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Abstract: DC series arc faults pose a significant threat to the reliability of DC systems, particularly in
DC generation units where aging components and high voltage levels contribute to their occurrence.
Recognizing the severity of this issue, this study aimed to enhance DC arc fault detection by proposing
an advanced recognition procedure. The methodology involves a sophisticated combination of
current filtering using the Three-Sigma Rule in the time domain and the removal of switching noise
in the frequency domain. To further enhance the diagnostic capabilities, the proposed method utilizes
time and frequency signals generated from power supply-side signals as a reference input. The
time–frequency features extracted from the filtered signals are then combined with artificial learning
models. This fusion of advanced signal processing and machine learning techniques aims to capitalize
on the strengths of both domains, providing a more comprehensive and effective means of detecting
arc faults. The results of this detection process validate the effectiveness and consistency of the
proposed DC arc failure identification schematic. This research contributes to the advancement of
fault detection methodologies in DC systems, particularly by addressing the challenges associated
with distinguishing arc-related distortions, ultimately enhancing the safety and dependability of DC
electrical systems.

Keywords: DC series arc; three-sigma rule; switching noise removal; feature extraction; artificial
learning models

1. Introduction

The widespread adoption of DC distribution systems in renewable energy systems,
electric vehicles, microgrids, and electric aircraft brings numerous benefits but also in-
troduces challenges associated with faults in these systems [1,2]. The DC voltage levels
above 100 V at busbars, combined with numerous connections, elevate the probability of
arc fault occurrences [3]. Additionally, the aging of insulation and the deterioration of
terminals during the prolonged operation of DC distribution systems add to the probabil-
ity of arc faults [4]. Unlike AC distribution systems, the absence of zero crossing in DC
distribution systems makes sustained arc generation more likely [5]. The consequences
of arc faults range from malfunctions of electrical devices to fire hazards, especially if the
arc continues, posing a significant threat to safety [6,7]. Therefore, the detection of DC
series arc faults has become a crucial issue in the application of DC power systems [8]. Arc
faults in DC systems are categorized into series arc faults (SAFs) and parallel arc faults
(PAFs). PAFs, when they occur, typically result in overcurrent, which can be protected
by a circuit breaker. On the other hand, SAFs pose a more significant challenge as the
current rise in the circuit is not obvious due to the introduction of arc impedance, making it
difficult for circuit breakers to provide effective protection [9]. SAFs are recognized as more
harmful to the system compared to PAFs, necessitating focused investigation into their
detection methods. The traditional approach to DC series arc diagnosis relies on different
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statistical characteristics between normal and arc fault conditions. Detection methods
based on time or frequency-domain statistical features offer advantages such as a lower
sampling frequency and shorter detection latency [10,11]. However, these methods face
challenges related to the unique difficulties posed by DC arcs, including susceptibility to
switching noise and other background noise in the system. Previous feature extraction
methods relied on wavelet decomposition to obtain characteristic frequency components,
followed by calculating statistical features like RMS values, maximum magnitudes, and
high-frequency band energy [12–15]. However, this approach requires careful selection
of a wavelet basis function, and an inappropriate choice can lead to insufficiently distinct
features for accurate arc fault differentiation. Gajula and Herrera [16] proposed a Kalman
filter-based method for identifying cable parameters in DC distribution systems, enabling
SAF diagnosis through parameter variation analysis. This approach necessitates collecting
both current and terminal voltage data from multiple sensors, increasing the cost and
complexity. Li et al. [17] employed recurrent neural networks (RNNs) to analyze three-
phase line currents for SAF diagnosis and line selection. However, RNNs are susceptible
to vanishing gradients during back-propagation due to excessive stacking, potentially
impacting their diagnostic performance [18]. An extensive review paper offers a meticulous
exploration of the latest progress and research within the domain of arc fault detection
for electrical distribution systems. This review article places a concentrated lens on the
identification and early detection of arc faults, placing a special emphasis on the crucial
involvement of artificial intelligence [19]. The existing methods often focus solely on either
time-domain or frequency-domain signals, neglecting comprehensive preprocessing of raw
data [20–22]. This can lead to limitations in feature extraction and ultimately impact the
accuracy of arc fault diagnosis.

This study introduces an innovative methodology that integrates empirical filter-
ing, Switching Noise Removal (SNR), and Artificial Learning Models (ALMs) to address
the complexities of DC arc fault diagnosis. The process involves capturing time-domain
arc current signals, applying empirical rule-based filtering to eliminate unwanted signal
elements [23], and employing Fast Fourier Transform (FFT) for frequency-domain anal-
ysis. The parallel frequency-domain analysis refines the signals to eliminate switching
frequency noise [24]. The resulting post-filtered signals are then used as inputs for ALMs.
The diagnostic results demonstrate the remarkable efficacy of this approach in significantly
enhancing detection accuracy. The structure of this paper is organized to provide a compre-
hensive understanding of the configuration setup, variations in current properties in both
the time and frequency domains, the ALMs used for arc fault detection, and the empirical
filtering and switching noise filtering techniques. The scientifically reported conclusions
cover scenarios involving different current scales and operational rates. Finally, the syn-
thesis of cumulative findings underscores the significance of ALMs in arc fault detection,
concluding this study with valuable insights for the future development of DC arc fault
detection systems.

