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ABSTRACT This work proposes LiquidListener, a novel liquid volume sensing method for containers.
Specifically, it enables the ubiquitous measurement of liquid volume not available in existing work due
to i) dependencies on dedicated sensing hardware (e.g., capacity sensors) and containers (e.g., transparent
containers) and ii) a high training intensity. A key enabler of LiquidListener is listening to singing sounds.
When a user taps a container using solid objects, such as pens and teaspoons, the container vibrates freely
and produces a singing sound. As the container is filled with more liquid, the pitch of the sound decreases.
Based on this relationship, we develop acoustic-based liquid volume sensing algorithms that support the
precise measurement of liquid volume while using only a smartphone and requiring minimal user effort for
calibration. The extensive experiments demonstrate that LiquidListener can support high accuracy with an
average error ratio of 2.3% in sensing the liquid volume in various containers. In addition, the experimental
results indicate that it can still maintain a similar level of accuracy in diverse and dynamically changing
environments, even without additional calibration.

INDEX TERMS Acoustic sensing, mobile healthcare services, smarthome applications, ubiquitous liquid
volume sensing.

I. INTRODUCTION
Water is indispensable in our lives and is deeply related to
human activities, such as drinking, cooking, and cultivation.
Therefore, there has been an increasing attention to liquid
volume sensing techniques [1], [2], [3], [4], [5], that can
benefit our daily lives. These techniques support in situ
measurements of liquid volume in containers and eventually
facilitate the development of many valuable applications for
smart home environments and mobile healthcare. For exam-
ple, they can help track and manage the daily intake of water
or medicine [6], [7] and assist in monitoring and refilling
the inventory of various liquids [8]. In addition, it would
be possible to cook food anywhere (e.g., even in outdoor
environments) without needing to prepare measuring cups.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

However, none of the existing techniques can fully support
ubiquitous liquid volume sensing due to their limitations
in deployability and usability. First, many of them [4],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]
rely on dedicated sensing hardware, such as capacitive
sensors, pressure sensors, ultrasonic sensors, electrodes and
radio-frequency identification tags. Others [20], [21] have
leveraged cameras but support liquid volume measurement
only for transparent containers filled with opaque liquids.
Moreover, one of the most recent studies, LiquidSense [1],
works with commercial Wi-Fi access points for liquid-
level sensing. However, it still requires installing additional
hardware (e.g., transducers) in a container and suffers from
low usability due to its high training intensity.

This work introduces LiquidListener, a novel method
that enables in situ liquid volume measurements with high
accuracy, deployability, and usability. The key enabler of
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FIGURE 1. Usage scenario of LiquidListener, measuring the amount of
liquid in a container using only a smartphone.

LiquidListener is to leverage singing sounds. When an
external force is applied to a container (e.g., when tapping
a cup), the force causes the container to deform, vibrate, and
produce a singing sound. The pitch of the sound is determined
by the physical properties of the container and the amount
of liquid in it. For example, previous field studies [22], [23]
have observed that a singing sound is emitted at a lower
frequency as the liquid level in the container increases. This
phenomenon occurs because the added liquid participates in
the vibration of the container and eventually changes the
overall mass of the oscillating body.

Fig. 1 illustrates how LiquidListener measures the amount
of liquid in containers using singing sounds. Once a user
fills a cup with liquid, LiquidListener first asks the user
to tap the cup with any solid object (e.g., teaspoons, pens,
and fingernails). Then, it collects singing sounds using the
microphone in the user’s smartphone and finally estimates
the liquid volume by analyzing the pitch of the sound.
LiquidListener has a considerable advantage over existing
work in terms of deployability because it can turn any
container into a measuring tool using only a commercial
smartphone (equipped with a microphone) and a tapping tool.

However, several challenges exist to realize the precise
and usable liquid volume measurement with singing sounds.
First, the pitch of the singing sounds is also affected by
the container’s physical properties, such as size, thickness,
and material. Therefore, LiquidListener should perform a
precalibration to calculate the container-dependent param-
eters to avoid losing usability. Further, different containers
have different physical characteristics, requiring individual
calibration for each container. Second, users might use
LiquidListener in diverse environments, especially with
dynamically changing noise. This noise is often mixed with
singing sounds in audio recordings, causing errors in liquid
volume sensing.

We address these challenges by exploring the relationship
of singing sounds with liquid volumes and using these
observations in designing LiquidListener as follows:

• We design a simple two-point calibration method that
precisely estimates container-dependent parameters with
little user effort. Specifically, based on the phenomenon
that the pitch of singing sounds is inversely proportional
to the liquid volume in a container, we compute the
parameters using data collected only when a container is
empty or full. Moreover, once a container is calibrated,
there is no need to perform further calibration for the
container because the parameters are virtually constant
regardless of other environmental factors, such as liquid
types and tapping tools.

• We precisely estimate the pitch of a singing sound
even from noisy audio recordings. To this end, taking
a cue from the observation of the time and frequency
characteristics of singing sounds, we design two noise
cancellation schemes: irrelevant frequency filtering and
early part removal. In addition, we further improve
accuracy in pitch estimation through a high-resolution
frequency analysis.

