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Abstract—Agriculture can be regarded as the backbone of hu-
man civilization. As technology evolved, the synergy between agri-
culture and remote sensing has brought about a paradigm shift,
thereby entirely revolutionizing the traditional agricultural prac-
tices. Nevertheless, the adoption of remote sensing technologies in
agriculture faces various challenges in terms of limited spatial and
temporal coverage, high cloud cover, low data quality, etc. Industry
5.0 (I5.0) marks a new era in the industrial revolution, where
humans and machines collaborate closely, leveraging their distinct
capabilities, thereby enhancing the decision-making capabilities,
sustainability, and resilience. This article provides a comprehensive
survey of remote sensing technologies and related aspects in dealing
with the various agricultural practices in the I5.0 era. We also elab-
orately discuss the various applications pertaining to I5.0-enabled
remote sensing for agriculture. Finally, we discuss several chal-
lenges and issues related to the integration of I5.0 technologies in
agricultural remote sensing. This comprehensive survey on remote
sensing for agriculture in the I5.0 era offers valuable insights into
the current state, challenges, and potential advancements in the
integration of remote sensing technologies and I5.0 principles in
agriculture, thus paving the way for future research, development,
and implementation strategies in this domain.
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I. INTRODUCTION

FROM the earliest agrarian societies to the present day,
agriculture plays a crucial role in sustaining human life.

It basically includes the activities such as cultivating the soil,
farming, and raising livestock for use by humans [1]. Agriculture
is not just about the food production. It also has a significant
impact on economic growth, rural development, maintaining
biodiversity, shaping the cultural heritage, and in providing
various ecosystem services such as water filtration, pollination,
and habitat for wildlife. The way in which agricultural practices
are carried out has evolved over time by incorporating various
scientific advancements. Remote sensing technologies play a
major role in today’s agriculture, thereby enhancing the sustain-
ability and productivity to a large extent. There are different
types of remote sensing technologies that can be adopted in
agriculture. This includes thermal imaging, multispectral imag-
ing, radar, light detection and ranging (LiDAR), aerial imagery,
satellite imagery, unmanned aerial vehicles (UAVs), etc. [2],
[3].

Drones and satellites equipped with sensors significantly help
in enhancing the efficiency and decision-making strategies in
agriculture, thereby addressing the various challenges through
data-driven insights. Different types of remote sensing sen-
sors can be employed for specific functions in the agriculture
arena [4], [5]. Synthetic aperture radar (SAR) sensors are typ-
ically used for monitoring the crop growth, moisture content
in the soil, and also for efficient classification of crops. Simi-
larly, multispectral and hyperspectral sensors and fluorescence
spectroscopy and imaging sensors also can be employed for
understanding the various attributes such as leaf area index,
nitrogen content, etc. Visible RGB (VIS) sensors can be used for
estimating the different geometric attributes. Yet another sensor
is the near-infrared (NIR) that helps in analyzing the moisture
content in soil, plant counting, and even for erosion analysis.
Remote sensing technology along with other technologies such
as Internet of Things (IoT), robotic systems, weather forecasting
technology, and global positioning systems (GPSs) play a major
role in precision agriculture as well [6], [7].

Remote sensing thus aids agriculture in a variety of aspects.
One of the major applications is in monitoring the crops [8].
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It can be regarded as the systematic process of observing,
assessing, and collecting data about crops through the entire
span of their growth cycle. The images collected using satellites
can be used for the identification of stress factors, such as water
scarcity, nutrient deficiencies, or pest infestations. Other appli-
cations include soil condition assessment, crop yield prediction,
resource optimization, early detection of pests and diseases,
environmental monitoring, global coverage, and time and labor
savings.

Although remote sensing can help in various aspects of agri-
culture from crop monitoring to soil analysis and precision
agriculture, the implementation is not without its challenges.
Limited access to high-quality data is one of the significant
challenges associated with the remote sensing technologies.
As the data are complex, it needs expertise to understand and
analyze the data. Hong et al. [9] proposed a subpixel-level
HS superresolution framework that has the capacity to utilize
the intrinsic properties of high spatial resolution multispectral
images effectively for the fusion task. Cloud cover is another
major challenge that may result in gathering inaccurate data due
to the clouds [10]. Zhang et al. [11] proposed a CNN model
for removing cloud cover interference. Another challenge is
with regard to the lack of technical expertise in adopting these
technologies in agriculture. Weather conditions, spatial and
temporal resolutions of remote sensing data, data security, and
privacy issues are all the other vital challenges concerning the
adoption of remote sensing for agriculture. Extensive research
has been carried out in the field of remote sensing to deal with the
aforementioned challenges [12], [13], [14]. Industry 5.0 (I5.0)
technologies also can significantly help in overcoming these
challenges associated with the implementation of remote sensing
for agriculture.

I5.0 is considered as a new production model where robots
and machines work alongside humans. The key principles of
I5.0 are sustainability, human centricity, and resilience [15]. The
farmers and agronomists along with the artificial intelligence
(AI) systems can efficiently analyze the remote sensing data
that can help in generating more accurate interpretations, thus
enabling informed decision making. Personalization is yet an-
other advantage of adopting I5.0 in the agriculture domain. This
will enable the farmers to get personalized recommendations
based on specific farm requirements. Real-time decisions can be
provided to the end users, thereby improving the responsiveness
of the various agricultural practices. The agriculture sector can
achieve greater sustainability, efficiency, and collaboration in
farming practices by adopting the principles of I5.0 and fully
embracing remote sensing technologies.

Several surveys have been carried out by researchers on the
various Industry 4.0 (I4.0) and I5.0 technologies, different appli-
cation domains, technical challenges associated with the imple-
mentation, and remote sensing technologies. Abbasi et al. [16]
presented the state-of-the-art digitization technologies that could
be adopted for agriculture. However, the survey was focused on
I4.0 and not on I5.0. Yet another survey was conducted by Liu
et al. [17], including a comprehensive analysis of the status,
enabling technologies, and the potential challenges in adopting
Agriculture 4.0. However, Raj et al. [18] conducted a study on

the role of IoT in adopting the Agriculture 4.0 practices. Javaid
et al. [19] also focused on the Agriculture 4.0 practices. Remote
sensing technologies were also studied in the aforementioned
surveys. However, only very few studies have been carried out
so far on the role of remote sensing for agriculture in the I5.0
era.

Martos et al. [4] presented a study on remote sensing for
Agriculture 5.0 in order to ensure the sustainability in agricul-
ture. However, the focus was majorly on the important features
of the remote sensing technologies such as the various data-
retrieving approaches, electromagnetic (EM) wave bands, and
the importance of AI for Agriculture 5.0. The key platforms
such as the various sensors used and also on satellites and re-
motely piloted aircrafts (RPAs) were also discussed in this study.
Nevertheless, the specific target application fields in agriculture
were not dealt in depth. The technical challenges with respect
to the I5.0 integration were also not presented. Guruswamy
et al. [20] put forward a study on ensuring food security in the
context of Agriculture 5.0. The role of remote sensing was not
covered in this study. Another study was by Singh et al. [21]
that focused primarily on the precision irrigation aspects using
I5.0 technologies. A detailed review of the enabling technologies
and potential applications in I5.0 was presented by Maddikunta
et al. [22]. However, the study did not focus on the specific
aspects of agriculture. The role of I5.0 technologies in crop data
management was studied by Saiz-Rubio et al. [23]. Although
few research works have been carried out on the use of I5.0 for
general applications, none of them comprehensively addresses
all of the technologies and various target application fields in
the agriculture domain.

Table I presents a summary of the related surveys on remote
sensing for agriculture in the I5.0 era. Even though several
surveys on I5.0 and remote sensing for agriculture have been
carried out separately, there is no survey focusing specifically
on remote sensing for agriculture in the era of I5.0. This is the
first work attempting to review remote sensing for agriculture
in the era of I5.0, to the best of our knowledge. The significant
contributions of this study are highlighted as follows.

1) The article presents a detailed discussion on the various
remote sensing technologies used in agriculture, and the
associated I5.0 enabling technologies such as data-driven
data analytics, robotics, automation, etc.

2) The underlying inspiration for adopting the remote sensing
technologies in various aspects of agriculture in I5.0 is also
discussed in this survey.

3) A detailed analysis of the various applications of I5.0-
enabled remote sensing for agriculture is provided along
with the existing challenges and how I5.0 adoption may
help in overcoming those challenges.

4) The article presents the several challenges that may arise
during the integration of remote sensing for agriculture
and I5.0 applications. The open research opportunities
that may drive the researchers and industry toward future
research in this interesting domain are also highlighted in
this work.

The rest of the article is organized as follows: Section II
highlights the importance of remote sensing for agriculture. The
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TABLE I
SUMMARY OF LITERATURE SURVEY

section also focuses on the various enabling technologies of I5.0
that can be adopted specifically for agriculture, and the moti-
vation behind the integration of remote sensing for agriculture
and I5.0 is also highlighted. Section III deals with the various
applications of I5.0-enabled remote sensing for agriculture. Each
section in Section III provides a brief introduction about the
application, the existing challenges, and how the adoption of
I5.0 technologies may help in terms of sustainability, human
centricity, and resilience. In Section IV, we highlight the chal-
lenges and open issues of this I5.0 integration in agriculture and
throw light into the possible research directions. Finally, Section
VI concludes this article.

II. BACKGROUND

A. Remote Sensing for Agriculture

Conventional agricultural methods depended on human and
some domesticated animal strength to carry out tasks including
field preparation, irrigation, harvesting, and monitoring. Simple
tools such as hoes, sickles, and scythes were the mainstay of early
agriculture [24]. However, using this tool required immense
human effort and significant time, but with low yields. This sus-
tained agriculture method is defined by local knowledge, labor-
intensive tasks, less access to markets, low yields, and significant
risks. Remote sensing technologies have transformed the field
of agriculture, offering diverse and modern tools for monitoring
and managing agricultural behaviors [25]. Thermal imaging
allows for the detection of heat in crops and soil, providing
valuable insights into water levels and disease occurrence [26].
Multispectral imaging captures data at different wavelengths,
enabling detailed analysis of plant health, soil properties, and
moisture levels [27]. Radar technology detects cloud patterns
and provides data regardless of the weather, making it useful

for analyzing soil moisture and estimating crop biomass [28].
LiDAR is useful in analyzing landscape and crop structures as-
sessment based on its high-resolution 3-D mapping features [29].
Aerial imagery, captured by aircraft or drones, presents high-
resolution images for complete field examination. Satellite im-
agery provides a broader view, essential for large-scale moni-
toring of crop health, land use, and environmental changes [30],
[31]. UAVs collect agriculture data in a personalized and ac-
curate manner, making them useful for specific investigations
and continuous monitoring [32]. All of these technologies work
together to achieve modern precision agriculture, assisting farm-
ers and scientists in making accurate choices about effective and
environmentally friendly farming practices. Table II presents the
different types of remote sensing technologies used in agricul-
ture. Fig. 1 depicts Remote Sensing in Agriculture.

