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ABSTRACT This paper proposes a video scene segmentation framework referred to as a Contrasting
Multi-Modal Similarity (CMS). Video is composed of multiple scenes which are short stories or semantic
units of video, with each scene consisting of multiple shots. The task of video scene segmentation aims to
semantically segment long videos, such as movies, into the sequence of scenes by identifying the boundaries
of each scene transition. Current video scene segmentation frameworks have primarily relied on comparing
only the visual cues of adjacent shots to identify scene boundaries. These frameworks have focused on two
major approaches: 1) comparing only the visual cues of adjacent frames to distinguish between scenes and
2) performing clustering based on visual cues for distinction among scenes. However, within videos, there
exist numerous scenes that are difficult to distinguish using visual information alone, as they often appear
similar or ambiguous. Taking inspiration from the aforementioned issues, we propose a framework referred
to as CMS that leverages not only visual cues (i.e., shots) but also textual cues (i.e., captions) to semantically
distinguish scenes. The new framework, CMS, leverages visual cues and text cues as follows: 1) Generate
captions corresponding to each shot using a zero-shot captioning model (Caption Generation). 2) Construct
similarity score matrices for each modality to measure semantic similarities (Similarity Score Calculation).
3) Based on the above matrix, select similar shots and dissimilar shots for contrastive training (Similarity
Score-based Sampling). Our experiments show that the CMS framework advances the performance to exceed
the previous state-of-the-art methods with a relatively simple approach without complexmodel architectures.

INDEX TERMS Visual scene segmentation, multi-modal reasoning, contrastive learning.

I. INTRODUCTION
With the increasing abundance of video data, the ability
to comprehend videos effectively has become exceedingly
important. Thus far, notable progress has been made
toward understanding videos that include video action
detection/segmentation [1], [2], [3], video question answer-
ing [4], [5], video-grounded dialogue [6], [7], video moment
retrieval [8] and video scene segmentation [9], [10], [11],
[12], [13], [14], [15]. Among those, we focus on video
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scene segmentation (VSS), which plays a crucial role in
understanding and interpreting long-term videos and can
serve as the fundamental building block for AI systems
designed to comprehend lengthy videos. The task of VSS
aims to semantically segment long videos, such as movies,
into the sequence of scenes by identifying the boundaries of
each scene transition.

Videos can be hierarchically divided into scenes, shots, and
frames. Depending on the criteria for division, frames can
be merged into shots and scenes [10], [12]. A ‘‘shot’’ is a
sequence of frames captured with a single camera movement,
without any interruption. A ‘‘scene’’ can be viewed as a single
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FIGURE 1. Limitation of visual data. (a) shows the ambiguity of visual
data. Comparing the sections highlighted in green and pink, it can be
observed that although they are visually different, they belong to the
same scene. Conversely, sections of the same color may appear visually
similar but belong to different scenes. (b) illustrates the shortcomings of
clustering. The shots in (b) are all consecutive shots. However, when
looking at the results of clustering (each color represents a cluster group),
we can see that even within what appears to be the same scene, multiple
clusters are formed.

short story or meaningful unit formed by the accumulation
of these shots. While short-term videos may consist of only
a few shots or a few scenes, long-term videos, such as
those lasting over an hour, are composed of multiple scenes.
Therefore, in order to understand lengthy videos effectively,
it is important to grasp not just the overall content of the video
but also its separation of meaningful units.

VSS is the task of identifying the transitions between
scenes within the video, which allows for understanding the
short stories within the video and, subsequently, contributes
to comprehending the entire video. However, unlike humans,
teaching AI agents to understand semantically separable
scenes and learn their transition boundaries is a challenging
task. This difficulty can be attributed to two main aspects.
First, generating video scene boundary labels requires
significant human and time costs. To perform video scene
segmentation, it is necessary to label the shots within
the video, indicating whether they are part of a scene
boundary or not. But, labeling for long-term videos composed
of thousands of shots can be costly in terms of human
resources and time. Second, the boundaries between scenes
can be ambiguous in cases where scenes are formed by the
combination of multiple shots. For instance, as can be seen in
Fig. 1 (a), if the background, context, or situation in which a
character appears are different, it can be easily classified as
different scenes even for the same scene. Conversely, adjacent
shots in different scenes with similar backgrounds or visual
appearances can be categorized as the same scene.

In order to overcome the aforementioned limitations and
perform video scene segmentation, recent studies has heavily
focused on utilizing self-supervised learning [16], [17], [18],

FIGURE 2. Sampling based on data similarity. Based on shot, caption,
and shot x caption data, samples with a high similarity score to the query
are selected as positive samples, while those with a low score are
selected as negative samples. In the embedding space, the distance
between the query and positive samples is trained to be closer, while the
distance between the query and negative samples is trained to be farther
apart.