• We derive a new formula to calculate the amount of
liquid in a container using the estimated pitch of the
singing sound and the calibrated container-dependent
parameters.
We evaluate the performance of LiquidListener via exten-

sive experiments with the prototype implementation running
on commercial Android smartphones. The evaluation results
demonstrate that LiquidListener can accurately measure
the volume of liquids in containers without compromising
deployability and usability. For example, an average error
ratio of 2.3% is achieved on various containers with a
simple calibration, which takes less than 1 min, using
only commercial smartphones for recording and everyday
objects for tapping. In addition, LiquidListener maintains
high accuracy in diverse situations and dynamically changing
environments without conducting additional calibrations.

In conclusion, the contributions of this work are as follows:
• To the best of our knowledge, this is the first attempt
to leverage singing sounds to enable ubiquitous liquid
volume sensing for containers.

• We design LiquidListener, a novel acoustic-based liquid
volume sensing method that achieves a high degree of
accuracy with the use of a smartphone and tapping tools,
requiring minimal effort for calibration.

• We implement a prototype of LiquidListener1 and verify
its effectiveness through extensive experiments in diverse
real-world scenarios.

II. RELATED WORK
A. LIQUID VOLUME SENSING FOR THE INDUSTRY
In the field of industrial applications, several studies have
been proposed for sensing the volume of liquids contained
in large tanks. One representative method is employing
capacitive sensors attached to the inside of a container [9],
[10], [11]. The liquid volume can be estimated by measuring

1See https://youtu.be/vwanwsEre-I for our demo video.
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the capacitance of the entire container via capacitive sensors
because the capacitance varies depending on the amount of
liquid in the container. However, this method is unsuitable
for everyday containers because it requires the capacitive
sensors to be immersed directly in liquid, resulting in the
pollution of edible liquid. Another method is to estimate
the liquid volume by measuring the pressure exerted by the
liquid at the bottom of the container [12], [13]. However,
this method can only be used when the container has a flat
and wide enough bottom to attach pressure sensors; thus, it is
not possible to apply this method to containers with various
bottom shapes. Furthermore, capacitive-based and pressure-
based methods have low deployability because they require
sensors dedicated to the industrial field.

B. LIQUID VOLUME SENSING FOR DAILY CONTAINERS
Many studies have been conducted to estimate liquid volume
in containers. This studies can be divided into the following
four categories:

• Vision-based: Some studies have analyzed the RGB
images of containers taken with off-the-shelf cameras
to estimate their liquid volume. Playful Bottle [20]
offers a simple method of capturing a transparent bottle
with scale marks through a smartphone camera and
calculating the liquid volume from the captured image.
Another study [21] presented a deep-learning technique
that can estimate the liquid level of a container using
convolutional neural networks (CNNs) trained using
the images of containers with liquid. However, these
methods have low deployability because they can only be
used for transparent containers with opaque liquids, and
their performance is greatly affected by ambient lighting
environments. In addition, the CNN approach also has
low usability because it requires numerous of training
data to construct the CNN model.

• Vibration-based: Another approach is to employ vibra-
tions generated in a container. The VibeBin [24] tech-
nique senses the content level of a waste bin bymeasuring
the resonant vibration caused due to the impact of
a vibrating motor on the container surface. Similarly,
Ryu et . [25] proposed a smaller actuator and sensor made
of a special material called polyvinylidene fluoride for
measuring the resonant frequency of vibration. However,
these approaches have low deployability because they
require dedicated hardware to generate and detect vibra-
tions.

• Wireless signal-based: Several methods aim to sense
the liquid level by propagating wireless signals to a
container. LiveTag [17] estimates the liquid level by
attaching a thin metal tag to the surface of a container and
measuring the attenuation of the Wi-Fi signals reflected
by the tag. However, this method has the constraint that it
cannot be used in metal containers that completely block
the transmission of Wi-Fi signals. Nakagawa et al. [4]
proposed a contactless method to measure the liquid

level based on the absorption of the propagated mil-
limeter waves in the liquid. However, this method is
unsuitable for household settings because it requires
special hardware (i.e., a millimeter Doppler sensor and
piezoelectric vibrator). LiquidSense [1] measures the
resonance frequency of the container using Wi-Fi signals
and a transducer attached to the container. Then, it uses
the resonance frequency as a feature to construct a
support vector machine model to predict the liquid level.
However, this system has limited usability because it
requires considerable training data and cannot be used
outdoors without a Wi-Fi access point.

• Acoustic-based: Similarly to LiquidListener, many stud-
ies have been proposed to measure liquid volumes using
acoustic sensing. However, they use different types of
acoustic sounds differently, rather than the singing sound
of the container. Some studies [14], [15] have measured
the liquid volume using ultrasonic waves for higher
accuracy. However, these methods require dedicated
hardware, such as Time-of-Flight sensors, a multiple-
input, multiple-output transducer array, and ultrasonic
sensors. In addition, PursingNet [16] has a sensing system
that can predict the liquid volume via a deep neural
network trained with sounds collected when liquid is
poured into the container. Nevertheless, this system has
low usability because it can only predict the volume
when additional liquid is poured into the container, and
it requires a high training intensity.