2. Arc Failure Generation, Specifications, and Characteristics

Figure 1 offers a detailed illustration of the intricate methodology employed for DC arc
data acquisition. This experimental setup strictly adhered to the comprehensive guidelines
outlined in UL1699B [25], which significantly influenced the blueprint of our arc generation
circuitry. The controlled disjointing of the arc rods served as the precise trigger for initiating
the arc event. This deliberate initiation was immediately followed by the deployment of a
high-fidelity oscilloscope, specifically designed for meticulously recording the current flow
paths through the rods before and after the arc occurrence. The acquired arc waveforms
were subjected to a rigorous analysis, leveraging the advanced capabilities of MATLAB
R2021b software for comprehensive evaluation. Our arc generation setup comprised es-
sential components: a DC power source, an arc generator, and load elements. Figure 1
prominently displays the N8741A DC power supply, kindly provided by Keysight Tech-
nologies (USA), which delivered precisely controlled DC voltage to the load components.
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The intricate interplay between a highly accurate step motor and the arc rods ensured
their precise separation. For precise data acquisition, we utilized the capabilities of an
oscilloscope operating at an impressive sampling frequency of 250 kHz. The fundamental
data acquisition process was further facilitated with the aid of a Tektronix TCP312 current
probe, ensuring accurate measurement of arc currents. Our comprehensive investigation of
DC arc failure encompassed a wide spectrum of domains, emphasizing the thoroughness
of our research. Systematic generation of DC arcs took place under diverse experimental
conditions, thereby facilitating the acquisition of comprehensive datasets. Our experimen-
tal parameters were meticulously defined, featuring a source voltage of 300 V. We explored
a range of current amplitudes spanning from 5 to 8 A, across various switching rates,
including 5, 10, 15, and 20 kHz. These experiments were conducted using both resistive
(10 Ω) and inductive (10 mH) loads. Figure 1 visually presents the core architecture of the
three-phase DC–AC converter modules, the central load components in our investigation.
These inverters, capable of transforming DC signals into AC counterparts, were meticu-
lously controlled through space vector modulation (SVPWM) throughout our research.
By manipulating the state of the six individual switching devices with a predetermined DC
voltage, we successfully emulated the sinusoidal waveforms characteristic of an AC network.
This fine-grained control empowered us to precisely adjust both frequency and amplitude
parameters, ensuring robust and accurate experimental conditions.
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Figure 1. Arc generation specifications.

Figure 2 presents a captivating visual exploration of the time-domain waveforms
observed under both normal operation and the onset of arcing events. This detailed
analysis focuses on a 5 A current at 15 kHz. In the “pre-arc” phase, a remarkable uniformity
is observed in the waveforms across both current amplitudes and switching frequencies.
This uniformity suggests a stable and controlled environment within the electrical system.
However, the introduction of an electrical arc into the system dramatically disrupts this
harmony, introducing a plethora of abnormalities into the previously pristine waveforms.
The once smooth and predictable waveform becomes overlaid with a multitude of high-
frequency oscillations known as harmonics. These harmonics are not present in the normal
operation waveforms and represent a clear deviation from the ideal current profile. The
original waveform shape undergoes a significant transformation, becoming distorted
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and irregular. This distortion is a direct consequence of the chaotic nature of the arcing
phenomenon and its disruptive influence on the electrical current flow. While often subtle,
a noticeable decrease in the overall amplitude of the current can be observed upon arc
initiation. This decrease is attributed to the energy dissipated through the arcing process,
resulting in a less efficient transfer of energy to the load. The early stage of the arcing event
is particularly noteworthy due to the presence of prominent spikes in amplitude. These
spikes, often several times the magnitude of the pre-arc current, are a direct consequence
of the fiery discharge of electrical sparks. These sparks represent a sudden and intense
release of energy, resulting in corresponding spikes in the current waveform. It is crucial
to emphasize that these conspicuous and atypical phenomena hold significant value as
potential markers for arc fault detection. The observed waveform analysis offers valuable
insights into the dynamics of electrical arcing.
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Following the initial visual inspection of the time-domain waveforms, a meticulous
examination delves into their spectral attributes revealed via an FFT investigation. To
guarantee the highest accuracy, the dataset is meticulously divided into distinct groups,
each subject to a tailored FFT analysis. This rigorous procedure yields individual sets,
each encompassing precisely 200 data elements gained at a constant sample rate of
250 kHz. Figure 2 visually presents the results of the aforementioned FFT analysis, con-
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ducted both before and after arc initiation, for a 5 A current and a fixed switching rate of
15 kHz. A striking observation emerges from the depicted spectral profiles: a clear absence
of distortions in the pre-arc FFT spectrum. This holds true across all examined switching
frequency configurations. Upon closer examination of the frequency profiles, a fascinating
revelation surfaces: the presence of concentrated switching noise exclusively in proximity
to the designated switching frequency bands. This observation unveils a compelling pattern
where, at a switching rate of 15 kHz, the spectral site is distinctly characterized by a core
of switching noise encompassing the ranges of 15, 30, 45, and 60 kHz. Similar patterns
resonate throughout the spectra of further examined switching rates, with the distribution
of switching noise consistently aligning with the multiples of their respective switching
rates. This detailed exploration of the spectral attributes offers valuable insights into the
dynamics of electrical arcing. The absence of distortions prior to the arc event suggests
a stable and controlled current flow within the system. In stark contrast to the pre-arc
scenario devoid of distortions, a multitude of prominent distortions emerge within the
spectrum encompassing the frequency span of 3 kHz to 30 kHz, irrespective of the specific
switching frequency employed. This remarkable transformation signifies the profound
influence of the arcing phenomenon on the frequency distribution of the current waveform.
The existing switching noise present in the system interacts with the disturbances generated
by the arc event, leading to a complex and convoluted spectral landscape. The process
of obtaining features plays a pivotal role in the implementation of learning algorithms.
For instance, consider a scenario with a pure resistive load where only FFT is utilized as
input for artificial learning algorithms. In such cases, the diagnostic performance might
suffer due to unclear distinctions between normal and arcing states in certain sectors [22].
However, this study employs both time and frequency domains; the feature in the time
domain ensures that the ALMs maintain a high level of accuracy in the case of a pure
resistive load.