[19], [20], [21], [22], [23], [24], [25]. Among self-supervised
learning approaches, contrastive learning [12], [13], [15] is
utilized to distinguish between positive and negative samples
(i.e., shots) and has demonstrated promising results. These
studies classify unlabeled shots into positive samples that
contain similar visual cues, and negative samples that contain
different visual cues using the adjacent shot [13], clustering
method [15], and pseudo-boundary decision [14]. Contrastive
loss is posed to make representations of positive samples to
be close and that of negative samples to be far away. While
every existing method on VSS relied only on visual cues, due
to the ambiguity of visual cues (Fig. 1 (a)), understanding
the inherent meaning of each shot solely through visual
data is challenging. As another example, as can be seen in
Fig. 1 (b), there are cases in which they are classified into
different clusters even though they are shots that should be
classified into the same cluster. As illustrated in the example,
dividing video into semantically similar units solely based on
visual data without providing direct scene information is a
challenging task.

In this paper, we propose a novel framework called
CMS(Contrasting Multi-modal Similarity Framework) for
contrastive learning utilizing both visual cues and textual
cues to address the aforementioned limitations and extract
representations that can be used to meaningfully distinguish
scenes. Reference [26] have conducted contrast learning
using text data such as the genre of video, but we
use a generated caption that contains information on the
specific situation of the scene to focus on distinguishing the
meaningful part of the scene. The proposed framework is
divided into two stages: (1) the video representation learning
stage and (2) the video scene segmentation stage. In the video
representation learning stage, we propose a new method of
classifying positive and negative samples using both visual
cues and textual cues for effective contrastive learning.
We first generate captions corresponding to each shot using
a zero-shot captioning model (Caption Generation). Then
we construct similarity score matrices for each modality to
measure semantic similarities (Similarity Score Calculation).
We obtain similarity matrices for video, caption, and mixture
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FIGURE 3. Overview of video component. A video is composed of
frames. A shot consists of multiple frames, and a scene is composed of
multiple shots.

of video and caption. Finally, based on the similaritymatrices,
we select similar shots and dissimilar shots for contrastive
training (Similarity Score-based Sampling). Selected positive
and negative samples are utilized to calculate contrastive loss.
The overall flow of our method is shown in Fig 2. In the video
scene segmentation stage, feature representations of video
are extracted through the encoder learned in the previous
step, and the classifier is fine-tuned using scene labels which
indicates whether each adjacent shot is a scene boundary or
not.

The contributions of our paper are as follows. 1) We
identified the issues when utilizing visual data only for video
scene segmentation. 2) To solve the limitations of visual
data, we propose a method of constructing a similarity score
matrix using visual cues and textual cues. In addition to
this, we construct a new framework, CMS, for contrastive
learning by selecting positive and negative samples based
on a similarity score matrix. 3) We demonstrated superior
performance on public benchmark compared to state-of-the-
art methods. 4) We discovered the limitations of the learning
method through task-specific sampling in the representation
learning stage.

The rest of the paper is structured as follows. Section II
describes studies with regard to the video scene segmentation
task. Section III elaborates on the motivations for using
captions and the newly proposedCMS framework. Section IV
describes the dataset, the experimental setting used in
the experiment, the performance comparison with existing
methods, and limitations of the proposed method. Section VI
concludes the paper with future work.

II. RELATED WORK
A. COMPONENT OF VIDEO
In this subsection, we define the word ‘video’ used in this
paper and the terminology related to the video (e.g., shot,
scene) to avoid confusion. There are many ways to define a
video, but from a technical point of view, a video is a sequence
of image frames taken in a short moment (1 second) and
played back. The unit of video (i.e., fps) is more intuitive,

where fps represents howmany images were taken per second
(e.g., 1 fps represents 1 image taken per second). Based on
this perspective, the term ‘video’ used in this paper is defined
as data in the form of multiple images listed.

Video can be divided into three units: frame, shot, and
scene as shown in Fig.3. A frame is the smallest unit of
video as an image. A shot is a series of frames taken by the
camera at once without any interruption [15]. A scene is a
unit of semantic meaning that consists of several shots and
constitutes one short story in the video. A short video consists
of a small amount of shots and scenes, while a long video such
as a movie consists of a large amount of shots and scenes. It is
important to understand the overall story to understand a long
video, but it is also important to understand the short story that
constitutes the video, that is the scene.

B. VIDEO SCENE SEGMENTATION WITH
SELF-SUPERVISED LEARNING
Labeling work on large amounts of data, such as images
and videos, has always been accompanied by human, time,
and cost problems, which have led to a lack of labeled
data. In order to overcome the lack of labeled data,
studies using self-supervised learning to extract meaningful
information from unlabeled data were conducted, and these
studies showed good performance beyond the performance
of supervised learning. Self-supervised learning proceeds by
defining a pretext task to extract features from unlabeled data.
Looking at the pretext tasks employed in previous research,
they utilize techniques such as image rotation, inpainting,
colorizing, jigsaw puzzles, pseudo-boundary determination,
and more to extract meaningful information from unlabeled
data. Recently, many studies have been conducted using
contrastive learning through a pretext task to obtain contrast
similarity between data by applying augmentation to original
image data.

