the adverse effects of radiation exposure such as radiation-induced cancers [27,28].

One of the proven dose reduction strategies is DLIR which can minimize image noise while

preserving the adequate resolution of the CT scans [28,29]. In a study by Yoon et al., in pediat-

ric non-contrast and contrast-enhanced chest CT (CTDIvol, 1.3 ± 0.5 mGy; DLP 49.0 ± 26.3

mGy × cm; effective dose, 2.2 ± 3.2 mSv), DLIR showed significant noise reduction with

increased SNR and CNR and showed better subjective overall image quality and noise com-

pared to iterative reconstruction [29]. This result is comparable to our results and application

of DLIR is expected to substantially reduce the radiation dose while maintaining the appropri-

ate image quality for diagnosis in pediatric chest CT scans.

Our study has a few limitations. First, we prospectively included a limited number of

patients with respiratory disease in this study during the early pandemic. Second, for auto-

mated nodule detection and measurement evaluation, we inevitably excluded patients with
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more than 20 lung nodules because setting the reference was not practically possible.

Although the automated nodule detection tool shows a high nodule detection rate, in CT

scans with diffuse nodular disease, a reduced specificity would be inevitable [30]. Therefore,

the results of our study may have limited applicability to patients with diffuse nodular dis-

eases. Regarding the volume measurements, we did not allow readers to modify the VCAR’s

nodule segmentation. If human readers could further edit the VCAR’s measurements, it

would help maintain more consistent volumetric measurements between CT scans. Third,

in the reliability evaluation of Lung VCAR, ground-glass nodule detection sensitivity of the

VCAR was inferior to LuCAS. However the two software had no significant statistical differ-

ence in total lung nodule detection sensitivity. The nodule volume measurement difference

between the two software was acceptable (mean ± standard deviation, 8.0 ± 78.9 mm3).

Therefore, we determined that using Lung VCAR for CT analysis is reasonable. Lastly, we

included non-obese patients to consistently maintain the CT parameters and the CTDIvol

of 0.1 mGy for a ULDCT scan as much as possible. Obese patients occupied 28% of the

NLST screening population [31] and required a three to five times higher CT exposure than

our protocol for a ULDCT scan [32,33]. Up-to-date studies evaluating a ULDCT with DLIR

included non-obese patients [13,14] and future study is warranted for the applicability of

ULDCT with DLIR for obese patients.

In conclusion, our study demonstrated that DLIR showed better subjective and objective

image quality than iterative reconstruction. In terms of the nodule detection rate and Lung-

RADS 1.1 categories of the nodules, DLIR-ULDCT was comparable to DLIR-LDCT in both

the reader study and VCAR analysis, while the radiation dose was similar to that of chest

radiographs. ULDCT with DLIR may be a reasonable option for monitoring pulmonary nod-

ules using Lung-RADS or the VCAR system in patients who require repeated CT scans, with

an as low as reasonably achievable chest X-ray dose.

Supporting information

S1 Fig. Bland-Altman plots of the X-axis diameter difference of lung nodules. Compared to

low-dose chest CT with adaptive statistical iterative reconstruction-V 50% (ASIR-V50), low-

dose chest CT with deep-learning image reconstruction (DLIR) and ultralow-dose chest CT

with DLIR showed mean x-axis diameter differences of 0.4 mm (-4.0, 4.8) (a) and -0.1 mm

(-2.2, 2.0), respectively (b). In terms of deep learning image reconstruction, low-dose chest CT

and ultralow-dose chest CT showed a mean x-axis diameter difference of -0.5 mm (-5.0, 4.0)

(c). LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose chest computed

tomography, ASIR-V50 = adaptive statistical iterative reconstruction-V 50%, DLIR = deep-

learning image reconstruction, VCAR = volume computerized assisted reporting.

(TIF)

S2 Fig. Distribution of measurement differences of the X-axis diameter of lung nodules.

Distribution of measurement differences between low-dose chest CT with adaptive statistical

iterative reconstruction-V 50% (ASIR-V50) and low-dose chest CT with deep-learning image

reconstruction (DLIR) (a,b), low-dose chest CT with ASIR-V50 and ultralow-dose chest CT

with DLIR (c, d), and low-dose chest CT and ultralow-dose chest CT with DLIR-H (e, f). In

total, 76.9–80.7% of the nodules showed a measurement difference of the diameter equal to or

less than 1.5 mm. LDCT = low-dose chest computed tomography, ULDCT = ultralow-dose

chest computed tomography, ASIR-V50 = adaptive statistical iterative reconstruction-V 50%,

DLIR = deep-learning image reconstruction.

(TIF)
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S3 Fig. Bland-Altman plots of the volume difference of lung nodules in ASIR-V50-LDCT

between lung VCAR and LuCAS. ASIR-V50 = adaptive statistical iterative reconstruction-V

50%, LDCT = low-dose chest computed tomography, VCAR = volume computerized assisted

reporting.

(TIF)

S1 Table. Scoring system of subjective image quality.
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S2 Table. Results of the observer performance study for the detection of nodules with

Lung-RADS 1.1 Categories 3 and 4.

(DOCX)

S3 Table. Nodule detection sensitivity of Lung VCAR and LuCAS applied on low-dose

chest ct reconstructed with ASIR-V50.
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