3. Feature Extraction in Time and Frequency Domains, and Artificial Learning Models
3.1. Feature Extraction in Time Domain

The Three-Sigma Rule, also known as the Empirical Rule, states that within a normally
distributed dataset, a staggering majority—nearly 99.7%—of observed data points reside
within a specific range. This range encompasses three standard deviations (±3 si) centered
around the mean (m). To elaborate further, approximately 95% of all data points lie within
the range of two standard deviations (m ± 2 si). Roughly 68% of data elements exist inside
the span of one standard deviation (m ± si).

In this study, the dataset, generated using a frequency of 250 kHz, is meticulously di-
vided into individual segments, each with an interval of 0.8 ms, to facilitate the subsequent
filtering process. Within each segment, we diligently calculate both the mean (m) and the
standard deviation (si). Following this calculation, we establish the below and above limits
defined by the following equations:

below limit k = m(set)− k ∗ si(set), (1)

above limit k = m(set) + k ∗ si(set), (2)

Here, k represents the si value. This meticulous approach effectively establishes three
distinct empirical filtering ranges. Range 1: Within the range of one standard deviation
(si) around the mean (m). Range 2: Between two standard deviations (2 si) away from the
mean (m). Range 3: Encompassing the area three standard deviations (3 si) away from
the mean (m). Data points falling within these predefined ranges are deemed valid and
retained for further analysis. Conversely, data points falling outside of these ranges are
subjected to a rigorous filtering process. This meticulous filtering process ensures the
reliability and accuracy of the extracted features from each dataset. By leveraging the
powerful insights provided by the Three-Sigma Rule, we are able to effectively separate
relevant data from outliers and noise. This ensures that the features extracted from each
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dataset are representative of the true underlying phenomenon and can be utilized with
confidence in subsequent analysis and modeling stages. The features of each dataset are
obtained as follows [26,27]:

integral = ∑L
i=1|xi|·

1
L

, (3)

Kurtosis =
1

L − 1 ∑L
i=1(xi − m)2, (4)

entropy = ∑L
i=1(xi)

2·lg
(

x2
i

)
, (5)

where xi is the data elements at the ith position in each dataset and L denotes the number
of sampling elements within each sample period.

Figure 3 presents a compelling visualization of the features extracted at a 5 A current
and 15 kHz after undergoing the meticulous filtering process. This process employs a
robust three-sigma filter, known as an empirical filter, which effectively differentiates the
processed signals during various operating conditions. This is particularly evident in the
distinct patterns observed for both the integral and entropy features across normal and
arcing states. These features contribute valuable insights into the underlying dynamics
of the signals, providing additional information beyond the raw data that can be utilized
for enhanced classification performance. This filtered data hold significant promise for
substantially improving the capabilities of ALMs in accurately distinguishing between
normal operation and the presence of arcing events.
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By leveraging these refined features, ALMs can achieve superior classification accuracy
and reliability, ultimately contributing to a safer and more efficient electrical infrastructure.
However, unlike the integral and entropy features, the Kurtosis feature does not exhibit
such a clear differentiation between normal and arcing states. The variations observed are
comparatively less pronounced, diminishing the effectiveness of Kurtosis as a discrimina-
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tive feature. This overlap in Kurtosis values for both states suggests that relying solely on
this feature might not provide sufficient discriminatory power for accurate classification.