Following the 18th century, during the steam power revolu-
tion, machinery began to take the place of human labor. This
made it easier for small-scale farmers to meet the expanding
food needs of the populace by producing food on a huge
scale. The quick transition from steam to internal combustion
engines improved agricultural productivity much further [60].
Later in the 20th century, the incorporation of machinery and
electronics opened the door for specialized agricultural meth-
ods including GPS-assisted automated tractors, planting robots,
automated irrigation systems, and analytical and monitoring
instruments [61]. Apart from the boost in food production,
the shift from traditional to commercial agriculture practices
has noteworthy effects on society, including decreased labor
requirements for human labor, large-scale farming, and meeting
market demands [62]. Preprogrammed instructions are used by
the automated machinery to carry out tasks mindlessly and with-
out context awareness. Resources are used more efficiently and
take less time when manual monitoring and analytical reasoning
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TABLE II
DIFFERENT TYPES OF REMOTE SENSING TECHNOLOGIES USED IN AGRICULTURE
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are combined with automation. However, large-scale agriculture
is hard for humans to intervene in, which makes labor even
more necessary due to time constraints [63]. The science and
technology of gathering data about the Earth’s terrestrial, atmo-
spheric, and aquatic ecosystems from their emitted and reflected
EM radiation is called remote sensing. It is a type of geospatial
technology used to monitor the physical characteristics of an
object without coming into direct contact with it. It mainly uses
a variety of sensors installed on airplanes, drones, satellites,
or vehicles to gather information on the Earth’s surface and
atmosphere [64]. Precision farming uses automated methods,
which are assisted by human interaction, and remote sensing
as a supplement. In agricultural remote sensing, data regarding
pest outbreaks, soil moisture, vegetation monitoring, irrigation
levels, and the overall health of agricultural elements can be
continuously sensed and provided to the automated machinery.

B. Technologies Driven by I5.0 for Agriculture

1) Data-Driven Data Analytics: Advanced data analysis al-
gorithms enable us to create a virtual model that allows us to
simulate the environment and test different strategies before im-
plementing them in a real-world scenario. For example, farmers
can experiment in the simulated environment with different fer-
tilizers, and pest control mechanisms to optimize the resources
and reduce risks [65].

Recognizing pests and plants for agricultural protection can
be achieved with minimal data, making it a cost-effective so-
lution for farmers. Li and Yang [66] proposed a method called
“metalearning few-shot classification” that learns from just a
few examples. This method “mimics” real-world scenarios by
training on diverse data representing potential pests and plants.
Using publicly available resources, we built a balanced database
for effective training. Similar to this, sophisticated data analysis
tools facilitate the examination of large datasets to provide
new perspectives on difficult-to-understand systems. Object and
feature classification, trend and pattern recognition, all depend
heavily on data-driven data analysis. To benefit nontechnical
users including end users and policymakers, data analysis tools
assist in processing data and producing output in an easily
understandable format.

Metalearning aims to create models that can quickly adapt
to new tasks using minimal data. It focuses on using previous
knowledge to increase learning efficiency and generalization.
More interestingly, Tseng et al. [67] proposed TIML: task-
informed metalearning for agriculture. The primary goal of
this study is to investigate how model-agnostic metalearning
(MAML) weights can be modulated, even when all tasks were
selected from a single dataset. The experiments were carried out
using the CropHarvest dataset. The experimental results show
that the proposed TIML approach outperforms other algorithms
on the CropHarvest dataset, with the highest F1 and AUC ROC
scores. TIML consistently outperforms other algorithms across
all tasks, including a difficult Brazil task with only 26 positive
datapoints.

Another interesting research in [68] shows how metalearning,
specifically MAML, can effectively learn from different datasets

while preserving the unique information that exists in each
dataset. The proposed model is a metalearning approach that
uses a long short-term memory model to determine whether
pixels contain a specific crop or not. The primary goal of this
study is to determine the efficiency of the proposed model in dif-
ferent locations and creating crop maps for particular geographic
areas with limited positive task labels. The experiments were
conducted on three datasets: 1) Togo, 2) Kenya, and 3) Brazil.
The experimental findings show that the proposed metalearning
approach outperforms both random and pretrained baselines in
different locations.

Few-shot learning in remote sensing agriculture allows the
efficient training of models with limited labeled data, vital for
sparse and dynamic agricultural landscapes. By making use
of transfer learning and metalearning techniques, it simplifies
rapid adaptation to new environments and crop types. A work
proposed in [69] on few-short learning introduces a method
called DLA-MatchNet for remote sensing image scene classi-
fication. It targets learning discriminative representations and
an appropriate metric for remote sensing images, which is fre-
quently overlooked by existing works. The attention technique
was employed to discover discriminative regions and an adaptive
matcher was used to address issues of large intraclass variances
and interclass similarity. Experimental results on three public
remote sensing image datasets show the effectiveness of the
model in few-shot scene classification.

Another work done by Kim and Chi in [70] created a network
called SAFFNet, a self-attention-based feature fusion network,
for remote sensing few-shot scene classification. The authors
underline the challenges in classifying new unseen scene cat-
egories in remote sensing applications and the significance of
few-shot learning methods. SAFFNet integrates a self-attention
feature selection module to select and reweight informative
representations from images with different receptive fields for
feature fusion. The proposed model is evaluated and assessed
on publicly available datasets and compared to other few-shot
approaches and multiscale feature fusion networks. Experimen-
tal results demonstrate that SAFFNet significantly enhances
few-shot classification accuracy.

2) Robotics and Automation: Automation can reduce human
labor’s demanding nature and exposure to hazardous conditions,
improving worker well-being and changing the appeal of agri-
culture as a job. Because robots can operate continually, they are
more productive and efficient [71]. Cameras mounted on drones
or land vehicles capture images of the crop and livestock that
are used for further analysis and decision making. Vision-guided
robots may carry out tasks autonomously, such as milking cows,
which enhances sanitation.

Based on real-time data and forecasts, AI will suggest ex-
act methods for harvesting, fertilizing, controlling pests, and
irrigation. Farmers can make well-informed decisions about
irrigation, fertilizing, and pest control because of the data that
drones and sensors on robots collect about soil conditions,
crop health, and water levels. Using real-time data, robots
may apply water, fertilizer, and insecticides at different rates
to maximize resource efficiency and reduce environmental
effects [72].
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3) Blockchain and Distributed Ledger Technology: On a
blockchain, tampering with data is practically impossible, re-
ducing the possibility of fake goods or incorrectly labeled sub-
stances and thwarting fraud involving agricultural products [73].
All parties involved, from farmers to merchants, have access
to reliable information regarding food production, processing,
and transportation, which promotes collaboration and prevents
fraud. Transparency in supply chains helps avoid fraud in the
case of access to subsidy products by guaranteeing that the re-
quired and eligible individuals receive subsidies. As a result, the
actual farmers are encouraged and receive financial support. The
transparency characteristic of blockchain would lessen fraud
risk scenarios, which would benefit the actual user. Another
similar case is manipulating data when claiming insurance for
damaged objects, such as land, crops, and animals, after natural
calamities [74].

4) Human–Machine Collaboration and Upskilling: The IoT
devices concentrate on isolated items such as individual plants
or animals or in compact spaces. This results in the need for fre-
quent manual monitoring and adjustments to robot operations,
which raises labor costs and increases the possibility of human
error. Remote sensing and IoT are both essential to the collection
and processing of data, although they function on different scales
and have different goals. Robust remote sensing data streams
are necessary to fine-tune and enhance robot algorithms for
increased efficacy [75]. Large-scale coverage is offered by re-
mote sensing, which offers a comprehensive picture of changing
environmental conditions, weather patterns, and landscapes.

C. Motivation for the Integration of Remote Sensing for
Agriculture and I5.0

Embracing I5.0 and remote sensing in agriculture gives a
powerful chance to transform the sector, solving issues and
realizing enormous potential. Remote sensing will continue to
be essential in many agricultural domains by utilizing I5.0 tech-
nologies, improving human well-being, resource management,
and decision making. With technological improvements, the
future of remote sensing for agriculture seems bright.

Here are some key motivations for embracing this transfor-
mative approach.

1) Motivation 1. Advanced Sensing and Data Acquisition:
Real-time data about crop growth, animal movements, envi-
ronmental changes, weather, air and water quality, moisture
content, pollutants, and other vulnerabilities are collected by
satellites, drones, and integrated sensors in machinery and ve-
hicles [76]. Biosensors can provide information on the stress
level, deficits, and other possible insights of a plant or animal.
Targeted insecticides can be applied by robotic devices that
use vision sensors. Advanced remote sensing methods such as
hyperspectral imaging are becoming more and more popular.
Hyperspectral imaging systems can be used to find, classify,
or measure the concentration of different components that are
undetectable to standard cameras or the human eye during an
inspection [77], [78].

2) Motivation 2. Resilience and Sustainability: Cobots are
made for intimate human connection, in contrast to standard

robots that are usually kept in cages or isolated work areas [79].
Examples of duties that Cobots can automate are feeding, keep-
ing an eye on the health of the animals, and gathering information
on behavior and productivity. Likewise, Cobots can help with
accurate seed planting, delicately selecting and plucking fruits
and vegetables, and classifying produce according to size and
quality. With the use of COBOTS, farmers may create resilient
agricultural practices and adjust to shifting weather patterns
using remote sensing data-driven decision making. Utilizing
real-time data enables farmers to adapt using various techniques,
reducing the likelihood of disruptions and preserving food pro-
duction [80].

3) Motivation 3. Empowerment and Human-Centric Ap-
proach: The focus of I5.0 is on the human-in-loop across all
dimensions [81]. Therefore, combining remote sensing with I5.0
enables farmers to have access to remote sensing data, insights,
and decision-making tools. Automation improves the quality of
farmer’s life and I5.0 technologies, such as Digital Twin, enable
farmers to test out different scenarios leading to better deci-
sion making about the various agricultural components, which
enhances risk management and reduces agricultural losses. A
broader spectrum of users can utilize cobots because they are
easy to operate even by those without extensive technological
knowledge.