Video scene segmentation (VSS) is a task that finds the
boundary at which the scene is converted. Therefore, for VSS,
labels [0: not a boundary where the scene is converted, and
1: a boundary where the scene is converted] are required
to represent the boundary where the scene is converted for
each shot. However, labeling every frame for VSS entails
significant human and time costs. Accordingly, many studies
have been conducted to solve the problem of unlabeled data
in video by using self-supervised learning [13], [14], [15].
The learning strategy of self-supervised learning is carried out
by applying self-supervised learning to unlabeled video data
to learn the overall feature of the video and then fine-tune it
through labeled video data. Recently, among self-supervised
learning, many studies have been conducted using contrasting
learning. These studies learn the representation of the video
by selecting query, positive samples, and negative samples
from the shots in the video and calculating the contrastive
loss between them. Methods of selecting positive samples
vary, such as using adjacent shots as positive samples [13]
or selecting positive samples within a cluster formed through
the clustering algorithm [15]. All of these methods use only
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FIGURE 4. Overview of our model for video scene segmentation. There are two stages in our model. (a) is the stage of video
representation learning, where the video encoder is trained through contrastive learning. It takes video and caption data as input,
constructs similarity matrices for each modality, and combines them to form a total similarity matrix. Sampling is performed based
on the total similarity matrix to select positive and negative samples for contrastive learning. (b) represents the video scene
segmentation stage, where the encoder trained in (a) is used to extract features from the video. These features are then used to
determine whether each shot is a scene boundary(1) or not(0). In the Total Similarity Matrix, Q, K, and S represent Query,
Key(=Sample), and Score, respectively.

visual data. However, there is a limit to distinguishing scenes
using only visual data. We find problems when using visual
data only and present ways to use visual data and text data
together to solve this problem.

C. MULTI-MODAL LEARNING
When you get information about an object, you can get
more information from multiple perspectives than from one
perspective. From this point of view, there is a study about
learning video presentation by using text modality in addition
to visual modality [26]. Reference [26] proposes contrastive
learning method using text data such as the genre of the
movie to extract positive samples within the same genre.
However, text data such as genre is not suitable as text
data to distinguish scenes in the video because it deals with
comprehensive information about the whole. We introduce a
method of utilizing caption data that can express video scenes
well among text data.

III. METHOD
In this section, we introduce amodel called CMS(Contrasting
Multi-modal Similarity) that utilizes unlabeled video data
and caption data to extract semantically meaningful features
for scene segmentation. As shown in Fig.4, the model’s
architecture is divided into two stages: the video represen-
tation learning stage for extracting video features and the
video scene segmentation stage for fine-tuning. The video

representation learning stage is the phase where an encoder is
trained to extract features from the video. In this subsection,
we cover the reasons for utilizing captions in the training
phase, the methods for generating captions, the approach for
fusing information from shots and captions, the procedure
for selecting positive and negative samples based on the
generated captions, and how all of this contributes to the
execution of contrastive learning in the model. The video
scene segmentation stage involves fine-tuning the model to
align with the scene segmentation task. In this subsection,
we introduce a binary classification learning model based on
the features extracted through the encoder and labeled data.

A. VIDEO REPRESENTATION LEARNING
1) BASELINE MODEL
As a basemodel for video representation learning,MoCo [17]
is used for self-supervised learning. MoCo [17] is contrastive
learning method that utilizes queries, positive samples, and
negative samples. Overall process of MoCo is as follows.
1) Receive input image data x, which could be a sample
or batch of samples. 2) Apply two augmentations (query
augmentation: Augq, key augmentation: Augk ) to input x
for query and key sample(xq = Augq(x), xk = Augk (x)).
3) Utilize separate encoders(query encoder: fq, key encoder:
fk ) to extract feature embedding of augmented query and key
samples.(xq = fq(xq), xk = fk (xk )) 4) Construct positive,
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and negative samples. The positive samples are equal to key
samples. The key samples from the previous step are updated
to a fixed size(65536) queue structure to construct negative
samples. 5) Compute the contrastive loss by using query,
positive and negative samples. 6) Update the parameters of
query encoder only. Key encoder’s parameters are updated
by momentum of query parameters as described in 1

θk = mθk + (1 − m)θq (1)

θk , θq, andm represent parameters of key encoder, parameters
of query encoder, and momentum value respectively.

Query-specific augmentation is applied for generating
queries, while for positive and negative samples, key-specific
augmentation is applied. For query-specific augmentation,
operations such as resize and crop, color jitter, grayscale,
gaussian blur, and horizontal flip are used. For key-specific
augmentation, the same augmentations are applied, except
for color jitter and grayscale, which are related to color
transformation. Our model also uses the augmentation
methods employed in MoCo [17]. Augmentation is applied
exclusively to video data and is not employed for caption data.