3.2. Feature Extraction in Frequency Domain

The proposed approach for mitigating switching frequency noise is a sophisticated
frequency-domain technique meticulously designed to enhance the extraction of funda-
mental characteristics, facilitate precise filtering, and ultimately improve the accuracy of arc
fault detection. This method is intricately interwoven with the sampled current waveform
and operates by pinpointing and isolating the essential aspects associated with arc failure.
Working in tandem with this extraction process, a dedicated purification procedure plays a
pivotal role in emphasizing the prominent frequency elements embedded within the fault
event. The switching noise removal (SNR) procedure comprises two critical stages. The
initial stage meticulously identifies and delimits the relevant frequency components within
a predefined range. This range is carefully chosen to encompass the frequency bands where
arc-specific features are most likely to reside. In the second stage, the identified frequency
components are subjected to a rigorous filtering process aimed at eliminating the interfering
switching noise. This process utilizes advanced filtering techniques to selectively remove
noise while preserving the valuable information associated with the arc event. Through
this meticulous two-stage process, the essential features of the arc current are extracted and
purified, resulting in a highly refined dataset suitable for input into ALMs. This enhanced
feature set, devoid of the disruptive influence of switching noise, significantly improves
the diagnostic precision and reliability of the system. The frequency resolution (∆f) and
the number of frequency components (N) are precisely defined by Equations (6) and (7),
respectively. These equations utilize the fundamental parameters of the sampling process,
where fsampling = 250 kHz represents the sampling rate and L = 200 denotes the number of
sampling elements within each sample period.

∆f =
fsampling

L
(6)

Number of frequency components =
L
2

. (7)

Following the meticulous execution of the Fast Fourier Transform (FFT) task, a refined
set of precisely 100 frequency components is generated. Each of these components pos-
sesses a specific frequency resolution of ∆f = 1250 Hz, ensuring a granular exploration of
the spectral landscape. Figure 2 presents a vivid illustration of the arc-related distortions,
consistently observed inside the range of 3 kHz to 30 kHz. This insightful observation
informs the establishment of the designated frequency range (FR), strategically set to
initiate at 3 kHz. This deliberate choice ensures the comprehensive capture of all arc-
specific features, preventing any critical information from being inadvertently overlooked
during the analysis process. By carefully defining both the frequency resolution and the
designated frequency range, we establish a robust framework for analyzing the spectral
characteristics of the arc current. This framework paves the way for the development
of advanced arc fault detection algorithms that leverage the unique spectral signature
of arc events. By effectively differentiating between arc-induced distortions and back-
ground noise, these algorithms can significantly enhance the accuracy and reliability of arc
fault detection.

The paramount objective of excluding switching distortions is to mitigate the detri-
mental influence of noise that manifests itself in close proximity to the multiples of the
switching rate. In this context, each individual frequency component within a designated
frequency range (FR), represented by Fi, plays a critical role. Additionally, Favr denotes the
arithmetic mean of all frequency components encompassed within the FR. The detection
and subsequent modification of these noise-contaminated frequencies are governed by
a precise criterion. If the magnitude of a specific frequency component, Fi, exceeds the
mean frequency, Favr, by a factor of three or more (Fi > 3 × Favr), then corrective action is
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instigated. This action involves resetting the magnitude of not only Fi itself but also the
two neighboring frequency components, one preceding and one succeeding Fi, to align
with the value of Favr. This meticulous adjustment process, systematically applied to every
individual current component, ensures that no frequency component exceeds a threshold
of three times the mean frequency. This iterative progression of adjustments constitutes
the “switching noise removal” technique. It plays a pivotal role in enhancing the quality of
the extracted frequency components, effectively eliminating residual switching noise that
can potentially interfere with the accurate detection of arc-related features. Following this
meticulous noise removal process, the salient features are extracted using Equations (3)–(5),
utilizing the filtered frequency components.

Figure 4 offers compelling evidence of the successful implementation of the SNR tech-
nique in scenarios with a 5 A current and switching frequency of 15 kHz, focusing on the
designated FR of 3 kHz to 30 kHz. The meticulous application of this method resulted in
significantly improved signal clarity, making arc-related distortions more readily discernible
within the data. The analysis of the entropy feature, still within the same FR, revealed consis-
tent results, further bolstering the robustness and effectiveness of the SNR technique. This
consistency underscores the method’s capacity to enhance the visibility of arc distortions
across diverse scenarios, even in the presence of different switching frequencies.
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The SNR analysis paints a bright picture for arc fault detection. The integral and
entropy features reveal clear differences between normal and arcing states, making crucial
information readily accessible for accurate identification. This consistency held true across
diverse scenarios, proving SNR’s effectiveness even with varying switching frequencies.
Enhanced signal visibility significantly bolstered arc distortion detectability, leading to
more reliable fault detection. Kurtosis, however, showed a less promising picture. Its
lack of clear distinction between states suggests limited efficacy for this specific task. In
conclusion, SNR with integral and entropy features emerges as a powerful tool for accurate
and robust arc fault detection, while Kurtosis appears less suited for this application.
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The application of the proposed method in nonstationary conditions, such as during
the opening or closure of the gap between electrodes, is a crucial consideration. Unlike FFT,
which assumes stationarity, our method is designed to address nonstationary conditions
effectively. This is achieved through the incorporation of a meticulous empirical filtering
procedure and the use of SNR techniques in the frequency domain. The empirical filtering
process is particularly adept at handling nonstationary signals by identifying and replacing
data points that fall outside predefined ranges. This helps eliminate spurious noise and
outliers that may be present during dynamic events like the opening or closure of elec-
trode gaps. Additionally, the SNR technique further enhances the method’s robustness in
nonstationary scenarios by isolating specific frequency elements relevant to arc-related phe-
nomena and effectively removing the influence of switching noise. Therefore, the proposed
method is well-suited for situations involving changes in signal dynamics, ensuring its
applicability and accuracy even under nonstationary conditions such as those encountered
during the opening or closure of the electrode gap.