C. LIQUID IDENTIFICATION TECHNIQUES
Many studies have recently been proposed to perform
liquid identification for containers. Fundamentally, they
aim to identify what type of liquid is contained in a
container or whether it contains other impurities through
various sensors. Some studies [26], [27], [28], [29], [30]
have presented vision-based approaches. These approaches
extract the unique features of each liquid by monitoring
the physical phenomena, such as surface tension, sloshing
motion, air bubbles of liquids, and Brownianmotion. Another
class of work [31], [32] has supported precise contactless
liquid identification by leveraging radio-frequency signals.
Other [33], [34], [35] have suggested methods to identify
the liquid type by measuring the acoustic impedance from
acoustic signals passing through the liquid or the vibration
resistance force induced by the viscosity of the liquid.
However, whether these physical features are effective and
practical indicators for measuring liquid volumes has not
been thoroughly investigated.

For example, Vi-Liquid [35] infers the liquid volume by
measuring its resonance frequency induced by a smartphone
vibration during the identification process, but it has several
limitations in practice. First, this method requires a smart-
phone to be attached to a specific position on the container for
high accuracy; thus, the liquid volume can only be measured
in containers specially designed to hold the smartphone (low
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FIGURE 2. Generation of a singing sound from a wineglass. The pitch of
the singing sound is determined by the physical properties of the liquid
(e.g., its level and density) and the container (e.g., its density, thickness,
radius, and height).

deployability). Second, this methodmust construct a database
by collecting a significant amount of frequency information
for various liquid volumes for measurement (low usability).

D. SUMMARY
The existing studies in the above categories have limita-
tions in either deployability, usability or both. In contrast,
LiquidListener can support in situ liquid volume measure-
ments with higher deployability and usability by i) capturing
the singing sound of a container using a commercial
smartphone microphone, ii) not contacting the liquid directly,
and iii) requiring a low calibration effort.

III. PRELIMINARIES
This section describes the preliminary knowledge on which
LiquidListener is based. Then, it explores the feasibility of
leveraging this knowledge for liquid volume sensing.

A. WINEGLASS ACOUSTICS
We consider a glass harp, a musical instrument comprising
wine glasses. Each glass in the harp is filled with a different
amount of liquid and produces a singing sound with a
different pitch when a wet finger runs around the rim of the
glass.

Such a relationship between the pitch of a singing sound
and the liquid volume in a wineglass has been intensively
explored in previous studies [22], [23]. A straightforward
analysis is to model a singing glass as a spring-mass system.
When a wineglass is struck or rubbed by a moistened finger,
it vibrates freely, emitting a singing sound. The frequency of
the free vibration can be calculated as follows:

f =
1
2π

√
k
m

(1)

where m is the overall mass of the system and k is the
spring constant, which depends on the physical properties of
an oscillating body (i.e., the glass itself). Therefore, adding
liquid to the glass does not affect k but does affect m. The
overall mass increases with the liquid, causing a decrease in
the frequency f and the pitch of the emitted singing sound.

FIGURE 3. Typical structure of a singing sound measured with an empty
glass.

French [23] conducted a deeper analysis of the singing
glass effect with consideration of damping. Fig. 2 presents
a cylindrical wineglass with a height of h∗. French derived a
general formula for how the pitch of a singing sound could
vary with the amount of liquid in the cylindrical wineglass as
follows: (

f0
f

)2

≈ 1 + ρla
(
h
h∗

)4

(2)

where h denotes the current liquid level in the glass, f0 rep-
resents the pitch measured when the glass is empty, ρl is the
density of the liquid, and a indicates a container-dependent
parameter determined by the density, thickness, and radius
of the glass. Chen et al. [22] further generalized (2) with an
experimental analysis as follows:(

f0
f

)2

≈ 1 + ρla
(
h
h∗

)n+1

(3)

where n is approximately 2. This formula indicates that
(f0/f )2 is linearly proportional to (h/h∗)n+1. As the liquid
level (h) in the glass increases, the frequency f decreases.

B. FEASIBILITY OBSERVATIONS
Based on the preliminary knowledge, we investigated the
characteristics of singing sounds in diverse real-world
environments. To this end, we conducted the following
experiments. A single user was asked to fill a certain amount
of water in containers, such as glasses, ceramic mugs, and
stainless cups. Then, the user tapped them with a stainless
steel teaspoon in a quiet classroom (30 – 40 dBA). During that
time, we collected audio data using the built-in microphone
of a Google Pixel 4 smartphone with a sampling rate of
48 kHz. Note that commercial smartphones are equippedwith
microphones that can capture audio data in an audible fre-
quency range of 0 to approximately 20 kHz [36]. Therefore,
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FIGURE 4. Variations in the pitch of a singing sound (i.e., the natural
frequency of a container) over the amount of water in the container.

FIGURE 5. Linear relationship between (f0/f )2 and (h/h∗)n+1, where n is
set to 2, in diverse containers.

according to the Nyquist theorem [37], the 48 kHz sampling
rate selection allows us to observe the characteristics of
singing sounds in all the possible measurable frequencies.

Fig. 3(a) illustrates how a singing sound changes over
time. When a container is impacted, it deforms due to the
applied force. This sudden deformation causes the generation
of an initial transient sound of a few milliseconds from
the contact area. The force propagates to the entire body,
and the container freely vibrates at its natural frequency
for several tens of milliseconds, generating a free-vibration
sound. Thus, as depicted in Fig. 3(b), the free-vibration
sound has distinctive peak values at the natural and harmonic
frequencies of the container. The initial transient sound has
different frequency characteristics than the free-vibration
sound (Fig 3(c)) because the initial transient sound’s charac-
teristics primarily depend on the applied external force signal.