2) USAGE OF CAPTION
Before delving into an explanation of the model, we provide
a description of the limitations of visual data and the rationale
behind choosing captions from various text data sources.
Previous research related to Video Scene Segmentation
(VSS) has focused on using visual data to distinguish positive
and negative samples. The method of extracting positive
samples from adjacent shots [13], has a limitation in that it
does not consider the relevance of shots that are farther apart.
The clustering-based approach [15] as seen in Fig.1 (b) can
result in shots that should belong to the same cluster being
classified into different clusters. As pointed out in [14], it’s
worth noting that within a video, there can be shots belonging
to the same scene that exhibit different visual similarities,
and conversely, shots from different scenes that share similar
visual similarities (Fig. 1 (a)). We believe that these issues
stem from the inherent limitations of visual data due to its
ambiguity.

To address the ambiguity in visual data, we considered a
method of utilizing information from text data to distinguish
aspects that may be challenging to differentiate using visual
data alone. The MovieNet [27] dataset, used in this paper,
primarily provides various text data such as genre, synopsis,
subtitles, and more. Reference [26] proposed that utilizes
the genre of movie to select positive samples and performs
contrastive learning. However, genre data, being information
about the entire movie, is not well-suited for learning to
distinguish scenes within a movie. Text data for the VSS
task should indeed contain information about each scene
in the movie in order to effectively distinguish between
scenes. Using data like synopsis and subtitle from MovieNet
[27], which may not be well-aligned with the shot and
scene in the movies, is not suitable for the task. Therefore,
in order to utilize data aligned with scenes while representing

information about the scenes, we use generated captions.
Considering that unlabeled videos lack information about
scene boundaries, we decided to utilize captions for shots
that make up the scenes rather than captions specifically
describing the scenes.

3) CAPTION GENERATION
In this section, we provide an explanation of the model
used to generate captions for shots. Unlike the typical video
shots, which consist of hundreds or thousands of frames,
the shot data provided by MovieNet [27] is structured with
three frames selected from the entire frames. We utilize a
captioning model to generate captions for each individual
frame. The captioning model is used only for generating
captions, and there was no need for additional training.
We use a zero-shot captioning model that generates captions
directly from the given video data. For the zero-shot caption-
ing model, we utilized a model [28] that combines a vision
transformer [29] and GPT-2 [30]. Furthermore, we employed
a sentence transformer [31] to extract embedding vectors for
each caption.

To transform the generated captions, which are origi-
nally frame-specific, into captions for shots, we use the
method as follows: 1) Use the caption embedding from the
middle of the shot(fmid (fc1, · · · , fcF )). 2) Use the mean of
each caption embedding as the embedding vector for the
corresponding shot(fmean(fci, · · · , fcF )). 3) Concatenate the
embedding of the three frames to create the embedding for
the shot(fconcat (fci, · · · , fcF )). fc represents ‘frame caption’
and i represents number of frame in a shot. The results for
these three methods are detailed in the experiment section.

4) SHOT-CAPTION CROSS MODALITY REPRESENTATION
To achieve better efficiency in semantically distinguishing
scenes, it’s essential to consider not only the information
of shots and captions separately but also the combined
informationwhen bothmodalities aremerged. Reference [32]
proposes a method to combine video and caption representa-
tions to gain complementary advantages from bothmodalities
for enhanced scene understanding. Taking inspiration from
the approach used in the [32] paper, this paper employs a
straightforward method for the interaction of the two modal-
ities by adding shot embeddings and caption embeddings.
To be more specific about the method, batch size(B) of shot
embeddings es = {s1, s2, · · · sB}(si ∈ Rd ) are fed into
the mixup function fmixup along with caption embeddings
ec = {c1, c2, · · · cB}(ci ∈ Rd ). si, ci represent the embedding
vector for the i-th shot and caption in batch, d represents the
embedding dimension, and B represents the batch size. The
overall process is in the equation (2).

si = Concat(f1, · · · , fF)

ci = fframe→shot(fc1, · · · , fcF)

fmixup(es, ec) = si + ci (i = 1, 2, · · · ,B) (2)
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FIGURE 5. Similarity matrix. The left three matrices represent the
similarity score matrices constructed for each modality (shot, caption,
shot × caption), and the right matrix is the total similarity score matrix
obtained by combining them. Each row of the leftmost column represents
the queries, and the other columns contain the similarity scores between
the queries and the respective samples.

F represents the number of frames in a shot, f and fc
represent frame embedding and caption embedding of the
frame, respectively. fframe→shot refers to the transforming the
embedding of a caption into an embedding for a shot as
discussed in Sec.III-A3We symbolize the mixup form of shot
and caption as ‘‘shot × caption’’.