3.3. Artificial Learning Models (ALMs)

Table 1 presents the summary of all the ALMs used in this study. Support Vector
Machines (SVMs) operate by finding a clear boundary (hyperplane) that separates data
points into two or more distinct categories based on their features. This boundary, defined
by a set of weights and biases, effectively separates data points belonging to different
classes while maximizing the distance between them. The region between the hyperplane
and the closest data points from each class is referred to as the margin, and maximizing this
margin is crucial to achieving optimal classification performance [28]. K-Nearest Neighbors
(KNN) first calculates the distance between the input data point and all other data points
in the dataset. Based on the calculated distances, KNN selects the k data points closest to
the input data point. These k data points are considered its neighbors. KNN then analyzes
the class labels of the k neighbors and assigns the most frequent class label to the input
data point. This process essentially implies that the input data point is classified based
on the “vote” of its closest neighbors [29]. Decision Trees (DTs)’ core functionality lies in
creating a model that makes predictions by learning a hierarchy of simple decision rules
from the input features. This hierarchy is represented by a tree structure, where each
node represents a decision based on a specific feature value and each branch represents
a possible outcome. The DT starts with a single root node that encompasses the entire
dataset. The root node is then recursively split into two or more child nodes based on the
most informative feature at that level. The information gain, which measures the reduction
in uncertainty about the class labels, is used to determine the most informative feature.
At each node, a decision rule is created based on the chosen feature and a split point that
maximizes information gain. This rule essentially divides the data into subsets based on
the feature value. The process of splitting continues until a stopping criterion is met, such
as reaching a maximum depth or achieving sufficient purity in each node. The resulting
nodes at the bottom of the tree are called leaf nodes, each representing a final classification
or regression prediction [30]. In contrast to single models, ensemble learning approaches
leverage the collective wisdom of multiple models to achieve superior performance. This
is accomplished by combining the predictions of diverse individual models, resulting in
more accurate and reliable results than any individual model alone. One of the most widely
used ensemble learning algorithms is the Random Forest (RF), which builds upon the
foundation of DTs. RF operates by creating an ensemble of multiple DTs, each trained on
a subset of the original data. The number of trees in an RF is a tunable hyperparameter,
with larger forests generally leading to improved performance at the expense of increased
computational cost. A common choice typically lies within the range of 100 to 1000 trees,
striking a balance between accuracy and efficiency [31]. Naive Bayes (NB) is a probabilistic
classifier that leverages Bayes’ theorem to make predictions. The term “Naive” refers to
the simplifying assumption that all features are conditionally independent, meaning the
presence or absence of one feature does not influence the presence or absence of any other
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feature. Initially, the prior probability of each class is determined. This represents the
overall likelihood of encountering a data point belonging to each class before any specific
features are considered. For each class, the conditional probability of observing the features
given the class is calculated. This essentially measures the level of compatibility between
the feature values and the specific class. Using Bayes’ theorem, the posterior probability of
each class is computed based on the prior probability and the conditional probabilities. This
final probability reflects the updated belief about the class membership of the data point
after considering all observed features. The class with the highest posterior probability is
ultimately assigned to the data point as the predicted class [32].

Table 1. The core principles of artificial learning models.

ALMs SVM KNN DT RF NB

Core principles

Finding the
hyperplane that
maximizing the
margin between

classes.

Similar things are
possess

neighboring
closeness.

A tree structure
starts with a root
node and ends
with a decision
made by leaves.

Consists of many
individual decision
trees that operate
as an ensemble.

Based on Bayes’
theorem with

assumption that all
features are

conditionally
independent.

4. DC Series Arc Fault Diagnosis Based on Hybrid Time and Frequency Features Using
Artificial Learning Models

Figure 5 illustrates the intricacies of the proposed diagnostic framework, designed
to ensure accurate diagnoses of DC arc faults and the arc fault experimental setup. The
process initiates with the sampling of continuous current data at an impressive rate of
250 kHz, capturing nuanced details within the signal. To facilitate efficient analysis and
feature extraction, the collected data is then segmented into smaller subsets, each consisting
of 200 data points, corresponding to a duration of 0.8 milliseconds. Before delving into
further processing, an empirical filtering procedure is implemented to replace data points
falling outside predefined ranges. This step is crucial for eliminating spurious noise and
potential outliers that could otherwise impact the accuracy of the analysis. For each
data segment, time-domain features are extracted twice—once with the application of the
empirical filter and once without. This dual extraction strategy enables a comparative
analysis, shedding light on the influence of filtering on the extracted features.