As explained in Section III-A, singing sounds produced
from the same container can have different characteristics
depending on the amount of liquid in the container.
Specifically, the pitch decreases as the amount of liquid
in the container increases (Fig. 4). This trend can also
be observed with nonglass and noncylindrical containers
(i.e., any container). In addition, Fig. 5 demonstrates that
(f0/f )2 has a linear relationship with (h/h∗)n+1 as predicted
in (3). The slope between the two values differs depending
on the container because each container has nonidentical
physical properties (e.g., size, shape, and material). Such a
linear relationship can be an excellent hint for measuring
liquid volumes in containers.

IV. OVERVIEW OF LIQUIDLISTENER
LiquidListener aims to support an accurate, deployable, and
usable liquid volume measurement for containers. This goal
can be achieved by leveraging the preliminary observations
on singing sounds in designing LiquidListener, as illustrated
in Fig. 6.

• Noise-robust pitch detection. LiquidListener collects
audio data using a microphone, detects the singing sound
from the collected recordings, and estimates its pitch
through a frequency analysis. To improve robustness
against noise, LiquidListener uses two methods: i) irrel-
evant frequency filtering and ii) early part removal.
The estimated pitch is used for calibration (in the
calibration phase) or liquid volume measurement (in the
measurement phase).

• Simple two-point calibration. In the calibration phase,
LiquidListener computes container-dependent parame-
ters for liquid volume estimation. It attempts to minimize
the time and effort for the calibration (i.e., to maintain
a high degree of usability) by i) asking users to collect
singing sounds only when the container is empty and full
and ii) requiring no additional calibration for previously
calibrated containers.

• Liquid volume calculation.LiquidListener calculates the
liquid volume in the container using the estimated pitch
and calibrated parameters. Specifically, this calculation
is based on the formula for the liquid volume derived
from (3).
Regarding deployment conditions, LiquidListener assumes

the following two deployment conditions: i) a tapping tool
and a microphone must be available to produce a singing
sound from a container and record the sound, respectively,
and ii) some properties of both the container and liquid
(e.g., the container capacity and liquid density) are given in
advance.

The first assumption can be very easily satisfied. Users
can make noticeable singing sounds by leveraging everyday
solid objects (e.g., pens, chopsticks, teaspoons, and even
fingernails) as a tapping tool. In addition, most commercial
smartphones are already equipped with microphones that
can be used for recording. For the second condition, users
can use the information about the containers and liquids
provided by vendors or previous field studies. For example,
most manufacturers offer detailed information about their
containers, including their capacity. In addition, the density
of common liquids, such as water, milk, and coke, is already
well studied. To further improve deployability, we can
construct a database of such already-known information and
provide it to the users. Thus, LiquidListener can be deployed
in everyday environments. Such information might be erro-
neous or unavailable in the worst case. We discuss its effect
on the performance of LiquidListener in Sections VII-D
and VIII.

V. LIQUIDLISTENER DESIGN
This section explains how LiquidListener enables ubiquitous
liquid volume sensing with high accuracy and usability in
diverse real-world environments.

A. NOISE-ROBUST PITCH DETECTION
Given audio recordings, LiquidListener attempts to detect
a singing sound and estimate its pitch. However, precise
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FIGURE 6. Overall architecture of LiquidListener.

TABLE I. Specification of diverse daily containers.

pitch estimation is challenging due to noise, which can
be classified into three categories. The first two types are
ambient noise from the surrounding environment and the
sound produced by the handles and support for containers.
When a container is struck, these parts vibrate at a different
frequency than the container’s main body due to differences
in the physical shape, size, and thickness. The last type
is an initial transient sound generated from a container’s
contact area. As explained in Section III-B, the initial sound
has frequency characteristics that are less relevant to the
natural frequency of a container, disturbing the accurate
measurement of the pitch of a singing sound.

LiquidListener improves the measurement’s robustness
against these noise types using the following methods:
i) irrelevant frequency filtering and ii) early part removal.

1) IRRELEVANT FREQUENCY FILTERING
LiquidListener first cancels out noisy frequencies using
a bandpass filter between f L and f H Hz. The required
cutoff frequencies might vary depending on the container
(Table I). This variation is primarily because of differences
in the mass, density, and stiffness of the containers. For
example, stainless containers (with high density) and plastic
containers (with low stiffness) have a lower natural frequency
(e.g., < 1 kHz) than others. Based on these empirical
observations, we initially set f L and f H to 0.1 and 1 kHz

FIGURE 7. Singing sound segmentation, discarding the early part of the
singing sound.

(for stainless and plastic containers) or 0.4 and 2.5 kHz
(for others), respectively. Next, LiquidListener conducts
calibration using these initial values and determines the
cutoff frequencies optimized for each container (for more
details, see Section V-C). Once f L and f H are determined,
it constructs a Butterworth band pass filter with an order of
4 and denoises audio recordings by applying the filter.