III. APPLICATIONS OF I5.0-ENABLED REMOTE SENSING FOR

AGRICULTURE

The applications of I5.0-enabled remote sensing in agricul-
ture span a wide spectrum, catalyzing transformative changes
across key sectors. In the domain of supply chain monitoring,
this I5.0 integration simplifies real-time tracking and optimiza-
tion, improving the efficiency of agricultural logistics. Crop
monitoring benefits from the adoption of advanced sensors,
IoT devices, and AI algorithms, allowing farmers to obtain
precise data on crop growth, health, and yield predictions,
thereby optimizing cultivation approaches. Water management
perceives developments through the intelligent use of remote
sensing, helping farmers monitor and regulate water usage more
effectively. Plant disease identification is reformed with the aid
of sophisticated sensors and AI, allowing early detection and
targeted treatment interventions. Precision agriculture makes
use of I5.0 technologies to enhance decision-making processes,
enhance resource utilization, and reduce environmental impact.
Environment monitoring includes the tracking of environmental
factors, contributing to sustainable farming practices. Soil health
monitoring provides farmers with more details concerning soil
conditions, fostering better-informed decisions for optimal crop
growth. Agriculture education profits from immersive technol-
ogy integration by offering students and practitioners hands-on
experiences through virtual simulations. Finally, livestock man-
agement is augmented through remote sensing applications, al-
lowing real-time tracking, health monitoring, and efficient herd
management. These various applications collectively highlight
the multifaceted impact of I5.0-enabled remote sensing, steering
to a new era of precision, sustainability, and productivity in
agriculture (see Fig. 4). This section discusses in detail about
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Fig. 1. Remote sensing in agriculture.

the impact of I5.0 on remote sensing for various applications in
agriculture.

A. Supply Chain Monitoring

Agriculture and supply chain management (SCM) are intrin-
sically interconnected in a mutually beneficial relationship that
supports the production and distribution of food and other agri-
cultural products. Agriculture functions as the primary source
of raw materials within the supply chain [82]. It provides
crops, livestock, and various resources that lie as the backbone
of numerous industries. SCM ensures that these agricultural
products are efficiently, safely, and cost-effectively transported
from farms to consumers. SCMs role in agriculture prolongs
from improving production schedules and postharvest handling
to managing distribution networks and obeying to quality and
safety standards [83]. In essence, SCM acts as the channel
between the fields and forks, allowing the agricultural sector
to meet market needs, reduce waste, and improve overall sus-
tainability [84]. This complicated relationship highlights the

critical importance of effective SCM in confirming the success,
reliability, and resilience of the agricultural industry. Here are
some key phases of SCM in agriculture [17]: 1) planning and
forecasting, 2) sourcing and procurement, 3) production and
cultivation, 4) harvesting and delivery, and 5) monitoring and
traceability.

Agricultural SCM faces a multitude of challenges [85] due
to the sector’s distinct characteristics and demands. Seasonal
variability is very common in agriculture and is driven by
aspects such as weather conditions and crop cycles, giving
significant hurdles to SCM efficiency. Additionally, the easy
decomposable nature of many agricultural products, such as
fruits and dairy, requires rigorous efforts to maintain product
quality and freshness throughout the supply chain. Stakeholder
coordination, including farmers, processors, distributors, and
retailers, can be complex, especially in rural areas. Unpre-
dictable changes in crop yields and market demand contribute to
SCM uncertainty [86]. This also affects production planning and
inventory management. Sustainability issues and environmental
regulations demand balancing profitability with environmentally
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Fig. 2. Crop monitoring in agriculture using remote sensing and I5.0.

responsible practices. Compliance with stringent regulations
related to food safety and quality is another ongoing challenge.
Quality control and traceability systems are vital but complex
and expensive to implement.

I5.0 integration has the potential to revolutionize the field of
supply chain processes, focusing on collaboration between hu-
mans and machines [87]. The integration of I5.0, which typically
involves cutting-edge technologies such as IoT, blockchain, DT,
and AI, can use remote sensing data and has the potential to bring
about a significant transformation in supply chain processes. The
importance lies in the development of collaboration between hu-
man workers and machines to enhance efficiency, productivity,
and sustainability in the supply chain, aligning with the core
principles of I5.0 [88]. Here is how I5.0 can use remote sensing
data to enhance agricultural SCM.

Remote sensing has become an innovative tool in agriculture,
providing farmers with a wealth of information about their crops
and fields from a bird’s-eye view. Satellite imagery, drones, and
IoT sensors can provide a wealth of data, such as crop health,
soil moisture, nutrient content, etc., allowing farmers to monitor
fields in real time.

AI has the potential to transform precision agriculture into
agricultural SCM [89]. Advanced AI algorithms can integrate
data from various sources to create a comprehensive picture
of crop health. It can analyze remote sensing data to detect
even minor changes in vegetation health, recognizing potential

diseases before they are visible [90]. By examining historical and
current data, it can predict issues such as nutrient deficiencies,
allowing farmers to proactively address challenges and optimize
crop yield. This collaboration involves not only the capabilities
of AI but also the expertise of humans, who contribute valuable
insights into local conditions and practices, aligning with the
human-centric approach of I5.0. In [91], Shadrin et al. proposed
a work that involves the development of a scalable smart agricul-
ture system using wireless sensor nodes and machine learning
(ML) for plant growth assessment.

Remote sensing data, when combined with advanced analyt-
ics using ML, can be used to predict crop yields [92]. These
data are valuable for optimizing supply chain planning, includ-
ing production scheduling and distribution. Another research
effort [93] used ML to predict almond yield based on climate
and orchard variables. The authors found that winter conditions
and summer vapor pressure deficits significantly affect yield.
The authors’ findings aim to inform cultivators about adapting
management practices for plant protection in changing climates.
The data derived from remote sensing not only help in predicting
yields but also bring them into line with a sustainable approach,
a core principle of I5.0. Table III depicts the roles of I5.0 in
the agricultural supply chain monitoring. Building trust and
transparency in any process is another crucial ideology in I5.0.
Blockchain integration in agricultural SCM has the potential
to offer transparency and traceability features in the SCM pro-
cess [94]. Blockchain, with its immutable and transparent ledger,
improves trust by providing a tamper-proof record of the entire
supply chain journey. Remote sensing data, combined with
blockchain, can improve transparency and traceability aspect
in the supply chain [95]. Consumers can monitor the journey of
agricultural products from farm to table, confirming quality and
authenticity. The proposed work in [96] focuses on evaluating
the maturity level of blockchain technology within the agri-food
supply chain. The work found that blockchain technology offers
significant benefits, such as allowing stakeholders and con-
sumers to access reliable information, tracking goods effectively,
and dropping the need for third-party monitoring. The study
also identified smart contracts, IoT, transaction records, and
traceability tags as the significant elements that can improve
the agricultural supply chain when integrated with blockchain
technology.

B. Crop Monitoring

Crop monitoring in agriculture comprises the systematic ob-
servation and assessment of crops throughout their growth cycle
to improve productivity and make informed decisions. This
process uses a combination of technology, data analysis, and tra-
ditional agricultural methods to monitor various aspects of crop
health [97]. This includes growth patterns, disease occurrence,
and resource utilization. Recent technologies such as remote
sensing, satellite imagery, drones, and sensors provide real-time
or near-real-time data, allowing farmers to detect problems with
the crops early [8]. This real-time information about the field
also helps to make timely interventions and enhance overall crop
management. By making use of these tools, farmers can make
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Fig. 3. Environmental monitoring in agriculture using remote sensing and I5.0 principles for sustainable farming.

Fig. 4. Applications of I5.0-enabled remote sensing for agriculture.

data-driven decisions to improve crop yield, resource efficiency,
and sustainability in modern agriculture [98].

A large volume of data generated by various monitoring
methods, such as satellites, drones, and sensors, specifically
managing and analyzing the data generated efficiently carries
a significant challenge for farmers, and demands advanced data
processing and interpretation skills [99]. Deploying monitoring
technologies, such as satellite imagery and precision agriculture
tools, can be expensive [100]. The lack of the necessary infras-
tructure and reliable connectivity for seamless data transmission
is a big challenge. Limited internet availability in rural areas
can restrict or delay real-time monitoring and timely response

to crop-related issues [101]. The collection and sharing of agri-
cultural data raise concerns about privacy and security [102].
Farmers may not be willing to share sensitive information about
their crops, soil, and practices, and be scared of unauthorized
access or misuse of data. Changeable weather patterns, including
extreme events such as storms, droughts, or floods, can have a
serious impact on the effectiveness of crop monitoring. These
changes can introduce uncertainties and affect the accuracy of
predictive models.

Satellite sensors, including multispectral and hyperspectral,
can capture data on crop health by measuring the reflectance
of different wavelengths [103]. This remotely sensed data uses
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TABLE III
ROLES OF I5.0 IN THE AGRICULTURAL SUPPLY CHAIN MONITORING

vegetation indices such as the normalized difference vegetation
index, which provides insights into plant health, biomass, and
growth [104]. ML can be employed to analyze these data to
identify areas of stress, nutrient deficiencies, or diseases in
crops [105], [106], [107]. Interesting work in [108] involves
using the DLR Earth Sensing Imaging Spectrometer (DESIS) to
predict crop health. It comprises the classification of major crops
in the USA using DESIS data and ML algorithms, focusing on
corn, soybeans, and winter wheat. This collaborative approach
makes use of human expertise, the core principle of I5.0, with
machine capabilities to make timely interventions to monitor
crop health.

In addressing the challenge of securely sharing sensitive
information related to farming and soil conditions, blockchain
technology has evolved as a robust solution [109]. Blockchain
provides a secure and decentralized method to store and manage
remote sensing data. Farmers can have greater control over who
accesses their information and can grant or restrict permission
through smart contracts [110]. This aligns with I5.0’s impor-
tance on secure and controlled access to data and technology
integration [111], confirming that sensitive information remains
protected while still promoting collaboration and data sharing
among authorized stakeholders. The work in [112] summarizes a
model for better traceability and tamper-proofing of remote sens-
ing data changes. It aims to integrate blockchain technology with
remote sensing data sharing to confirm decentralized, secure,
and reliable data storage. The model comprises a multichain
structure, utilizing a public chain to store open data and a sum-
mary of federated chain blocks. Fig. 2 depicts crop monitoring
in agriculture using remote sensing and I5.0.

The absence of high bandwidth connectivity poses a signifi-
cant problem in linking with remote sensing devices, presenting
a critical challenge in agriculture in the era of I5.0. Addressing
this problem is essential for simplifying the smooth transmis-
sion of data from various remote sensing devices, including
satellites, drones, and ground-based sensors. Overcoming this
challenge allows real-time monitoring capabilities, permitting
farmers to promptly receive updates on vital factors such as
crop conditions, pest infestations, and environmental dynamics.