Concurrently, each data segment undergoes FFT analysis to delve into its spectral
characteristics. Post FFT, a meticulous two-stage process isolates specific frequency el-
ements within a designated FR. The careful selection of this FR ensures the capture of
frequencies pertinent to arc-related phenomena. The extracted frequency components
then undergo SNR processing, effectively eliminating the influence of switching noise and
heightening the prominence of arc-related distortions. This rigorous process culminates
in the generation of two sets of processed input indexes: one with SNR processing and
one without. These indexes encapsulate refined information extracted from both the time
and frequency domains. The processed time and frequency domain features, derived
from both filtered and unfiltered data, serve as inputs for the deep learning models. This
comprehensive information equips the models to effectively identify and classify arc faults.
The proposed framework encompasses both training and testing phases, offering a robust
evaluation of the model’s performance across diverse operational scenarios and varying
data conditions. The combination of features from both the time and frequency domains,
categorized into combinations of raw and filtered data, ensures a thorough exploration of
diagnostic possibilities, enhancing the accuracy and reliability of DC arc fault detection.
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Maintaining a balanced data distribution ratio between normal and arcing states is
critical throughout the entire training and testing process. Consequently, there are a total
of six distinct cases, with each case utilizing 3000 datasets for training and 2000 datasets
for testing, resulting in a cumulative dataset of 18,000 for training and 12,000 for testing.
This 1:1 ratio ensures that the model is exposed to an equal number of data points from
both normal and arc states, preventing biases and promoting fair evaluation. This balance
is crucial for ensuring the model’s ability to effectively discriminate between normal and
arcing conditions with high accuracy. In this paper, the diagnosis results of the test data
set are presented. The primary metric used to assess the performance of the ALMs in this
context was accuracy. This metric provides a quantitative measure of the model’s ability to
correctly identify and classify the state of the system, serving as a fundamental benchmark
for performance evaluation. The accuracy metric is calculated as the percentage of correctly
classified datasets out of the total number of datasets analyzed:

% o f Correctness =
# o f correctly f orecasted dataset
# o f total examination datasets

(8)

Figure 6 provides a captivating snapshot of the proposed arc fault diagnosis frame-
work’s prowess in a three-phase inverter under diverse conditions. Integrating empirical
filtering, SNR, and the SVM algorithm significantly enhanced arc fault detection accuracy
across different current amplitudes (5 A and 8 A) and switching frequencies. The accuracy
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of arc fault detection consistently surpassed the baseline when utilizing features extracted
from filtered signals compared to raw signals. This clearly indicates that the proposed
filtering process successfully enhances the visibility of arc-related distortions within the
data, leading to improved discriminative power for the SVM algorithm. Employing a
combination of features preprocessed with both empirical filtering and SNR yielded a
significant improvement in accuracy compared to using a combination of raw features
alone. This observation highlights the synergy achieved by combining different feature
sets, each capturing unique aspects of the arc phenomena, resulting in a more robust
and comprehensive representation for effective classification. The proposed approach
demonstrated consistent accuracy improvements across all tested switching frequencies,
underscoring its effectiveness in mitigating the interference caused by switching events
and enhancing the overall diagnostic performance. The integral and entropy features
consistently outperformed Kurtosis in terms of accuracy, regardless of whether filtering
techniques were employed or not. This finding suggests that integral and entropy capture
more informative features for arc fault detection compared to Kurtosis. The enhanced
accuracy gain achieved by the proposed approach was particularly evident for a current
amplitude of 8 A. This suggests that the proposed technique is particularly effective in
identifying arc faults at higher current levels, showcasing its robustness and applicability
across diverse operational scenarios.
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Figure 6. The detection rates of SVM under different current amplitudes and switching frequencies.
(a) Three-phase DC–AC converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.

In Figure 7, the performance of the proposed arc fault diagnosis framework takes center
stage for a three-phase inverter under diverse conditions. The integration of empirical
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filtering, SNR, and the RF algorithm substantially boosted the arc fault detection accuracy
across varying current amplitudes (5 A and 8 A) and switching frequencies. The features
extracted from filtered signals consistently yielded a higher arc fault detection accuracy
compared to raw features. This clearly demonstrates the success of the proposed filtering
process in enhancing the visibility of arc-related distortions within the data, leading to
improved discriminative power for the RF algorithm. Combining features preprocessed
with both empirical filtering and SNR resulted in a significant boost in accuracy compared
to using raw features alone. This highlights the synergistic effect of combining diverse
feature sets, each capturing unique aspects of the arc phenomena, leading to a more robust
and comprehensive representation for effective classification. The proposed approach
consistently improved accuracy across all tested switching frequencies. This underscores
its effectiveness in mitigating the interference caused by switching events and enhancing
the overall diagnostic performance. Regardless of filtering techniques employed, the
integral and entropy features consistently outperformed Kurtosis in terms of accuracy. This
suggests that integral and entropy capture more informative features for arc fault detection
compared to Kurtosis. The enhanced accuracy gain achieved by the proposed approach
is particularly pronounced at a current amplitude of 8 A. This points to the effectiveness
of the proposed technique in identifying arc faults at higher current levels, showcasing its
robustness and applicability across diverse operational scenarios.
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Figure 7. The detection rates of RF under different current amplitudes and switching frequencies.
(a) Three-phase DC–AC converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.