2) SINGING SOUND SEGMENTATION WITH EARLY PART
REMOVAL
A singing sound is extracted from the filtered recordings.
LiquidListener computes e(t), an accumulated sound energy
level at time t , as follows:

e(t) =

t+l∑
i=t

x(i)2 (4)

where x(t) is the filtered audio signal at time t and l, a window
size, is empirically set to 1 ms. LiquidListener then takes
audio samples between [tL , tH ]. We determine the time
instants tL and tH as the last time instant at which e(t) is
larger than e∗ × 0.5 and e∗ × 0.01, respectively, where e∗

is the maximum level among e(t). In other words, the early
part of the singing sound (i.e., the initial transient sound) is
excluded, and only the latter part (the free-vibration sound) is
extracted for the pitch estimation (Fig. 7). This helps increase
accuracy in pitch estimation.

3) FINE-GRAINED PITCH ESTIMATION
LiquidListener estimates the pitch of the extracted singing
sound via a frequency analysis. In particular, to improve
accuracy in pitch estimation, we analyze the frequency
characteristics of the sound in a fine-grained manner,
especially using a high-resolution fast Fourier transform
(FFT). LiquidListener first applies a Hamming window to the
extracted signal, extends the signal’s length to 1 s by padding
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FIGURE 8. Accuracy improvement in pitch estimation using
high-resolution frequency analysis.

zeros, and takes the FFT outputs from the extended signal.
This simple zero padding method enables LiquidListener to
detect the pitch in a frequency resolution of 1 Hz. Finally, the
pitch of the singing sound, denoted as f̂ , is estimated as the
frequency at which the sound has the maximum magnitude
value (Fig. 8).

The pitch estimation accuracy can be further improved by
asking a user to tap a container several times and using the
set of singing sounds for the estimation. For example, suppose
that a container is struck nT times. LiquidListener first detects
nT singing sounds and extracts an FFT spectrum for each
sound. Then, it combines them by computing their average
FFT spectrum and measures f̂ . This average spectrum
reduces the effect of outliers, allowing more precise pitch
estimation. Increasing nT might cause a decrease in usability.
However, the experiments reveal that LiquidListener can
provide high accuracy even when nT is 2 or 3, that is, not
compromising usability much (Section VII-C).

B. LIQUID VOLUME CALCULATION
Once the pitch is estimated, LiquidListener calculates the
amount of liquid in a container based on the relationship
observed in (3). Specifically, we derived the approximate
formula for a liquid volume v as follows:

v ≈ v∗
h
h∗

(5)

where v∗ is the container’s maximum capacity. This approxi-
mation might be reasonable only for cylindrical containers.
However, through the experimental analysis, we observed
that even for non-cylindrical containers, LiquidListener can
still support an accurate estimate of liquid volume under
this approximation (for more details, See Section VII-B).
LiquidListener obtains the estimated liquid volume, denoted
as v̂, with the following equation derived from (3) and (5):

v̂ = v∗


(
f0/f̂

)2
− 1

ρMl a


−1/(nC+1)

(6)

where container-dependent parameters, such as f0 and a, are
determined in the calibration phase, and nC is set to 2 based

on empirical observations in the previous research [22].
As discussed in Section IV, we assumed that v∗ and ρMl
(the density of the liquid used for measurement) are given
in advance.

C. SIMPLE TWO-POINT CALIBRATION
The frequency characteristics of singing sounds are affected
by physical properties and the liquid amount, implying that
container-dependent parameters (e.g., a and f0 in (6)) must
be estimated in advance by performing user-involved cali-
bration. To minimize a user’s calibration effort, we leverage
the relationship observed in Section III: As a container is
filled with more liquid, the singing sound is produced at a
lower frequency. This relationship means a singing sound has
the highest pitch f H (or lowest pitch f L) when a container
is empty (or full). Based on this, LiquidListener conducts
a simple two-point calibration for a given container. First,
it collects singing sounds when the container is empty and
full and then estimates f H and f L from the sounds using
the proposed pitch estimation method. Last, the container-
dependent constant a in (6) is computed as follows:

a =
(f0/f L)2 − 1

ρBl
(7)

where f0 equals f H and ρBl , denotes the density of the
liquid used for calibration and is given in advance. These
parameters are kept for future use (i.e., the measurement
phase). Human error might occur during calibration. For
example, users might pour more or less liquid than a
container’s known capacity when measuring f L . However,
we empirically observed that these errors are less than 10 mL
in usual cases and have a negligible effect on the accuracy of
liquid volume measurement. For example, in the presence of
these human errors, LiquidListener achieves high accuracy,
with an average error ratio of 2.3% (Section VII-B).

As mentioned in Section V-B, nC in (6) is empirically
set to 2 by default. However, it can be further optimized
during the calibration phase if singing sounds are collected
with a partially filled container. For example, if we collect nS

singing sounds for a specific container, LiquidListener finds
a and nC that minimize the following mean squared error (ϵ):

ϵ =
1
nS

nS∑
i=1

(vi − v̂i)2 (8)

where v̂i denotes the liquid volume estimated with the ith
singing sound using (6) and vi represents the ground truth.

VI. IMPLEMENTATION
We implemented a prototype of LiquidListener as a mobile
application running on commercial Android smartphones.
It collects audio data with a sampling rate of 48 kHz and the
UNPROCESSED audio source to avoid using vendor-specific
preprocessing techniques. The application runs the proposed
liquid volume sensing algorithms as follows:

VOLUME 12, 2024 39839



T. Kim et al.: LiquidListener: Supporting Ubiquitous Liquid Volume Sensing via Singing Sounds

FIGURE 9. Containers used in the experiments. Table I provides their
detailed specifications.