Sharma et al. [113] proposed a work that involves the design of
a compact antipodal structured antenna for future 5G broadband
applications and upcoming remote sensing satellite links. The
stable performance of the proposed antenna has made it suitable
for deployment in application devices. This integrated approach
encourages I5.0’s emphasis on seamless connectivity, develop-
ing a more interconnected and responsive agricultural system.
Ranjha et al. [114] demonstrate a technique for achieving ultra-
high reliability for short-packet communication in UAV-assisted
agricultural systems for effective remote sensing of crops. The
approach uses iterative methods based on perturbation theory to
improve the system parameters, with simulation results verifying
the proposed algorithm’s effectiveness. The work aims to allow
ultrareliable low-latency communication in highly challenging
remote sensing scenarios. Sharifi et al. [115] focus on field
border extraction from satellite images using a convolutional
neural network that performs multiple semantic segmentation
tasks. The model offers high efficiency in detecting field borders
accurately at both pixel and object levels. The proposed approach
involves the use of ResUNet-a architecture with multiple convo-
lutions to classify features on several scales. The work highlights
the importance of contextual knowledge at different levels to
improve the accuracy of border extraction. Shafi et al. [116]
make use of IoT, and ML focused on crop health mapping using
low-altitude remote sensing. Data collected from drone imagery
and IoT sensors was gathered and used for crop health classifica-
tion. ML algorithms were applied to classify crop health using
the fused data. Different classification models were used and
evaluated, with a model M4 outperforming the rest.

C. Water Management

Water management plays a vital role in achieving sustain-
able agriculture [117], serving as a serious component of the
growth and productivity of crops. Efficient water management
in agriculture comprises the careful planning, distribution, and
utilization of water resources to optimize crop yields while min-
imizing waste. As the global population continues to increase,
the demand for food production increases, highlighting the
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importance of responsible water management practices [118].
Farmers and policymakers face the challenge of balancing the
demands of agriculture with the necessity of preserving water
resources for future generations. Effective water management
not only confirms the economic viability of farming but also con-
tributes to environmental sustainability by avoiding the impact of
water shortages and promoting resilience in the face of changing
climate conditions [119]. By integrating I5.0, which prioritizes
human collaboration and emphasizes the interconnection of
various stakeholders, stakeholders can work together to develop
and implement innovative solutions for sustainable water use in
agriculture. Thus, understanding and implementing sound water
management practices are mandatory for achieving food security
and promoting sustainable agriculture.

Water management in agriculture faces significant challenges,
including water shortage made worse by factors such as climate
change and population growth, leading to increased competition
for limited water resources [120]. In addition, water quality
issues arise due to pollution from agricultural excess and indus-
trial discharges, raising threats to crop health, soil fertility, and
ecosystems [121]. Inefficient water use, often arising from out-
dated irrigation practices, contributes to wastage and irregular
distribution, further increasing competition for water. Climate
change introduces increased variations in weather patterns, with
increased frequency and severity of droughts and floods disrupt-
ing traditional water management approaches [122]. Handling
these challenges requires a comprehensive method integrat-
ing advanced irrigation technologies, sustainable practices, and
adaptive strategies to confirm the careful and sustainable use of
water resources in agriculture, promoting the sustainability and
resilience of I5.0.

Microwave and infrared sensors on satellites can calculate soil
moisture content, helping farmers and water managers make
informed decisions about irrigation planning [123]. Deployed
ground sensors and satellite data can be analyzed using ML
to provide real-time information on soil moisture levels across
large agricultural areas. Das et al. [124] proposed a work that
involves the development and evaluation of an ML approach
for the joint modeling of carbon and water fluxes in drylands
of the western US using satellite data. The work explicitly
contains soil moisture in the model and introduces new vege-
tation indices for capturing dryland seasonality demonstrating a
form of human–machine collaboration through the integration
of advanced technologies in agriculture.

Remote sensing data can be used to assess the efficiency
of irrigation systems by monitoring changes in soil moisture
before and after irrigation. Sensors capable of capturing thermal
infrared radiation are deployed on various platforms, including
satellites, drones, and hand-held devices [125]. Thermal infrared
imagery can help identify areas with water stress, aligning
with I5.0’s resilience ability in agriculture by allowing farmers
to adapt irrigation practices accordingly. The work proposed
in [126] involves the use of UAVs for precision agriculture
applications such as tracking crop health, estimating nutrient
status, yield, and crop water demand. Thermal sensors deployed
in the UAVs were used to monitor the surface temperature of the
crops before and after irrigation to identify plant water stress

in crops. It supports water management by allowing farmers to
make timely and effective irrigation decisions.

Satellite or drone-based sensors can gather data on soil
moisture levels, crop health, and weather conditions [127]. AI
algorithms can analyze the remote sensing data to create pre-
dictive models for soil moisture dynamics [128]. These models
allow automated irrigation scheduling by taking factors, such as
current soil moisture, crop water requirements, and upcoming
weather conditions. Another interesting work in [129] uses an AI
algorithm to estimate crop behavior in terms of crop coefficient
(Kc) and growth stages at the plot level. The work demonstrates
improved Kc and growth stage estimation compared to experi-
mental Kc protocols, which can help design dynamic irrigation
management and allocate water between plots in real time.

D. Plant Disease Identification

Plant disease identification in agriculture helps in the identifi-
cation of crop-damaging diseases. Plant disease identification in
agriculture is an important part of the farming process because
correctly and quickly identifying diseases can lead to proper
treatment, controlling disease spread, and minimizing crop dam-
age. Plant disease identification helps in crop yield improve-
ment, food security, and the reduction of agricultural economic
losses [130]. Identifying a crop’s history based on previous
disease occurrences and applying advanced disease prevention
practices can reduce future disease risk. Plant diseases can be
avoided by following appropriate agricultural practices such as
crop rotation, proper irrigation, and sanitation. Plant disease can
be identified by spots on leaves or fruits, undersized growth,
color changes, and other abnormal changes in the plant’s exterior
parts [131]. To provide effective treatment, it is important to
identify the germs that cause the disease, such as fungi, bacteria,
and viruses. As medical technology advances, samples of the
affected plant are sent to a lab for microscopic examination for
a more accurate diagnosis. Recent technological advances, such
as imaging technology, remote sensing, and AI, are being useful
in identifying plant diseases [132].

Remote sensing technology aids in the monitoring of plant
diseases and pests by identifying plant health from a distance,
which is primarily useful for large-scale monitoring. This tech-
nology provides efficient surveillance for large agricultural areas
by minimizing time-consuming tasks [133]. Agriculture experts
can easily identify the specific location and severity of disease
and pest infestations in crops by analyzing data from remote
sensors, which is important for understanding the severity of
the problem and responding appropriately. Remote sensing
technology uses live agriculture data, such as optical data, to
detect changes in plant health that are not visible to the naked
eye. It also utilizes fluorescence and thermal parameters, which
are important in detection and monitoring processes [134].
High-resolution images provide detailed information about the
landscape, which enables an analysis of environmental factors
that can influence disease and pest spread. As a result, this
technology is critical not only for identifying current plant health
issues, but also for continuously protecting crops from future
threats [135].
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Although remote sensing technology can help in identifying
plant diseases and pests, it has some limits. One of the most
significant challenges is the limited identification of certain
diseases and pests, particularly those lacking unique, distinct
features that can be detected by remote sensors [136]. This
is particularly challenging for soil-borne and root diseases,
which frequently cause systemic changes in the metabolism
of a crop. These changes can be minor and complex, making
remote sensing technologies difficult to identify. Another sig-
nificant challenge is ensuring the accuracy and reliability of
remote sensing data. Accurate and reliable data are required for
efficient crop preservation, but gaps in sensor performance and
outside factors can affect data accuracy. Furthermore, existing
sensor characteristics may limit their ability to detect specific
diseases and pests, emphasizing the importance of future sensor
development [137]. I5.0 plays an important role in plant disease
identification. The human-centric approach, which is consid-
ered as an important principle of I5.0, helps in plant disease
identification by leveraging human knowledge. Accurate disease
identification cannot be accomplished solely through advanced
technology. Skilled humans must be involved in dealing with
complex or ambiguous scenarios, assessing the significance
of symptoms, taking environmental factors into account, and
determining the status of plant disease conditions [4]. I5.0 aids
in adaptive learning by allowing farmers to interact with AI
systems and provide feedback. Based on this feedback, the AI
systems learn and improve, thereby helping in disease identifi-
cation. The collaborative characteristic of I5.0, which combines
human expertise and machine productivity, aids in providing
efficient and environmentally friendly solutions for plant disease
identification [4]. The use of I5.0 helps in the achievement
of sustainable economic practices by reducing waste and ex-
cess production by recognizing and dealing with plant disease
spread. Precision agriculture practices, when combined with
remote sensing and AI, can indicate exactly where and how
much treatment is needed, thereby reducing chemical usage
and the impact on the environment. Predictive analysis aids in
the prediction and preventive management of plant diseases,
thus minimizing the need for large amounts of chemical med-
ication and protecting the ecological balance [138]. Table IV
explains the I5.0 principles for identifying plant diseases, em-
phasizing the importance of technology and human expertise,
customized solutions, user-friendly designs, and sustainable
practices.

E. Precision Agriculture

Precision agriculture improves agricultural productivity and
farming techniques by monitoring and controlling environmen-
tal variations using modern technology [139]. This method
increases productivity by optimizing the use of resources such as
water, pesticides, and fertilizers based on environmental condi-
tions. It also reduces waste, reduces environmental impact, and
lowers costs by making better use of resources [140]. Precision
agriculture makes use of data from drones, satellites, and sensors
to make decisions and monitor crop health. Precision agriculture
aids in the detection of plant diseases and nutrient deficiencies at

TABLE IV
I5.0 PRINCIPLES FOR PLANT DISEASE IDENTIFICATION

an early stage. Furthermore, precision agriculture provides a ro-
bust system for dealing with weather-related changes, ensuring
environmentally friendly and productive agriculture. Precision
agriculture aids in the monitoring of many parameters, including
crop irrigation, best sowing stages, and harvesting. Precision
agriculture also provides accurate crop status information that
can be acquired via ground and air sources.