5) SAMPLE SELECTION
In this section, we introduce the methods for selecting
positive and negative samples for contrastive learning using
the shot, caption, and shot × caption. A new sampling
method based on the similarity matrix is proposed in this
section. The similarity score matrix, as defined in this paper,
is a matrix composed of similarity scores that measure how
similar each shot, caption, and shot× caption is. Based on the
similarity score matrix, the sample with the highest similarity
score is selected as the positive sample, while the rest are
chosen as negative samples for calculating the contrastive
loss. The specific method for computing the similarity score
and sampling is as follows:
Similarity ScoreMatrix:The similarity score is represented

as shown in (3), where it is calculated as the cosine similarity
by taking the dot product of the embedding vectors for
each modality. {es, ec, esc} represent the embedding vectors
for shot, caption, and shot × caption, each consisting of
a batch size B number of values. For example, when
calculating the similarity matrix for shot embeddings es =

{v1, v2, · · · vB}(vi ∈ Rd×1, es ∈ Rd×B), a Ms ∈ RB×B

matrix is created, where B represents the batch size and d
represents the embedding dimension.

Ms = esT · es
Mc = ecT · ec (3)

Msv = escT · esc
Mtotal = Ms + Mc + Msv (4)

The final similarity matrix is computed as described in (4),
where each modality’s similarity matrix is normalized and
then added together. In the similarity matrix (Fig. 5), the
leftmost column represents the query, the top row represents
samples relative to the query, and the remaining cells
indicate the similarity scores for each sample with respect to
each query. The resulting similarity matrix, constructed by
considering both visual and text information, encapsulates
not only the visual aspects of shots but also their semantic
aspects.
Similarity Score-Based Sampling: Sampling is based

on the similarity scores in the similarity matrix. As in
equation (5), the sample with the highest similarity score in
similarity matrix is selected as the positive sample for each
anchor. During the selection of positive samples, samples that
are the same as the anchor are excluded from being chosen as
positive samples.

positive index = argmax(Mtotal, axis = 1) (5)

Negative samples are composed of all samples except
the positive sample. The overall structure of this model is
built upon MoCo [16], [17] architecture; hence, it utilizes a
pre-defined queue dictionary for negative samples. Negative
samples are updated at each step by adding new samples
to the queue dictionary, and the oldest negative samples are
removed to keep the dictionary up-to-date.

6) OBJECTIVE FUNCTION
In this paper, contrastive loss [33] using positive and negative
samples is used as an object function. Similarity between the
query and positive sample, as well as the similarity between
the query and negative sample(queue), are computed as in (6),
and then calculate contrastive loss [33] like (7)

sim(q, k+) = eq · ek+

sim(q, k−) = eq · ek− (6)

Lcontrastive = − log

∑
k∈{k+}

e(sim(q,k)/τ )∑
k∈{k+ k−}

e(sim(q,k)/τ ) (7)

q, k+, k−, τ represent the query, positive sample, negative
sample, and the temperature term respectively.

B. VIDEO SCENE SEGMENTATION
In this step, fine-tuning of the classifier model is performed
using labeled data to fit it with the requirements of
scene segmentation. Fine-tuning is conducted as a binary
classification task, distinguishing between whether it is a
scene boundary (1) or not (0) by taking into account adjacent
shots and the overall context. Reference [15] proposes
a model that takes into account long-term dependencies
through seq2seq learning using Bi-LSTM. Since this paper
aims to demonstrate the effectiveness of representation
learning based on shots and captions, the model in the
scene segmentation stage remains the same as the previous
model [15]. The overall process is depicted as shown in
Fig.4 (b). First, the encoder trained in the previous stage is
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used to extract features for all shots in the input data. Next,
the extracted shot features are classified as either representing
scene transition boundary(1) or not(0) using Bi-LSTM and
MLP for each shot.

IV. EXPERIMENTS
A. DATASETS
This paper uses the MovieNet [27] dataset which consists of
1,100 movies. Out of the 1,100 movies, they are divided into
660 for training, 220 for validation, and 220 for testing. There
are 318 labeled data where it has been indicated whether each
shot represents a scene boundary(1) or not(0) for the Video
Scene Segmentation(VSS) task. Labeled data are divided
into 190 for training, 64 for validation, and 64 for testing
purposes. Each movie dataset consists of image files, and
each shot is composed of three frames. In MovieNet, besides
themovie data, various text data related to eachmovie are also
provided such as IMDb ID, genre, synopsis, subtitles, scene
boundaries, and more. Although there are dataset like BBC
[11], OVSD [34], and HiREST [35] that can be used for scene
segmentation, this paper chose to use MovieNet as a base to
facilitate comparisons with previous models [13], [15].

B. EXPERIMENT SETUP
1) MODEL SETTING
In the representation learning stage, training was conducted
using 660 unlabeled video data from MovieNet. In pre-
vious papers [13], [15], there were experiments where all
1,100 movie data were used for training. However, in a
typical scenario, validation and test data are not used
during the training phase, so they were excluded from this
experiment.

In video representation learning stage, we used two
different augmentation scheme(query, key augmentation).
Query augmentation is applied for generating query. For
query augmentation, resize and crop, color jitter, grayscale,
gaussian blur, and horizontal flip are used. Key augmentation
is applied using a different method than query augmentation.
Key augmentation uses resize and crop, gaussian blur and
horizontal flip, excluding color jitter and gray scale, which
are methods of changing color.