FIGURE 10. Default evaluation setup.

• In the calibration phase, the application initially asks the
user to enter the liquid type (to obtain its density from
a database) and the container’s name and capacity. The
application computes container-dependent parameters as
proposed in Section V-C and stores the user-type and
calibrated parameters for future use. This calibration
process is requested only once for a specific container.
In the measurement phase, the user selects the liquid
and the container. In particular, the container is selected
among those whose parameters have been precalibrated.

• The application loads its calibrated parameters and
estimates the liquid volume in the container by analyzing
singing sounds.

VII. EVALUATION
We evaluated the performance of LiquidListener in terms
of accuracy, deployability, usability, and robustness by
answering the following questions:

• How accurately does LiquidListener estimate the
amount of liquid in a container regardless of the i)
container shape and material, ii) liquid type, iii) tapping
tool, and iv) smartphone model?

• Howmuch effort should a user expend to measure liquid
volume precisely?

• How robustly does LiquidListener work in diverse
environments and situations (e.g., in the presence of
noise)?

A. EVALUATION SETUP AND METHODOLOGY
We conducted experiments with 16 containers, each of which
has various shapes, sizes, volumes, and materials (Fig. 9 and
Table I for detailed specifications). During the experiments,
we placed the containers on a wooden table in a quiet
classroom (30 – 40 dBA), tapped their upper side using

FIGURE 11. Overall accuracy of LiquidListener with diverse containers.

a stainless teaspoon, and collected singing sounds using
the built-in microphone of a Google Pixel 4 smartphone
placed 10 cm away from the containers as demonstrated in
Fig. 10. We repeated this process several times while varying
the amount of liquid in the containers. For each repetition,
we increased the containers’ liquid volume by adding 40 mL
of water (with a density of 0.997 g/mL) and tapped each of
the four locations 10 times. We used a pipette and kitchen
scale to minimize human error in pouring a certain amount
of water into the containers. Finally, for the ith container,
we collected 40 × nR singing sounds, where nR denotes the
number of repetitions and equals ⌈

v∗i
40ml ⌉+1, and v∗i indicates

the capacity of the ith container.
Using the collected data, we verified the performance of

LiquidListener using the following steps. First, we assumed
that a user taps a container multiple times for more precise
pitch estimation as explained in Section V-A. Under this
assumption, we randomly selected three singing sounds for
each volume (i.e., 3×nR sounds were selected). Among them,
the data collected when the container was empty and full were
used for calibration, and the rest were used for measuring
the accuracy of LiquidListener. This process was repeated
1000 times for each container individually.

It should be noted that we selected our default experimental
conditions (e.g., tapping location, tool, and distance) as
described above. However, these conditions can play a critical
role in determining the the performance of LiquidListener.
So, we also conducted additional experiments under diverse
environments (e.g., with various tapping tools).

We used an error ratio as the primary metric to evaluate
the performance of LiquidListener. This metric is frequently
employed in other studies related to liquid volume sens-
ing [1], [14], [21]. The error ratio is defined as follows:

Error ratio =
|Estimated volume− Ground truth|

Total capacity
(9)

where the ground truth is measured using a kitchen scale.

B. OVERALL PERFORMANCE OF LIQUIDLISTENER
Fig. 11 demonstrates that LiquidListener supports precisely
measuring liquid volumes in any container (e.g., 2.3% on
average). This high accuracy is primarily due to the capability
of LiquidListener to precisely estimate the pitch of singing
sounds using a fine-grained frequency analysis (i.e., a 1 Hz
resolution FFT). As illustrated in Fig. 12, the measurement
error decreases with a higher-resolution FFT. For example,
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FIGURE 12. Effect of using a high-resolution fast Fourier transform(FFT)
in precisely estimating a liquid volume.

FIGURE 13. Liquid volume sensing errors with various calibration efforts.

an increase in the resolution from 20 to 1 Hz incurs a
significant drop in error ratio by approximately 60%, not
compromising responsiveness much (a computation time of
<1.5 ms). The accuracy can slightly increase further using
a more fine-grained analysis, requiring high computational
overhead (17.8 ms with a 0.1 Hz resolution FFT).

Notably, plastic containers (P1 and P2) have higher error
ratios than other containers because the plastic material
usually has a higher damping ratio than others, resulting
in weak vibrations induced by tapping. This phenomenon
makes it challenging for LiquidListener to estimate the pitch
of singing sounds accurately. Nevertheless, LiquidListener
exhibits a satisfactory level of accuracy for plastic containers,
with an error ratio of 4.9% or less.

C. USABILITY TEST
LiquidListener requires users to collect singing sounds by
tapping a container. However, this data collection might
burden users and decrease usability. Therefore, in this
experiment, we verify how much user effort is required to
measure liquid volumes.