Figure 8 spotlights the remarkable performance of the proposed arc fault diagnosis
framework in a three-phase inverter under various conditions. The integration of empiri-
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cal filtering, SNR, and the KNN algorithm significantly enhanced the arc fault detection
accuracy across diverse current amplitudes (5 A and 8 A) and switching frequencies. The
features extracted from filtered signals consistently demonstrated a superior arc fault
detection accuracy compared to raw features. This clearly illustrates how the proposed
filtering process successfully enhances the visibility of arc-related distortions within the
data, leading to improved discriminative power for the KNN algorithm. Combining fea-
tures preprocessed with both empirical filtering and SNR resulted in a significant increase
in accuracy compared to using raw features alone. This observation underscores the syn-
ergistic effect of combining diverse feature sets, each capturing unique aspects of the arc
phenomena, resulting in a more robust and comprehensive representation for effective
classification. The proposed approach consistently improved the accuracy across all tested
switching frequencies. This underscores its effectiveness in mitigating the interference
caused by switching events and enhancing the overall diagnostic performance. Regardless
of the filtering techniques employed, the integral and entropy features consistently out-
performed Kurtosis in terms of accuracy. This suggests that integral and entropy capture
more informative features for arc fault detection compared to Kurtosis. The enhanced
accuracy gain achieved by the proposed approach was particularly evident at a current
amplitude of 8 A. This indicates the effectiveness of the proposed technique in identifying
arc faults at higher current levels, showcasing its robustness and applicability across diverse
operational scenarios.
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Figure 8. The detection rates of KNN under different current amplitudes and switching frequencies.
(a) Three-phase DC–AC converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.
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In Figure 9, the proposed arc fault diagnosis framework further solidifies its remark-
able performance under diverse conditions for a three-phase inverter. The integration of
empirical filtering, SNR, and the NB algorithm consistently boosted the arc fault detection
accuracy across varying current amplitudes (5 A and 8 A) and switching frequencies. The
features extracted from filtered signals demonstrably outperformed raw features in terms of
arc fault detection accuracy. This clearly illustrates the success of the proposed filtering pro-
cess in enhancing the visibility of arc-related distortions within the data, ultimately leading
to improved discriminative power for the NB algorithm. Combining features preprocessed
with both empirical filtering and SNR resulted in a significant boost in accuracy compared
to using raw features alone. This emphasizes the synergistic effect of combining diverse fea-
ture sets, each capturing unique aspects of the arc phenomena, leading to a more robust and
comprehensive representation for effective classification. The proposed approach exhibited
consistent accuracy improvements across all tested switching frequencies. This underscores
its effectiveness in mitigating the interference caused by switching events and enhancing
the overall diagnostic performance. Regardless of the filtering techniques employed, the
integral and entropy features consistently outperformed Kurtosis in terms of accuracy. This
suggests that integral and entropy capture more informative features for arc fault detection
compared to Kurtosis. The enhanced accuracy gain achieved by the proposed approach
was particularly pronounced at a current amplitude of 8 A. This indicates the effectiveness
of the proposed technique in identifying arc faults at higher current levels, showcasing its
robustness and applicability across diverse operational scenarios.
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Figure 9. The detection rates of NB under different current amplitudes and switching frequencies.
(a) Three-phase DC–AC converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.
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Figure 10 reinforces the remarkable performance of the proposed arc fault diagnosis
framework across diverse operating conditions for a three-phase inverter. The integration
of the proposed framework with empirical filtering, SNR, and the DT algorithm consis-
tently boosted the arc fault detection accuracy under varying current amplitudes (5 A and
8 A) and switching frequencies. The features extracted from filtered signals demonstrably
outperformed raw features in terms of arc fault detection accuracy. This clearly demon-
strates the success of the proposed filtering process in enhancing the visibility of arc-related
distortions within the data, leading to improved discriminative power for the DT algo-
rithm. Combining features preprocessed with both empirical filtering and SNR resulted
in a significant boost in accuracy compared to using raw features alone. This emphasizes
the synergistic effect of combining diverse feature sets, each capturing unique aspects of
the arc phenomena, leading to a more robust and comprehensive representation for effec-
tive classification. The proposed approach exhibited consistent accuracy improvements
across all tested switching frequencies. This underscores its effectiveness in mitigating
the interference caused by switching events and enhancing the overall diagnostic perfor-
mance. Regardless of the filtering techniques employed, the integral and entropy features
consistently outperformed Kurtosis in terms of accuracy. This suggests that integral and
entropy capture more informative features for arc fault detection compared to Kurtosis. The
enhanced accuracy gain achieved by the proposed approach was particularly pronounced
at a current amplitude of 8 A. This indicates the effectiveness of the proposed technique in
identifying arc faults at higher current levels, showcasing its robustness and applicability
across diverse operational scenarios.
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Figure 10. The detection rates of DT under different current amplitudes and switching frequencies.
(a) Three-phase DC–AC converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.
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Figure 11 offers a compelling analysis of the performance achieved by the various
ALMs in the challenging domain of DC arc fault detection. The combination of empirical
filtering and SNR consistently demonstrated superior performance across diverse input
scenarios. This suggests that these two preprocessing techniques synergistically enhance
the information content of the data, leading to improved diagnostic accuracy for the ALMs.
This finding emphasizes the value of integrating seemingly simple techniques like SNR
alongside advanced approaches like empirical filtering for optimal results. Among the
ALMs evaluated, RF consistently emerged as the top performer, regardless of the input data
or switching frequencies. This remarkable consistency underscores the robust capabilities
of RF for DC arc fault detection. Its ability to adapt and provide accurate diagnoses under
diverse conditions makes it a well-suited candidate for real-world applications in arc fault
detection systems. The proposed DC arc fault diagnosis approach, which leverages the
combined strength of empirical filtering, SNR, and the RF algorithm, consistently outper-
formed the various alternative techniques. This showcases its potential to significantly
enhance the accuracy of DC arc fault detection across diverse scenarios. This research
makes a significant contribution to the field of electrical system safety by addressing the
critical concern of DC arc faults, which can pose substantial risks in various applications.
The observed behavior of the filtering method based on Kurtosis, showing inferior perfor-
mance compared to other methods, can be attributed to the distinctive characteristics of
Kurtosis in both the time and frequency domains. In the time domain, the Kurtosis feature
does not exhibit clear differentiation between normal and arcing states. The variations
are less pronounced, diminishing its effectiveness as a discriminative feature. The overlap
in Kurtosis values for both states suggests that relying solely on this feature might not
provide sufficient discriminatory power for accurate classification. This lack of clarity in
distinguishing between normal and arcing states in the time domain contributes to the
suboptimal performance of the Kurtosis-based filtering method. Similarly, in the frequency
domain, the Kurtosis feature presents less pronounced variations between normal and
arcing states compared to integral and entropy features. This indicates that Kurtosis may
not be as effective in capturing crucial distinctions between the two states. The reduced
sensitivity of Kurtosis to the specific characteristics of arc-related phenomena contributes
to its lower performance in enhancing the visibility of arc distortions during the filtering
process. In summary, the explanation for the observed inferior performance of the Kurtosis-
based filtering method lies in the inherent limitations of Kurtosis in capturing the nuanced
differences between normal and arcing states, in both the time and frequency domains.
The effectiveness of a filtering method is highly dependent on the discriminative power
of the features it utilizes, and in this specific context, Kurtosis appears to be less adept at
capturing the relevant patterns indicative of arc faults. This study presents a noteworthy
contribution to the realm of electrical system safety, focusing on the pivotal issue of DC
arc faults that can pose significant risks in diverse applications. In summary, the results
depicted in Figure 11 highlight the efficacy of the proposed DC arc fault diagnosis approach.
The amalgamation of empirical filtering, SNR, and the RF algorithm emerges as a potent
strategy for achieving highly accurate and robust detection of arc faults, thereby making a
substantial contribution to the safety and reliability of electrical systems.