For extracting features from augmented video shots,
ResNet50 [36] is used as the backbone model. The purpose
of this paper is to show that the CMS model proposed in
this paper is more meaningful than the method proposed
in previous studies. In this paper, we propose a method for
learning features from videos that encapsulate the inter-scene
relationships through contrastive learning, utilizing the simi-
larity between video data and text data. Therefore, to validate
the effectiveness of this method, it is necessary to minimize
the impact of factors other than the contrastive learning
methodology we proposed during the representation learning
stage. All previous papers [13], [15] used ResNet50 [36]
as the encoder, with variations observed in the methods
of positive and negative sampling for contrastive learning.

Therefore, for a fair comparison with the new methodology,
this paper also employed the same encoder as used in previous
studies.

A zero-shot captioning model [28] is used for generating
captions, and [31] is employed as the model for extracting
caption embeddings. Among these models, ResNet50 [36],
which extracts features from the video, is the one that
undergoes training. The other models related to captions are
in a frozen state.

In the video scene segmentation stage, we use two
forms of classifier(Bi-LSTM with MLP and MLP only.
For Bi-LSTM + MLP, it consists of three fully con-
nected layers and two Bi-LSTM layers(fc layer1(2048 →

1024), Bi-LSTM(1024 → 1024), fc layer2(1024 → 512),
fc layer3(512 → 2). This structure is same as SCRL [15].
For MLP only, it consists of three fully connected lay-
ers(fc layer1(2048 → 4096), fc layer2(4096 → 1024,
fc layer3(1024 → 2). In this stage, the encoder, which was
trained in the previous stage(Video representation learning
stage), is frozen, and only the classifier(Bi-LSTM with MLP
and MLP only) is trained to evaluate the performance of the
encoder.

2) METRICS
The video scene segmentation task is a binary classification
problem that divides the input video into boundary(1) points
and non-boundary(0) points. Given the characteristics of the
long video, there are more instances of non-boundary (0)
points than those that represent boundaries(1). Therefore,
to evaluate the imbalanced labels accurately, it is necessary
to consider the bias of labels(0). Taking these factors into
consideration, this paper employs the mean of Average
Precision(mAP) and F1-score as evaluation metrics, which
are robust to precision and recall and suitable for assessing
imbalanced data.

The method of calculating each metric is as follows. F1
score and mAP are calculated using precision and recall.
Precision calculates the ratio of the correctly predicted
instances among the predicted values as boundaries(1) as
described in 8, while recall calculates the ratio of the correctly
predicted instances among the total number of boundaries(1)
as described in 9. TP(True Positive) is the cases where the
model correctly predicted the positive class(predicted: 1,
label: 1). FP(False Positive) is the cases where the model
incorrectly predicted the positive class when the actual class
is negative(predicted: 1, label: 0). FN(False Negative) is the
cases where themodel incorrectly predicted the negative class
when the actual class is positive(predicted: 0, label: 1).

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

To calculate average precision(AP) we need to interpolate
the Precision-Recall curve by computing the precision at
each unique recall level and then taking the average. Average
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TABLE 1. Result of comparing CMS with other models. This is a comparison table between the previous models and CMS proposed in this paper. The
performance values for the previous papers in this table are based on the results reported in the SCRL [15]. M.S 318 refers to the 318 labeled movies from
the MovieNet [27] dataset used for scene segmentation.

precision can be calculated by formula as described in 10
Mean of average precision is averaged AP values across all
classes. F1 score is a single value combined by precision and
recall which provides a balance between the two. F1 score
can be calculated by formula as described in 11

Average Precision =

∑
k

(Rk − Rk−1) · Pk (10)

F1 = 2 ×
Precision × Recall
Precision + Recall

(11)

Rk represents the recall at the k-th point. Rk−1 represents
the recall at the previous operating point. Pk represents the
precision at the k-th point.

3) IMPLEMENTATION DETAILS
In the video representation learning stage, the learning rate
is set to 0.03, the batch size is 1024(number of shots per
iteration), and the epochs are set to 100. For the learning rate,
cosine learning rate decay is used. The Encoder(ReNet-50) is
initialized with pre-trained parameters from the ImageNet1k
[37]. The caption generator [28] generates captions consisting
of a maximum of 20 words. The queue size for negative
samples is set to 65,536, the momentum value is 0.999, and
the temperature term is set to 0.07. For the video scene
segmentation stage, epochs are set to 200, train batch size
is set to 12, test batch size is set to 1, the initial learning rate is
set to 0.1 and the number of shots for MLP and Bi-LSTM is
set to 4 and 40, respectively. Both visual data (shot) and text
data (caption) have a feature dimension of 768. The training
was conducted using two NVIDIA RTX A6000 GPUs, and it
took approximately 80 hours to complete.