1) NUMBER OF CALIBRATION POINTS
As explained in Section V-C, LiquidListener conducts
calibration to compute container-dependent parameters.
More specifically, it asks a user to collect a set of
calibration data when a container is empty and full. With
this simple two-point calibration, LiquidListener optimizes
the container-dependent constant a according to (7) and
achieves high measurement accuracy (e.g., an error ratio of
2.3% on average). Concerning this, some may argue that
additional calibration data for a partially filled container
could further improve accuracy. However, as presented in
Fig. 13, increasing the number of calibration points reduces
the error ratio slightly, but the improvement is not significant.
Thus, the constant value of a can be sufficiently optimized
with only two-point calibration. Therefore, LiquidListener

FIGURE 14. Effect of the number of data collection.

requires minimal calibration effort (i.e., only two calibration
points) for liquid volume sensing, minimizing the effect
on usability. Through a field study with real-world users,
we observed that it takes less than 1 min to collect data for
the two-point calibration.

2) NUMBER OF TAPS FOR PITCH ESTIMATION
LiquidListener can require a user to collect singing sounds
several times for a particular volume, reducing the effect of
outliers in pitch estimation as described in Section V-A, and
increasing the measurement accuracy of LiquidListener. For
example, Fig. 14 demonstrates that the error ratio gradually
decreases up to 2.0% as the number of singing sounds
(nT ) used for pitch estimation increases. When nT equals 3,
LiquidListener achieves nearly optimal accuracy (an average
error ratio of 2.3%) within only a few seconds (less than 2 s)
of data collection. Based on this experimental observation,
we set nT to 3 by default, which prevents LiquidListener from
losing much usability by requiring only a small number of
taps by users.

D. DEPLOYABILITY TEST
The previous sections reveal that LiquidListener could work
well with everyday containers with little calibration effort.
We further verified the deployability of LiquidListener
in more diverse configurations (e.g., with various liquids,
tapping tools, and smartphone). Specifically, to observe how
well LiquidListener can be deployed in these environments
without compromising usability, we compared the following
two methods of measuring liquid volume for each configura-
tion:

• Extra-Cal measures the liquid volume after addi-
tional calibration for the target configuration. The addi-
tional calibration takes about 15 s, similar to that required
for a normal calibration process.

• No-Cal measures the volume without additional
calibration, employing the data previously calibrated with
the default configuration (i.e., water, a teaspoon, and
Pixel4).

In addition, during this experiment, we only used a specific
container (G1) to focus solely on the effects of other factors.

1) EFFECT OF LIQUID TYPE
First, we evaluated the accuracy of LiquidListener in
measuring liquid volumes for seven types of liquids: coke,
milk, vodka, corn syrup, soybean oil, detergent, and ethanol
80%. Fig. 15 reveals that Extra-Cal can measure liquid
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FIGURE 15. Liquid volume sensing errors for various liquid conditions.
The approximate density of each liquid was obtained from previous field
studies [38], [39], [40], [41], [42], [43]. The ground truth (i.e., the estimated
density) was measured using a scale and measuring cup.

FIGURE 16. Influence of water temperature. (e.g., hot, room temperature,
cold).

volume with high accuracy (an average error ratio of 1.4%)
for all seven liquids. However, this method has low usability
because it requires recalibration whenever the liquid type
changes. In contrast, No-Cal, which leverages calibration
parameters obtained with water, can achieve an accuracy as
high as that for Extra-Cal only for liquids with densities
(0.94 to 1.05 g/mL) similar to water, even without additional
calibration (an average error ratio of 1.9%). Nevertheless,
its accuracy significantly declines with some liquids, such
as corn syrup, soybean oil, and 80% ethanol, because they
have significant density differences from water. We can
mitigate this problem using the approximate density value
of the target liquid (i.e., ρMl in (6)). According to the
experiment, this method (denoted as No-Cal-Density)
supports all seven liquids with an average error ratio of 1.7%,
which is not significantly different from the accuracy of
Extra-Cal. The approximate densities of various liquids
can be easily found in many open materials, and they are not
significantly different from the densities measured in their
experiments, as illustrated in Fig. 17. LiquidListenermanages
the approximate densities as a database to support a wide
range of liquid types.

2) EFFECT OF WATER TEMPERATURE
We evaluated the accuracy of LiquidListener under varying
water temperatures, including hot, room temperature, and
cold conditions, as illustrated in Fig. 16. The results indicate
that the system accuracy is higher in hot than cold water.
This phenomenon in hot water can be attributed to the
decreased density of water at higher temperatures, which
leads to an increased speed ofwatermolecules. Consequently,
the speed of sound is enhanced, allowing sound waves to
propagate more efficiently. This results in a clearer pitch,
which LiquidListener detects with precision. It’s notable that

FIGURE 17. Influence of tapping tools and devices.

the error rate for cold water is 1.4%, demonstrating minimal
difference from that of hot water, indicating that the system
is less affected by water temperature.

3) EFFECT OF TAPPING TOOLS AND RECORDING DEVICES
Different tapping tools have non-identical structures, shapes,
sizes, and materials. Depending on the smartphone model,
microphone response also varies. These differences can
cause variations in the characteristics of singing sounds. For
example, leveraging a soft object (e.g., the tip of a fingernail)
as a tapping tool results in a lower amplitude of singing sound
than using more rigid tools (e.g., teaspoons).