Remote sensing provides an important role in precision agri-
culture by providing important information for improved agri-
cultural management. Remote sensing is useful for optimizing
inputs for agriculture, increasing crop production, and reducing
input waste [103]. Remote sensing applications in agriculture
provide crop surveillance, irrigation management, precise nutri-
ent deployment, disease and pest control, and crop yield estima-
tion. The use of high-definition satellite imagery has increased its
application in the agriculture field. Furthermore, the use of UAVs
has improved the effectiveness of remote sensing [141]. Remote
sensing technology ensures best agricultural practices by provid-
ing accurate information, resulting in more efficient and environ-
mentally friendly farming methods, emphasizing its important
role in precision agriculture [142]. The integration of wireless
sensor networks (WSN) and UAVs improves crop monitoring,
agricultural yields, production modeling, future predictions, and
effective decision. The WSN-UAV-based IoT framework pro-
vides advantages such as real-time data collection and analysis,
as well as 3-D modeling of sensor data. Crop monitoring using
UAV images can achieve a variety of outcomes, including water
level monitoring, pesticide levels, and identification of diseases.
In [143], Abioye et al. proposed a predictive controller model
for precision irrigation based on discrete Laguerre networks. The
proposed model employs embedded devices in an IoT platform
to monitor water consumption at the appropriate time, quantity,
and location by monitoring the weather as well as controlling soil
moisture levels and crop response. When compared to existing
approaches, the proposed approach reduced water usage by 30%
over 21 days.
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Although remote sensing technology in precision agriculture
offers advantages, it also has some limitations. Interpreting
and analyzing the huge quantity of agricultural data generated
by remote sensing devices necessitates human expertise [144].
Obtaining high-resolution and accurate information for special-
ized agricultural needs is one of the most challenging tasks in
precision agriculture using remote sensing technologies. Pur-
chase and maintenance of modern remote sensing technology,
such as high-resolution satellites and UAVs, can be expensive,
especially for small-scale farmers [145]. Environmental factors
such as cloud darkness, which can blur satellite imagery, and
changing weather conditions, which can affect data accuracy,
might create a negative impact on remote sensing efficiency.
Integrating remote sensing data into traditional farming systems
is a major problem [146]. This integration necessitates not just
technological data processing and analysis skills but also human
knowledge and intervention. Farmers and agricultural profes-
sionals must be able to analyze data in the context of their own
farming techniques and situations. This needs a combination of
scientific expertise and practical agricultural knowledge, empha-
sizing the significance of training and assistance in the efficient
use of remote sensing in agriculture. The challenges involved in
integrating remote sensing into precision agriculture highlight
the vital role of human involvement and experience. Farmers and
agricultural workers need both scientific expertise and practical
application skills to properly use remote sensing data [147].
This is where I5.0 can make a huge contribution. There is a
chance to improve agricultural productivity and sustainability
by integrating remote sensing technical improvements with the
human-centric approach of I5.0. This integration can lead to
more productive, efficient, and environmentally friendly agri-
cultural practices [111].

I5.0 can significantly improve precision agriculture by ad-
dressing its limitations. The human-centric Approach im-
proves precision agriculture by combining human expertise
with cutting-edge technologies such as AI and remote sensing,
ensuring that data analysis and decision making are guided by
real-time agricultural expertise [148]. When human knowledge
expertise is applied to remote sensing data in agricultural tasks,
personalized and successful farming practices occur. Training
farmers and agricultural professionals on how to use advanced
technologies results in efficient farm management. This method
ensures that precision agriculture is not completely reliant on
technology but also makes use of human expertise and in-
puts [149]. In I5.0, sustainability plays an important role in
improving precision agriculture by encouraging environmen-
tally friendly and resource-effective practices [117]. Precision
agriculture benefits from I5.0 by emphasizing the efficient use
of resources such as water, fertilizers, and pesticides, reducing
waste and environmental harm. Precision agriculture contributes
to lower greenhouse gas emissions by reducing resource overuse
and meeting sustainable development goals. I5.0, sustainable
precision agriculture methods guarantee the long-term health
and fertility of the soil, saving ecosystems for future genera-
tions [21]. This sustainable approach in precision agriculture
using I5.0 focuses on protecting the environment and preserv-
ing resources, resulting in more environmentally friendly and

TABLE V
PRECISION AGRICULTURE UTILIZES REMOTE SENSING AND I5.0 TO CREATE A

SUSTAINABLE, EFFICIENT, AND RESILIENT AGRICULTURAL SYSTEM

productive farming. Mass personalization, an important concept
in I5.0, significantly improves the efficiency, sustainability, and
productivity of precision agriculture. Customizing agricultural
practices and approaches to meet the specific needs of indi-
vidual farms allows for more effective and resource-efficient
operations. This personalized approach aligns with the goals of
sustainable farming, guaranteeing that agricultural practices are
both environmentally friendly and financially feasible. Table V
presents precision agriculture utilizing remote sensing and I5.0
to create a sustainable, efficient, and resilient agricultural sys-
tem.

F. Environmental Monitoring

Environmental monitoring in agriculture is critical for in-
creasing crop yields, ensuring resource sustainability, and re-
ducing the effects of climate change and environmental damage
caused by farming operations. Environmental monitoring helps
in monitoring soil health conditions such as nutrient levels,
pH levels, moisture, and temperature. Monitoring all of these
parameters helps to understand the soil’s capacity and assists
in making decisions regarding fertilization, irrigation, and crop
rotation [150]. Environmental monitoring methods are used to
track climate conditions such as temperature, rainfall, humid-
ity, and wind patterns. These data are essential for scheduling
sowings, irrigation, and crop protection during bad weather.
Environmental monitoring in agriculture helps in determining
the quality and quantity of irrigation water. Monitoring water
sources ensures that crops get enough water without wasting
it and reduces excessive irrigation, which can help to prevent
soil degradation [151]. Diseases and pests that harm crops are
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being monitored for their presence and spread, enabling early
use of pesticides. Environmental monitoring aids in determining
how air quality affects crop health. This helps in the identifi-
cation of harmful pollutants that harm crops and reduce their
quality.

Environmental monitoring in agriculture is enhanced by tech-
nologies, such as remote sensing, UAVs, and satellite imaging.
Remote sensing technologies provide detailed information on
land topography, soil structure, and the plant life that is currently
growing in afforestation. Remote sensing and satellite imaging
can be used to identify appropriate areas for planting, track
the progress of newly planted areas, and assess forest health
periodically. These sensing devices provide accurate mapping
and analysis, which is essential for successful afforestation
activities [152]. Remote sensing and satellite imagery enable
real-time monitoring of deforestation. They detect changes in
forest areas, identify illegal logging locations, and assist in
ensuring that forest conservation policies are followed. UAVs
aid in the provision of high-resolution images of specific areas,
allowing for close monitoring and quick response to deforesta-
tion activities.

Remote sensing technologies play an essential role in wildlife
conservation as they provide accurate environmental monitor-
ing [153]. Satellite and aerial imagery provide information about
changes in land usage and habitat fragmentation, which is impor-
tant in understanding how agricultural practices affect wildlife.
Conservation approaches can be developed to protect species
in danger and preserve biodiversity by monitoring changes in
the environment [154]. Satellite imaging and UAV technologies
are useful for gathering information during monitoring droughts
and floods. They monitor weather patterns, soil moisture levels,
and water availability across large areas and provide important
forecasting information. These data assist farmers in making
irrigation, crop selection, and land management decisions, re-
ducing the impact of extreme weather on crop yields [155].

Although the use of remote sensing has advantages in en-
vironmental monitoring, some challenges must be addressed.
One of the challenges of using remote sensing in environmental
monitoring is data privacy and security, as the large amount
of data provided by remote sensing can raise ethical concerns
about the use as well as confidentiality, particularly in areas
resided by local people [156]. Obtaining an appropriate spatial
and temporal resolution is an enormous challenge [153]. Al-
though high spatial resolution can capture accurate images, it
may not be practical for constant monitoring. Remote sensing
generates massive amounts of data, which may be challenging to
maintain, analyze, and evaluate. Remote sensing data analysis
and interpretation require specialized human expertise [157].
Data degradation and noise effects are common challenges in
imaging processes, resulting in inconsistent and low-quality
images. These issues can be caused by a variety of factors,
such as sensor limitations, environmental conditions, and com-
putational techniques, requiring advanced noise reduction and
data correction strategies to ensure accuracy and reliability in
image analysis and interpretation. Effective mitigation involves
utilizing sophisticated algorithms and preprocessing techniques
to improve data integrity and usability [158].

Incorporating local expertise and viewpoints into remote sens-
ing operations is critical. It is a significant challenge to make
remote sensing data accessible and understandable to people
without expertise, including local farmers [159]. Fig. 3 depicts
environmental monitoring in agriculture using remote sensing
and I5.0 principles for sustainable farming.

I5.0 helps in accomplishing the goal of sustainability in
remote sensing and satellite imaging for environmental mon-
itoring. Remote sensing and satellite imaging are employed
for monitoring deforestation, monitoring ocean health, and ob-
serving atmospheric changes [160]. The incorporation of I5.0
helps in reducing environmental impact while improving data
collection for environmentally friendly practices [22]. Data
analysis experts must be involved to understand the complicated
remote sensing data. These professionals are skilled at analyzing
complex data and converting it into formats that the general
public can understand [161]. Human–machine collaboration is
emphasized in I5.0 during environmental monitoring. Sensors
collect data, AI systems analyze satellite data, and then human
decisions are made based on the analysis [162].

Human collaboration ensures that technology and human
intervention achieve effective environmental monitoring goals.
This approach not only improves monitoring efficiency, but
guarantees that the knowledge obtained is relevant, accurate, and
useful in real-world scenarios. Mass personalization and mass
customization are important principles of I5.0 that aid in environ-
mental monitoring in areas, such as afforestation, deforestation,
wildlife preservation, and drought and flood monitoring. These
principles enable personalized solutions to be used in specific
environmental conditions and needs, enhancing the effective-
ness of monitoring [163]. Mass customization in afforestation
and deforestation allows for the creation of specialized drones
and satellite imaging technologies that may be customized to
different types of forests and geographical locations. These
devices may be customized to monitor certain tree species and
detect illegal deforestation.

Conservation measures become more efficient when these
technologies are customized for specific ecosystems. For
wildlife preservation, I5.0 helps in providing customized track-
ing systems and sensors that cater to the specific habits and
needs of different wildlife species [20]. This personalization
ensures that monitoring efforts are nonintrusive and highly ef-
fective, leading to better understanding and protection of animal
populations. It also facilitates the development of personalized
conservation strategies that address the unique challenges faced
by each species. This approach not only increases the effective-
ness of conservation measures but also ensures that these efforts
are customized to the specific needs and challenges of various
wildlife preservation efforts [164]. When dealing with natural
disasters such as droughts and floods, mass personalization
enhances the effectiveness of monitoring and response systems.
Weather patterns, soil moisture levels, and water flows in spe-
cific regions can be closely monitored using customized sensor
networks and forecasting techniques. This approach improves
the accuracy of early warning systems [165]. AI integration
in remote sensing [166] discusses the use of deep learning
methods for semantic segmentation in land cover classification
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in urban environments. It targets both individual environments
and multiregion/urban city scenarios. The work involves the de-
velopment and application of multimodal AI models to process
and understand diverse remote sensing data for land cover seg-
mentation. The study highlights the importance of generalization
ability across different urban environments and addresses the
challenges and potential future solutions in the field chosen.