C. EXPERIMENT RESULT
In this section, we compare the performance of our proposed
model, CMS(Contrasting Multi-modal Similarity), with that
of existing models [13], [15]. The main focus of this
experiment was to determine whether the sampling method
that utilizes the similarity of visual data and text data is more
effective compared to using only visual data for sampling.
Therefore, to demonstrate the effectiveness of CMS, it was
necessary to keep the other settings consistent with those

TABLE 2. Ablation study on caption for shot generating method.

used in previous models [13], [15], excluding the sampling
method.

Table 1 compares the performance of the CMS with
previous models. As indicated in the table 1, the differences
between CMS and previous models include the addition
of a captioning model and a smaller embedding dimension
compared to previous models. When looking at the results,
the mAP score is +7.52 higher than ShotCol [13] and +1.07
higher than SCRL [15]. In terms of the F1 score, it is
+5.53 higher than ShotCol [13] and+0.66 higher than SCRL
[15]. The results are quite meaningful when considering the
smaller embedding size compared to the previous models.

D. ABLATION STUDY
This section will delve into an ablation study regarding
caption generation for shots and the mixup method for shots
and captions.

1) METHODS FOR GENERATING CAPTIONS FOR SHOTS
As mentioned earlier in the model description, the captions
we used were applied to individual frames, so they need to be
transformed into captions for shots. This paper presents three
methods for converting frame captions into caption for shot.
1) Use the embedding vector from the middle of the 3 frames
as the embedding vector for the corresponding shot(Middle of
Frame). 2) Use the average value of each frame embedding
as the embedding vector for the corresponding shot(Mean
of Frame). 3) Use the concatenation embedding vector
of the three frames as the embedding vector for the
corresponding shot(Concat of Frame). Table 2 shows the
results for each of the methods. The results show that using
the average value of frames performs the best in terms of
performance.
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TABLE 3. Ablation study on with and without Shot x Caption. Shot ×

Caption refers to the mixup of shot features and caption features.

TABLE 4. Ablation study on using modality-specific similarity score
matrices. Shot × Caption refers to the mixup of shot features and caption
features.

2) USE OF SHOT AND CAPTION MIXUP REPRESENTATION
As seen in Sec. III-A4, CMS not only uses individual
modality data for shot and caption but also combines
both modalities(shot × caption) for utilization. We assess
whether the method of combining two modalities is effective.
Table 3 present the results when using both shot and caption
modalities together(shot × caption) and when using each
modality separately without their combination. The table
shows that when using mixed data combining both shot and
caption information, the performance is better. Specifically,
there is an increase of +1.29 in mAP score and +1.13 in F1
score compared to using each modality separately.

3) USE OF SIMILARITY SCORE
CMS is a similarity score based framework. CMS calculates
similarity scores about each modality(shot, caption, shot ×

caption) and constructs a similarity score matrix based on
the calculated score. We assess whether the similarity score
based method is effective. Table. 4 compares the performance
when using modality-specific similarity score matrices. The
results table reveals that even using a single modality for the
similarity score matrix yields respectable performance, while
the best performance is achievedwhen all threemodalities are
utilized.

V. DISCUSSION
A. RESULT ANALYSIS
In this section, we analyze the CMS framework based on the
experimental results presented so far. CMS employs a simple
sampling method in the network that leverages the similarity
between shots and captions, leading to excellent performance
even with a smaller dimension size. As seen in Sec.III-A4
and Sec.III-A5, CMS utilizes simple operations (dot product,
sum, mean) when leveraging both visual data and text data.
In Sec.III-A4, mean and concatenate operations were used to
combine shot and caption information, while in Sec.III-A5,
dot product was employed to calculate the similarity matrix
and sum was utilized to obtain the total similarity matrix

TABLE 5. Comparison results of the representation learning purpose.

for the three modalities (shot, caption, shot × caption).
CMS has demonstrated performance exceed to the previous
state-of-the-art results, which were achieved through intricate
operations such as clustering, using a network comprised
of simple operations (Table. 1). Furthermore, CMS offers
advantages in terms of dimensionality. As observed in
Table. 1, CMS conducted training with a fixed dimension
size of 768 for both shots and captions. The results indicate
that CMS achieved a notable improvement over ShotCol [13]
and displayed a performance higher than that of SCRL [15],
which both employed larger dimension sizes.

B. METHOD ANALYSIS
In this section, we analyze the methodologies employed
in the model. ShotCol [13], SCRL [15], and CMS all
follow the same framework as the baseline model, employing
MOCO [17], a contrastive learning method explained in
the III-A1. The difference lies in the sampling method used
for selecting positive and negative samples.

ShotCol [13] selects adjacent shots as positive samples
when determining positive samples, while SCRL [15]
employs clustering to choose positive samples within the
same cluster. CMS proposed in this paper selects positive
samples based on the similarity between the input video
data(shot) and text data(caption). These methods employ
different sampling approaches to learn features that capture
the inter-scene relationships necessary for successful video
scene segmentation during the representation learning phase.
In essence, different sampling methods are employed to learn
task-specific features for the video scene segmentation task.