Table 2 presents an overview of the detection accuracy achieved by the various ap-
proaches, including DAFD [33], TL-LEDArcNet [34], and DA-DCGAN [35], which exhibited
accuracies of 95.76%, 95.8%, and 98.5%, respectively. In comparison, the proposed approach
achieved an overall detection accuracy of 98.2%. Notably, the structures of the alterna-
tive approaches are characterized by complexity and the processing of extensive datasets,
contrasting with the proposed approach. This distinction arises from the comprehensive
utilization of both the time and frequency domains in our study. The inclusion of features
from the time domain plays a pivotal role in ensuring that ALMs maintain a consistently
high level of accuracy.
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Figure 11. The overall detection rates of ALMs under various inputs. (a) Three-phase DC–AC
converter load at 5 A. (b) Three-phase DC–AC converter load at 8 A.

Table 2. Comparison of various diagnosis approaches.

Approach Input Domain(s) Data Size Learning Type—Structure
Complexity Overall Accuracy

DAFD [33] Time domain Large Deep learning—High 95.76%

TL-LEDArcNet [34] Time and frequency domains Large Deep learning—High 95.8%

DA-DCGAN [35] Time domain Large Deep learning—High 98.5%

Proposed method Time and frequency domains Small Machine learning—Medium 98.2%

5. Conclusions

This research tackles the complex challenge of detecting DC arc faults with an inno-
vative approach, leveraging the synergistic power of empirical filtering, SNR, and ALMs.
Empirical filtering plays a pivotal role in enhancing signal clarity, making arc distortions
significantly more visible. The SNR method further amplifies signal clarity, accentuating arc
distortions under various conditions, including different current scales and switching rates.
This noise reduction minimizes false positives, contributing to a more reliable detection
system. This improvement remains consistent across a wide range of switching frequencies
(3 kHz to 30 kHz), highlighting the importance of this specific frequency range selection.
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The combined power of the empirical filtering index and the SNR filtering feature sig-
nificantly boosted the accuracy of all ALMs. This synergy not only improved diagnostic
accuracy but also enhanced the ability to distinguish arc-related distortions. While the inte-
gral and entropy features demonstrated consistent, aligned patterns, the Kurtosis feature
failed to provide a clear distinction between normal and arcing states. This emphasizes the
need for diverse feature sets, carefully chosen based on their effectiveness in discriminating
between operating conditions, to achieve optimal performance in arc fault detection sys-
tems. Notably, RF consistently stood out as a top-performing ALM. These models exhibited
robust diagnostic capabilities, achieving the highest diagnosis rates regardless of input data
variations, current amplitudes, or switching frequencies. This collective success confirms
the potential of the proposed approach to significantly enhance the safety and reliability of
electrical systems.
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