G. Soil Health Monitoring

Soil health monitoring in agriculture is a methodical and
extensive process that entails regular assessment and analysis
of diverse soil properties and indicators to assess the over-
all fertility, structure, and biological activity of the soil. This
proactive strategy is essential for fostering sustainability and
productivity in farming, offering crucial insights into nutrient
levels, microbial diversity, and potential soil limitations [167].
The significance of soil health monitoring lies in its ability to
guide precision agriculture, empowering farmers to optimize
resource management, boost crop productivity, and mitigate
environmental impacts [168]. The article also discusses the need
for soil health monitoring, highlighting its pivotal role in opti-
mizing crop productivity, minimizing environmental impacts,
and fostering sustainable resource management. Additionally,
this survey delves into the multifaceted benefits, including in-
formed decision-making for farmers and land managers, im-
proved nutrient management, and enhanced soil structure.

The challenges encountered in soil health monitoring for agri-
culture are several and intricate. According to Silva et al. [169],
the limited accessibility and affordability of advanced monitor-
ing technologies pose significant hurdles, a sentiment echoed
by Usman et al. [170], who highlight the spatial and temporal
variability of soil properties as additional obstacles to obtaining
accurate and representative data. The complexity of soil ecosys-
tems, emphasized by Reddy et al. [171], necessitates nuanced
models to capture dynamic interactions while Bagnall et al. [172]
point out that the lack of standardized protocols contributes
to inconsistencies in data interpretation. Ethical concerns re-
garding data privacy and ownership, as discussed by multiple
sources, further complicate the collection and sharing of soil
health information. To establish an effective and sustainable
soil health monitoring process, addressing challenges such as
integrating stakeholder input, ensuring long-term commitment,
and overcoming resource constraints is important.

Challenges arise from the limited spatial and spectral reso-
lutions of remote sensing data, creating difficulties in capturing
fine-scale variations in soil properties as highlighted by Debang-
shi et al. [173]. Moreover, atmospheric interference, including
clouds and aerosols, can impede the reliable acquisition of
data, thereby impacting the accuracy of soil health assessments
according to Deshpande and Inamdar [174]. The complexity of
calibrating and validating remote sensing models for soil health
parameters persists due to the dynamic nature of soil properties
and the requisite ground truth data, as observed by Pande and
Moharir [103]. Additionally, the high initial costs associated
with obtaining and maintaining remote sensing technology may
serve as a deterrent to widespread adoption, particularly in
resource-constrained agricultural settings as noted by Sadenova

et al. [175]. Overcoming these challenges is crucial to unlocking
the full potential of remote sensing for soil health monitoring and
advancing sustainable agricultural practices.

I5.0 has the potential to revolutionize soil health monitoring
in agriculture by harnessing remote sensing data and integrating
cutting-edge technologies for data acquisition, processing, and
analysis. The application of agricultural remote sensing, utiliz-
ing sensors such as SAR, NIR, LiDAR, and multispectral imag-
ing, allows for nondestructive, large-scale observation of crops
and soil conditions. Martos et al. [4] highlight that this approach
provides high-resolution data, facilitating accurate assessments
of soil health. To address challenges associated with model
calibration and validation, as noted by Chmielewski et al. [176],
these technologies significantly enhance the precision of soil
health assessments. Moreover, the deployment of remote sensing
technologies, particularly through UAVs and robotic process au-
tomation (RPAs), has demonstrated promise in soil analysis and
disease surveillance, aligning with the principles of Agriculture
5.0 outlined by Reid and Castka [177]. This technological inte-
gration supports sustainable agricultural resource management.
The synergy of remote sensing and data analytics not only boosts
the efficiency of soil health monitoring but also contributes
to the overall sustainability and productivity of agricultural
practices. I5.0 emphasizes the development of cost-effective
solutions and widespread accessibility of technologies, ensuring
that even farmers in resource-constrained settings can adopt
remote sensing tools for soil health monitoring. This inclusive
approach fosters a more sustainable and productive agricultural
landscape, aligning with the vision presented by Diaz-Gonzalez
et al. [178].

H. Agriculture Education

Agricultural education encompasses structured and method-
ical guidance, instruction, and training provided to students,
farmers, or individuals keen on delving into the realms of
agriculture, spanning the science, business, and technology as-
sociated with both animal and plant production. This educational
framework also extends to the management of the environment
and natural resources. Its significance in contemporary society
and for future generations is underscored for various reasons,
such as increasing self-sustainability, stimulating interest in
agriculture, promoting sustainable and responsible agricultural
practices, enhancing food security, etc. [179], [180].

Agricultural education faces challenges associated with per-
sistent stereotypes and misconceptions about the field, limiting
its attractiveness and recognition. The stereotype that agriculture
solely involves traditional farming practices can restrict the
scope of agricultural education [181]. The lack of motivation to
establish agricultural education programs is another challenge,
as the misconception that agriculture is not a viable career path
leads to a lack of interest in offering these programs [182].
Difficulty in aligning agricultural education courses with key
graduation requirements can impede student enrollment. This
challenge highlights the need for flexible curricula that meet
both educational standards and the evolving needs of the agricul-
tural sector [183]. Teachers must have the minimum enrollment
needed to continue teaching their course content, which can be
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challenging in some cases [181]. Addressing these challenges is
essential for the continued success and relevance of agricultural
education programs and the overall well-being of the agricultural
sector.

I5.0 enables the use of remote sensing data in agriculture,
which provides extensive coverage and highly accurate infor-
mation about land cover, land use changes, and soil erosion,
allowing for precise monitoring and management of soil health
attributes [165]. These data can be correlated to soil health
attributes measured in the field, further enhancing its reliability
and effectiveness in soil monitoring [4]. Remote sensing in
agriculture has been used to guide the application of fertilizer,
pesticides, and other farm inputs, with benefits such as improved
crop yield and reduced environmental impacts [184]. The inte-
gration of I5.0 and remote sensing into agricultural education
programs allows students to gain a deeper understanding of
the interconnectedness of various agricultural practices and the
impact of these practices on the environment, ultimately leading
to more informed and effective future farmers and leaders in
the agricultural sector [185]. By incorporating remote sensing
data into agricultural education programs, students can gain
a deeper understanding of the importance of agriculture and
natural resource management [186]. The use of remote sens-
ing technology in agricultural education has the potential to
revolutionize the agricultural sector by promoting sustainable
practices, enhancing food security, and developing a strong
connection between urban and rural communities [165], [185].

I. Livestock Management

Livestock management in agriculture involves the care and
handling of domesticated animals for the production of meat,
milk, eggs, and other by-products. It encompasses various as-
pects such as basic husbandry, animal health and nutrition,
pasture management, organic farming, economic sustainability,
and sustainable food systems [187]. Livestock management is
essential for sustainable agriculture and offers several benefits,
including providing income, food, manure, fuel, and transport,
contributing to the global value of agricultural output, supporting
the livelihoods of smallholders and agribusiness, and promoting
sustainable agriculture practices [188]. Proper livestock man-
agement practices can ensure that feed nutrients are not wasted,
feed efficiency is optimized, and animal welfare is maintained.
Livestock management is crucial for the production of high-
quality food, the economic sustainability of farming commu-
nities, and the overall development of sustainable agriculture
practices [189].

Livestock management in agriculture faces several chal-
lenges that need to be addressed to ensure the sustainability
and profitability of livestock farming. Proper animal feeding
and management practices are essential for optimizing feed and
nutrient use, preventing waste, and avoiding overfeeding [190].
Nutrient management on livestock farms is crucial to ensure
that inputs such as feed, animals, and bedding are balanced with
outputs such as meat, milk, and manure. When inputs exceed
plant and animal requirements for nutrients, losses can occur,
leading to excess nutrients stored in the soil, which may result

in environmental issues such as nutrient leaching and soil surface
runoff [191]. In addition, livestock management requires skills,
such as basic husbandry, nutrition, communication, preparation,
adaptation, and evaluation [192], [193]. Clear communication
and adaptation are essential for managing livestock, as producers
need to adapt to fluctuating markets, variable seasonal factors,
and declining terms of trade [194]. Furthermore, environmental
sustainability is a significant challenge in livestock management,
as the sector must balance the need for agricultural output with
the environmental impact of livestock farming, including green-
house gas emissions, land degradation, and water consump-
tion [195]. Addressing these challenges requires a collaborative
effort from farmers, researchers, industry stakeholders, and pol-
icymakers to develop innovative solutions and best practices for
sustainable and profitable livestock management in agriculture.

The adoption of I5.0 technologies, such as remote sensing
data, can significantly enhance livestock management in agricul-
ture [196], [197]. Remote sensing technology provides valuable
information on animal welfare, grazing lands, and environmen-
tal sustainability, which can assist in monitoring herd movement,
vegetation conditions, water availability, and weather [198],
[199]. It can also be used to develop quantitative risk manage-
ment strategies. The incorporation of sensor technology, encom-
passing on-animal sensors, environmental monitoring tools, and
remote sensing, has the capacity to transition livestock opera-
tions from a conventional, reactive, knowledge-driven model to a
proactive, data-centric decision-making approach [200], [201],
[202]. The substantial potential lies in employing remote and
on-animal sensing to enhance both the production and welfare of
grazing livestock while also significantly improving landscape
management.

IV. CHALLENGES AND FUTURE DIRECTIONS

Despite the advancements brought out by the I5.0 industrial
revolution, still challenges persist in the realm of agricultural
remote sensing. This section investigates the challenges that per-
sist, exploring the complexities and hurdles faced even after the
integration of I5.0 technologies in agricultural remote sensing.
Fig. 5 depicts the challenges and future directions in integrating
remote sensing and I5.0 technologies in agriculture.

A. Security and Privacy Concerns

1) Threats Related to Data Security: Sensitive data obtained
from the field have the potential threat of unauthorized access
from hackers or market competitors. While transmission of
remote sensing data, there is a possibility of interception by
malicious intruders, leading to data breaches. For instance, data
transmission between sensors, networks, and platforms may not
have sufficient encryption, making it vulnerable to interception
and unauthorized access [203].

2) Threats Related to Network Security: The communication
channels used for transmitting remote sensing data may be
vulnerable to cyber-attacks. This may lead to data manipulation
or disruption of services. Lack or weakness in the fundamental
infrastructure supporting remote sensing systems can be ex-
ploited to compromise data integrity and availability [204].
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Fig. 5. Challenges and future directions in integrating remote sensing and I5.0 technologies in agriculture.