On the other hand, MoCo [17], in contrast, does not
undergo a specific sampling process for positive and negative
samples. It generates queries for each input image in a
batch by applying query augmentation and generates keys
by applying key augmentation. Contrastive learning is then
performed using these query and key pairs. In other words,
MoCo [17] can be characterized as a method that learns
a general representation across the entire input data, rather
than focusing on learning task-specific representations. The
overall learning process ofMoCo [17] can be found in III-A1.

We compare these methods, which aim to learn
task-specific representations through sampling strate-
gies(ShotCol [13], SCRL [15], CMS), with an approach
that aims to learn general representations without specific
sampling strategies(MoCo [17]). The results are as described
in Table. 5 The results reveal that MoCo outperforms
ShotCol(+6.33 at mAP, +4.69 at F1) and similar to
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FIGURE 6. Comparison of scene boundary detection results for three situations. The results depict the boundary
predictions of each model in three scenarios: normal light transition, low light transition (outdoor → indoor), and low-light
transition (indoor → outdoor). In the case of low light transition (outdoor → indoor), it refers to scenes transitioning from
outdoor to indoor under low light conditions, while low-light transition (indoor → outdoor) refers scenes transitioning from
indoor to outdoor under low light conditions. Ground truth (GT) is represented in red, the predicted boundaries of the CMS
model in blue, and the predicted boundaries of the SCRL [15]model in green. The comparison is conducted using SCRL [15],
which exhibits the best performance, and the CMS model proposed in this paper.

SCRL [15](−0.12 at mAP, +0.07 at F1. In other words,
it is observed that methods focusing on learning task-specific
representations during the pretraining phase do not yield
significantly superior performance compared to methods
aiming for general representation learning.

C. LIMITATIONS
While CMS has demonstrated meaningful performance
through a new sampling method based on the similarity of
shots and captions, there remain challenges in the method
for caption generation, the method of mixing the shot and
caption representation, and the sampling strategy itself.
CMS generates captions for individual frames and subse-
quently constructs caption features for shots by aggregating
the features of each frame along with its corresponding
caption. However, the simple summation of embeddings
from individual frames may result in information loss
and inefficiency. To mitigate information loss and better
capture inter-scene relationships, generating captions for
sequences of shots instead of individual frames could be
more advantageous. In the process of combining shots and
captions, it is believed that employing a method aligning the
information of each shot and caption effectively like trans-
former [38], rather than simple summation, could yield better
performance.

As observed in V-B, learning a general representation
during the representation learning (pretraining) stage tends to
achieve superior performance. As a future avenue of explo-
ration, one could attempt methods excluding task-specific
sampling during the representation learning stage to enhance
the learning of a general representation. Additionally,
exploring contrastive learning methods that exclude negative
samples could be another interesting avenue. All of the

models compared in this paper, utilize a predefined queue
structure (with a size of 65565) for negative samples,
updating previous key samples into the queue at each
step during the selection of negative samples. This method
may introduce confusion due to the similarity between
samples within the queue and positive samples. There-
fore, exploring contrastive learning methods that exclude
negative samples could also be a meaningful research
direction.

D. VISUALIZATION
To assess the model’s performance, we visualized the
actual results. Transitions between scenes in movies often
occur, particularly from outdoor to indoor or vice versa.
In addition, there are many scenes in the film, not only
bright scenes such as during the day, but also scenes in dark
indoor lighting or scenes in the dark outdoors. Considering
these aspects, we examined whether the models accurately
predicted scene boundaries in three environments: normal-
light transitions, low-light transitions(indoor to outdoor,
outdoor to indoor).We compared twomodels, SCRL [15] and
the CMS.

Fig. 6 illustrates the results of this analysis. Both models
perform well in predicting scene transition boundaries under
normal-light conditions. However, in low-light environments,
the CMS model demonstrates the ability to predict the
transition boundaries that the SCRL [15] model fails to
anticipate. The results indicate that the CMS model exhibits
relatively better performance in low-light environments
compared to SCRL [15].

Through this, we can observe that the method utilizing
both video and text data learns information about aspects
that are challenging to distinguish with video data alone.
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Consequently, it performs better in predicting boundaries in
low-light environments.

VI. CONCLUSION
In this paper, we identify limitations in existing methods that
rely solely on visual cues for performing the video scene
segmentation task. To address these limitations, we propose
a novel contrastive learning framework called Contrasting
Multi-Modal Similarity framework (CMS), which is based
on measuring the similarity between visual and textual
cues. CMS leverages visual cues and text cues as follows:
1) Generate captions corresponding to each shot(Caption
Generation). 2) Construct similarity score matrices for each
modality(Similarity Score Calculation). 3) Based on this
matrix, select similar shots and dissimilar shots(Similarity
Score-based Sampling). CMS demonstrated notable perfor-
mance to existing approaches, despite employing relatively
simple techniques(Sec.III-A4, Sec.III-A5) to leverage visual
and textual cues. As future research, one could explore new
methods for caption generation, techniques for mixing shot
and caption representations, and approaches for learning
general representations.
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