3) Threats Related to Device Security: Data collected from
farms through deployed sensors, networks, and cloud platforms
in the era of I5.0 are highly vulnerable to hacking, malware,
and ransomware attacks, potentially losing control over data
integrity, confidentiality, and availability [205]. Security vul-
nerabilities in these devices may lead to unauthorized access to
sensitive information. For instance, sensors deployed in the field
may encounter the risk of physical accessibility, making them
vulnerable to tampering, damage, or theft, eventually leading
to compromised data accuracy and possible disruptions to the
system [206].

4) Threats Related to Privacy: Farmers face potential issues
with the ownership and control of their data. This includes
risks associated with location tracking and the collection of
personal information [207]. Informed consent becomes crucial
to address privacy worries, confirming that farmers are suffi-
ciently informed about the gathering and utilization of their
data. Development in spatial resolution of satellite imagery can
create a risk of privacy violation. This means that remote sensing
satellites through high spatial resolution technology can provide
information to a wide range of people in real-time, leading to
crucial privacy protection issues for remote sensing data [208].

5) Future Directions: Making use of I5.0’s technologies can
help mitigate security threats in remote sensing. Employ robust
cloud security schemes, including data encryption, access con-
trols, and frequent security audits. Deploying edge computing
to process sensitive data closer to the source can help mitigate
the movement of data. This can aid in improving data security.
In addition, integrate blockchain to create an immutable record
of data transactions to add additional layer of security. Estab-
lish clear privacy policies and regulations for the collection,
storage, and use of agricultural data. Implement anonymization
and aggregation methods to protect individual farmer informa-
tion [209]. Implement suitable security measures that address
the interconnected nature of I5.0 systems. Conduct complete
risk assessments and adopt a holistic approach to security.

B. Real-Time Data Processing

1) Threats Related to Investment and Returns: The chal-
lenges in constructing IoT infrastructure for continuous monitor-
ing and real-time processing, mainly in open-field agriculture,
include the significant tradeoff between massive investments and
low returns in rural areas [210].
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2) Threats Related to Accumulation, Storage, and Process-
ing of Massive Amounts of Data: Another crucial challenge
is technology adoption, which will give rise to an increase in
data volume and complexity in management. Additionally, the
challenges in data storage, computation, and data management
related to I/O operations and applications will become serious
issues in remote sensing [4]. For instance, a remote sensing
system has to accumulate thermal imaging sensor data for var-
ious studies related to agriculture, such as crop stress, water
and nutrient deficiency, and herbicide resistance. This sensing
system monitors crop acreage change, yield, production, growth,
drought, and other agro-information and communicates it to
government ministries and other agricultural sectors. This indi-
cates that the real-time process threats pertain to the challenges
related to the accumulation, storage, and processing of large
volumes of remote sensing data for agricultural monitoring and
management.

3) Threats Related to Technology: Traditional satellite re-
mote sensing systems face challenges in meeting the real-time
processing and intelligent service demands for satellite remote
sensing imagery [126]. This includes challenges such as the
inability to meet the massification and real-time application
needs of satellite remote sensing imagery and the urgent need to
develop intelligent satellite systems to resolve these issues.

4) Threats Related to Cloud Cover: Cloud cover obstructs
the transmission of EM radiation, diminishing the ability of
remote sensing systems to capture clear images or data. The pres-
ence of cloud cover introduces interference that compromises
the accuracy and reliability of remote sensing measurements
by attenuating or distorting signals received from the Earth’s
surface. Interesting work [211] discusses advancements in cloud
detection for remote sensing images. They introduce RD-UNet,
a deep learning model, showing superiority over current meth-
ods. Another research effort [212] focuses on cloud removal in
remote sensing images using deep learning methods. Traditional
methods such as exemplar-based and information cloning show
inconsistencies in feature reconstruction. The proposed method,
GAN-CA, U-Net, Shift-Net, and SAR-opt-GAN, outperforms
traditional methods in reconstructing ground objects accurately.

5) Future Directions: The development of intelligent remote
sensing satellite systems in I5.0 is vital to address on-orbit
processing and intelligent service issues. Additionally, I5.0’s
technological advancements in cloud computing and wireless
technologies are expected to help process remote sensing data
quickly after acquisition, ultimately combining automation and
computational resources to create intelligent technologies for
AI and real-time processing for decision-making tools [4]. Edge
intelligence can be deployed to meet the effective real-time pro-
cessing requirements of typical applications for future intelligent
remote sensing satellites [213].

C. Data Variety and Standardization

1) Threats: Multimodal data fusion in remote sensing
presents numerous challenges [214]. One challenge is the inte-
gration of data from diverse sources and sensors, which may have
varying resolutions, spectral ranges, and spatial and temporal

coverages. Another challenge is the requirement for methods to
integrate and analyze the different types of data in a way that
maximizes supplements and provides a much better description
of the context captured [215]. Additionally, addressing unfore-
seen problems and exploring the capabilities of the data provided
in the framework of contests can also be crucial challenges.

Satellite-based sensing includes data with the following char-
acteristics multisource, multiscale, high-dimensional, dynamic-
state, isomer, and nonlinear [216]. These data are high-
dimensional with many spectral bands and long-time-series data,
which offers challenges for analysis. The dynamic state of the
data includes changes in the Earth’s surface and the movements
of satellites. There is a requirement to consider scale effects in
data analysis and processing due to the multiscale characteristic.

Spectral variability is another crucial challenge in remote
sensing. The work in [158] focuses on remote sensing, image
analysis, and data fusion. It includes the use of ML, signal
processing, and data science for global urban mapping. The
researchers have created models for spectral variability and
endmember extraction, with a special application focus on global
urban mapping. The work also comprises the use of Gaussian
fields to satisfy certain conditions, and the development of per-
turbed linear mixing models to account for spectral variability.

These challenges demonstrate the complexities and oppor-
tunities for research in the field of multimodal data fusion in
remote sensing.

2) Future Directions: Multimodality in remote sensing and
data fusion can be handled by addressing challenges related
to data acquisition from different sources coming in different
formats, such as the need for converting data into common
formats for processing, validation of results, and computational
load. Addressing this challenge requires a multidisciplinary
approach involving expertise in remote sensing, cutting-edge
technologies, and domain-specific knowledge. Current research
and advancements in these areas contribute to the development
of more effective solutions for multimodal remote sensing ap-
plications.

D. Interoperability Issues

Interoperability issues arise in agriculture, particularly when
remote sensing and I5.0 are integrated. Some of the most im-
portant issues must be addressed for successful agricultural
practices.

1) Standardization of Data and Protocols: Agriculture tools
and remote sensing technologies are frequently manufactured
by different companies, each working with unique exclusive
processes and standards. This lack of standardization makes
it difficult to guarantee proper integration and successful data
exchange between devices and platforms [217].

2) Complex Data Management and Data Analysis: The huge
volume of data generated by remote sensing technologies neces-
sitates advanced data processing techniques and analysis tools.
Integration of these tools with I5.0 tends to be challenging.
This causes problems with effectively utilizing data for decision
making and has an impact on the accuracy of results produced
by remote sensing data [218].



5938 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

3) Real-Time Data Processing and Optimal Response: Data
generated by satellite imagery, UAVs, and remote sensing de-
vices requires quick analysis and responsiveness in the I5.0
environment, which is important for effective agricultural man-
agement. This quick data processing enables timely monitoring
of crop health, soil conditions, and environmental factors in
I5.0. Considering advances in I5.0, current systems struggle with
real-time data handling and quick decision-making [219].

4) Future Directions: Standardization of data and protocols
can be accomplished through collaborative efforts between tech-
nology vendors, standardization organizations, and agricultural
stakeholders. Manufacturers of agricultural tools and remote
sensing technologies must collaborate to develop common stan-
dards. This collaboration would guarantee that their products
are interoperable and can communicate efficiently. Farmers
and agricultural businesses should engage actively in the stan-
dardization approach. Handling complex data management and
achieving optimal responses can be solved by using advanced
analytics and ML algorithms to efficiently process and analyze
large volumes of remote sensing data. Edge computing can be
used to process data while reducing latency and bandwidth. To
manage the massive volume of data, automated tools for data
cleaning and preprocessing can be used.

E. Data Accuracy and Calibration

The integration of remote sensing and I5.0 in agriculture poses
several challenges in achieving data accuracy and calibration.

1) Sensor Calibration and Validation: It is essential to ensure
that remote sensing devices are accurately calibrated. Calibra-
tion is required to ensure that the sensors produce accurate data
because it has a significant effect on the quality and reliability
of the data collected [220]. Sensors can crash or be damaged
over a period of time, reducing their accuracy. Calibration and
validation of sensor data must be done regularly because it can
affect accuracy and generate incorrect data.

2) Data Fusion and Integration: Data integration from vari-
ous sensors (e.g., satellite, UAV, and ground-based sensors) can
be challenging [221]. It is challenging to integrate the data from
these sensors into a precise model as they may have different
resolutions, scales, and measurements.

3) Environmental Influences: External factors such as wea-
ther conditions, atmospheric interference, and seasonal changes
affect the accuracy of agricultural remote sensing data [222].
These factors generate noise and distortions, which have an
impact on the reliability of the data collected.

4) Future Directions: Sensor calibration depends on sensor
type, usage intensity, and the environment to which the sen-
sors are exposed, so a regular sensor calibration schedule is
essential. Setting up automated calibration systems, which can
continuously monitor sensor performance and update calibration
parameters in real-time to ensure accuracy. Remote calibration
techniques must be provided for sensors that are difficult to
access, such as satellite sensors. Applying advanced data fusion
algorithms to effectively integrate data from multiple sources.
Geospatial information systems aid in the integration and anal-
ysis of spatial data from various sources. Developing and using

sensors that are resistant to environmental influences. The use
of advanced image processing techniques such as image sharp-
ening, contrast adjustment, and AI-based filtering techniques
helps in improving the quality of images that are affected by
environmental conditions.

F. Connectivity and Latency

Integrating remote sensing with I5.0 in agriculture poses
several challenges, particularly in terms of connectivity and
latency.

1) Limited Network Infrastructure: Many agricultural areas,
especially those in remote or rural areas, have inadequate net-
work infrastructure [223]. Large amounts of data generated by
remote sensing technologies are difficult to transmit due to a
lack of infrastructure.

2) High Bandwidth Requirements: Remote sensing tech-
nologies, such as drones or satellite imagery, generate huge
amounts of data [224]. Real-time data transmission necessitates
high-bandwidth networks, which might not be feasible in all
agricultural regions.

3) Latency Issues: It is essential for precision agriculture to
capture real-time data, send, and process data in a shorter amount
of time [225]. However, due to the physical distance between
the sensors (in the field) and the data processing centers, there
may be a huge latency delay. This delay may have an impact on
decision-making processes that rely on real-time data.

4) Future Directions: Deploying satellite internet enables
network coverage in inaccessible regions where traditional con-
nectivity is unavailable. It provides a solution for delivering
remote sensing data from fields to data processing centers. The
use of low Earth orbit satellites offers lower latency and higher
bandwidth than conventional geostationary satellites, making
them useful for agricultural remote sensing applications. Data
compression techniques can be used to reduce the amount of
data that must be transmitted. Since the data are compressed,
less bandwidth is required for transmission, making it useful in
remote areas with limited network capacity. Upgrading network
infrastructure to 5G and beyond, enabling faster data transmis-
sion. Edge computing facilitates data processing and analysis at
the edge of the network. Only essential and processed data will
be sent to central servers. This method significantly reduces the
amount of data that must be transmitted across the network.

G. Regulatory Compliance

1) Risk Management and Environmental Regulations: The
integration of advanced technologies in agriculture requires
careful management of risk and adherence to environmental
regulations, which can impose compliance costs and burdens
on farmers. Future directions in this area may involve the devel-
opment of new technologies and processes that minimize envi-
ronmental impact and promote sustainable farming practices.

2) WTO Rules and Regulations: Compliance with World
Trade Organization rules and regulations poses a demanding
challenge for countries, affecting the agro-industry and agri-
cultural production. Future directions in this area may involve
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the development of new trade agreements and frameworks that
support the integration of I5.0 technologies in agriculture.

3) Food Safety and Quality Standards: The use of robotics
and advanced technologies in food processing necessitates ad-
herence to complex food safety and quality standards, adding to
the regulatory challenges faced by I5.0 in agriculture. Future
directions in this area may involve the development of new
technologies and processes that improve food safety and quality
while reducing compliance costs for farmers.

4) Labor Laws and Regulations: The increasing use of au-
tomation and robotics in agriculture requires careful considera-
tion of labor laws and regulations to ensure fairness for workers
and compliance with evolving work practices. Future directions
in this area may involve the development of new regulations
and frameworks that support the integration of I5.0 technologies
while protecting workers’ rights [117].

5) Data Privacy and Security: The integration of digital
technologies in agriculture raises concerns about data privacy
and security, necessitating the development of robust regulations
to protect sensitive information. Future directions in this area
may involve the development of new data privacy and security
frameworks that support the integration of I5.0 technologies
while protecting farmers’ and consumers’ data [226].

H. Skill and Knowledge Gaps

1) Skewed Focus and Limited Awareness: There is a skewed
focus toward commercial agriculture, and limited awareness and
understanding of the vast opportunities in agri-business, leading
to a lack of interest in agricultural careers and study directions.
The future direction is to change perceptions through public–
private collaboration and government intervention.

2) Data-Driven Development and Career Paths: The indus-
try faces challenges in data-driven development and the need to
develop career development paths that align with the require-
ments of I5.0. Future direction focuses on developing training
programs that focus on data analytics, ML, and other I5.0
technologies that can equip the workforce with the necessary
skills [117].

3) Soft Skills and Development: The importance of soft
skills, now addressed as the soft skill gap in the labor market, is
increasingly recognized under the conditions of I5.0. Focused ef-
forts on developing soft skills are needed. Incorporating soft skill
development into agricultural education and training programs
can help bridge the soft skill gap and prepare the workforce for
effective human–machine collaboration [227].

4) Integration of Broader Skill Set: There is a need to in-
tegrate a broader skill set into discipline-specific agricultural
degrees to meet the specific challenges posed by I5.0. This
includes skills beyond traditional agriculture, such as data-
driven development and human–machine collaboration. In the
future, integrating a broader skill set into agricultural degrees,
including skills from fields such as data science, automation,
and AI, can prepare graduates for the interdisciplinary demands
of I5.0 [117], [228].

5) Public–Private Collaboration and Government Interven-
tion: Effective public–private collaboration and government

intervention are essential to reduce skill gaps and change percep-
tions about agricultural careers. Private industry involvement is
crucial for providing the required skills, experience, and funding.
In future, encouraging collaboration between the agricultural
industry, government agencies, and educational institutions can
facilitate the development of relevant training programs and
address skill gaps.

6) Industry–Academia Linkage: Close collaboration be-
tween the agricultural industry and academia is crucial for
developing relevant training programs that impart the skills
demanded by I5.0. In the future, promoting continuous learning
and upskilling opportunities for the agricultural workforce can
ensure that they remain adaptable and proficient in the face of
technological advancements.

I. Costs and ROI

1) High Initial Investment: The adoption of I5.0 technolo-
gies, such as AI, IoT sensors, and automation systems, requires
a significant upfront investment, which can be a barrier for
many agricultural businesses, especially small and medium-
sized farms. Governments can provide financial incentives,
grants, and subsidies to encourage farmers to adopt I5.0 tech-
nologies. This can help offset the high initial investment costs
and reduce the financial risks associated with these technologies.

2) Uncertain Return on Investment: The return on invest-
ment (ROI) for I5.0 technologies in agriculture is often uncer-
tain and can vary depending on factors such as the specific
technology, the size and type of farm, and market conditions.
This uncertainty can make it difficult for farmers to justify the
initial investment. Collaboration between the agricultural indus-
try, government agencies, and research institutions can facilitate
the development of affordable and accessible I5.0 technologies
tailored to the specific needs of the agricultural sector.

3) Lack of Technical Expertise: Implementing and maintain-
ing I5.0 technologies requires specialized technical expertise,
which may not be readily available in the agricultural sector.
This can lead to additional costs for training and support. In
the future, investing in education and training programs can
help farmers and agricultural professionals develop the technical
skills and knowledge necessary to implement and manage I5.0
technologies effectively [229].

4) Data Security and Privacy Concerns: The use of digital
technologies in agriculture generates large amounts of data,
raising concerns about data security and privacy. Ensuring the
protection of sensitive data can involve additional costs and
resources.Encouraging data sharing and collaboration among
farmers, researchers, and technology providers can help acceler-
ate the development of more effective and efficient I5.0 solutions
for agriculture [230].

5) Limited Infrastructure: The successful implementation of
I5.0 technologies often relies on reliable and high-speed internet
connectivity, which may not be available in all agricultural
areas. This lack of infrastructure can hinder the adoption of
these technologies. Expanding access to reliable and high-speed
internet connectivity in rural areas is crucial for enabling the
adoption of I5.0 technologies in agriculture [20].
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V. CASE STUDIES

Brazil’s coffee supply chain was equipped with a remote
sensing-based monitoring system to deal with issues related to
efficiency and quality control [231]. It collects extensive data
on crop health and field conditions through spectral sensors,
drones, and satellite photos. Real-time tracking, precision farm-
ing, production forecasting, quality assurance, and transparency
are some of the benefits obtained through this system. Through
the use of sustainable techniques, the results demonstrated a
remarkable decrease in resource usage, noticeable increase in
production, greater consistency of quality, and improved brand
recognition.

Another case study that demonstrates how environment mon-
itoring can be enhanced through the adoption of technology
integration is how grape health is getting tracked in California’s
Napa Valley with remote sensing that combines data from drones
and satellites [232]. It handles issues such as nutrient shortages,
disease outbreaks, and water stress. Cost-effective and sustain-
able practices are made possible by remote sensing, which also
makes precision agriculture, yield prediction, and early detection
and reaction possible. However, issues such as cloud cover and
data interpretation continue to persist, highlighting the necessity
for knowledge and reliable infrastructure.

A precision agriculture experiment was conducted in a Span-
ish vineyard with seven treatments involving different water
regimes and fertilization methods [233]. The vineyard, planted
with the Bobal grape variety, had a specific irrigation system
and soil type. Aerial images were taken using a drone with mul-
tispectral capabilities to assess crop health. Weather conditions
and water status were monitored to adjust irrigation schedules.
The yield was measured at harvest time to evaluate the impact
of the treatments on grape production.

Another case study made by researchers used satellite and
airborne sensors of varying resolutions to study coastal wet-
lands [234]. They tracked changes in vegetation, hydrology,
and land cover over time. The study focused on mapping and
monitoring long-term trends and short-term changes in wet-
lands. Recommendations suggested using medium-resolution
sensors for large areas and high-resolution sensors for critical
areas. Multispectral imagery was preferred, with hyperspectral
imagery for specific cases. Airborne digital camera imagery
helped interpret satellite images. LiDAR and hyperspectral im-
agery combined improved wetland species discrimination and
understanding of topography. The study observed changes in
land cover, buffer degradation, wetland loss, invasive species
expansion, and biomass change. The study highlighted the im-
portance of site visits in conjunction with remote sensing for
accurate mapping of coastal wetlands.

Another research study has made an effort to optimize ni-
trogen utilization in winter wheat fields of small to medium
size in Switzerland [235]. Employing remote sensing technol-
ogy, particularly UAVs equipped with multispectral cameras,
allowed for the capture of detailed crop field imagery. Various
indices were analyzed. Among various indices examined, the
normalized difference red-edge index (NDRE) demonstrated the
strongest correlation with both nitrogen uptake and crop nitrogen

status. Utilizing NDRE values in conjunction with soil nitro-
gen mineralization data and established fertilization guidelines,
personalized nitrogen fertilization maps were created. These
maps provided precise guidance for applying nitrogen fertilizer
at variable rates across the fields. By adopting this tailored
approach, nitrogen input was reduced by 5% to 40% compared
to conventional fertilization methods, all while maintaining crop
yield levels.

VI. CONCLUSION

Based on the comprehensive survey presented, it is evident
that remote sensing technologies have immense potential to
transform and enhance agricultural practices in the era of I5.0.
I5.0 marks the next phase in industrial development, character-
ized by the amalgamation of cutting-edge technologies including
AI, to create highly intelligent and interconnected systems. Our
survey demonstrates how advanced technologies such as AI,
ML, and Big Data analytics can be integrated with remote
sensing data to provide actionable and timely insights to various
agriculture stakeholders. The implementation such technologies
will revolutionize remote sensing in agriculture facilitating more
accurate, timely, and data-oriented decision-making processes,
thus leading to more efficient and sustainable agricultural prac-
tices, ultimately enhancing productivity and ensuring food se-
curity.

However, for widespread adoption across the agriculture sec-
tor, some key challenges need to be addressed. These include
lack of awareness among farmers, high costs and complexity
of solutions, lack of technical expertise, concerns around data
privacy and security as well as compatibility issues arising
from the use of multiple data formats and systems. Overcoming
these barriers through collaborative efforts between technol-
ogy providers, research institutions, governmental agencies and
farming communities will likely accelerate adoption. Overall,
the smart integration of advanced I5.0 technologies and agri-
cultural remote sensing has the potential to make farming more
efficient, sustainable, and productive. Realizing this potential
will play a crucial role in addressing rising food demands and
environmental pressures in the future.
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