To investigate such effects, we measured the amount
of water using LiquidListener under various configurations
consisting of five tapping tools and three smartphone models.
Fig. 17 illustrates that the Extra-Cal and No-Cal
methods achieve low error ratios of less than 2.1% for
all configurations. In particular, No-Cal has an accuracy
value similar to Extra-Cal without additional calibra-
tion, despite using the default calibration data obtained with
the teaspoon and Pixel4. This result is because the significant
factors determining the pitch of singing sounds are the
physical properties of containers and liquids, as mentioned
in Section III. Thus, LiquidListener can capture these core
characteristics from received sounds using the proposed
algorithms and finally supports high accuracy regardless
of the tapping tool and smartphone without requiring
recalibration.

E. ROBUSTNESS TEST
Users attempt to measure liquid volumes ubiquitously in
diverse and dynamically changing environments, implying
that singing sounds could be collected from differing
environments at each phase (i.e., the calibration and mea-
surement phases). Therefore, we evaluated how robustly
LiquidListener works against such environmental changes.
More specifically, during this experiment, we conducted
calibration with the dataset collected in ideal environments
as described in Section VII-A and made changes in the
measurement environment.

1) AGAINST AMBIENT NOISE
The accuracy of acoustic-based algorithms can be degraded
significantly due to ambient noise. To observe the influence
of this environmental factor, we measured the accuracy
of LiquidListener in four different places with varying
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FIGURE 18. Robustness of LiquidListener in diverse places with various
noise characteristics.

FIGURE 19. Influence of the container placement. Five containers (G3, C1,
S3, ST, P2) that have a handle were used to observe the effect of diverse
holding types.

FIGURE 20. Robustness of LiquidListener against changes in measuring
distance.

noise levels: a classroom, office, park, and street (near
a construction site). As illustrated in Fig. 18, the error
ratios in all containers are within 2.3%, demonstrating
that LiquidListener is not significantly affected by the
surrounding noise. This outcome is because the proximity
between a smartphone and a container (about 10 cm) enables
it to capture singing sounds at a louder intensity than
the noise. Furthermore, LiquidListener can operate robustly
against noise because it filters unnecessary frequency bands
containing noise based on prior observations of singing sound
characteristics.

2) AGAINST CHANGES IN THE PLACEMENT OF A
CONTAINER
In the measurement phase, users could position containers
differently than when performing calibration. For example,
a user may put a container on a surface of a different
material, hold a container by hand, or place a container away
from or close to a smartphone. Therefore, these experiments
evaluate how much changes in container placement affect the
performance of LiquidListener.

Fig. 19 presents the error ratios of LiquidListenermeasured
when five containers are placed on surfaces made of seven
materials and when a user is holding the container body or
handle. According to the experimental results, LiquidListener
provides similar accuracy (e.g., with a standard deviation

FIGURE 21. Time-invariant characteristics of LiquidListener.

FIGURE 22. Influence of tapping location variations.

FIGURE 23. Robustness of LiquidListener against user differences.

of 0.3% error ratio for G3) regardless of the surface on
which the containers are placed. This result is because the
surfaces have little influence on the vibrations of the container
body. In other words, singing sounds produced from the
oscillating body have similar characteristics regardless of
where a container is placed. In contrast, the measurement
error ratios drastically increase up to 8.3% when a user holds
the container body or handle. The main reason is that the
vibrations of the container body are absorbed by the user’s
hand, generating low-level singing sounds.

Fig. 20 depicts the error ratios of LiquidListener measured
while varying the distance between the container and
smartphone. We confirmed that the error ratios remain within
2.2% even when the distance is up to 50 cm apart because
the intensity of singing sounds is strong enough. If the
distance between a container and smartphone extends further
than 50 cm, the accuracy of LiquidListener may decrease.
However, considering the typical user habit of using a
smartphone up close, placing a smartphone more than 50 cm
away from a container would be extremely rare.

3) AGAINST TEMPORAL VARIATIONS
Fig. 21 illustrates that LiquidListener maintains high accu-
racy even when there are temporal differences exist between
calibration and measurement. More specifically, this method
consistently achieves error ratios of less than 1.7% for all
containers. As the pitch of the singing sound is determined
by the physical properties of the container and liquid,
LiquidListener can provide stable performance over time.
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4) AGAINST BEHAVIORAL VARIATIONS
Users might have different behavioral characteristics (e.g.,
tapping intensities and locations) when using LiquidListener.
Worse, the behavior can vary for the same user depending on
the situation.We verified how this behavioral variation affects
the performance of LiquidListener with the following two
experiments. First, we evaluated the accuracy of measuring
the liquid volume over different tapping locations as depicted
in Fig. 22. We used data collected when tapping the upper
side of a container, denoted as High, for calibration. The
figure illustrates that LiquidListener maintains high accuracy
regardless of the tapping locations for G1 and C1. However,
the error ratio increases to 7.2% and 9.5% when tapping on
the rim and bottom side of S1, respectively. The tumbler
(S1) has a unique structure, with a threaded finish and
thick support at its top and bottom, respectively (Fig. 9).
This generates noisy or weak singing sounds, decreasing the
performance of measuring liquid volume. However, except
for these cases, LiquidListener can still provide only subtle
errors, even for S1, at an average error ratio of 1.9%.

Second, we observe the influence of the behavioral
difference between users on measuring liquid volume with
eight real-world users recruited from the university. During
this experiment, each participant was asked to freely fill water
in a container and measure the volume using LiquidListener.
More specifically, each of them tapped the container’s upper
side five times using a stainless teaspoon. This measurement
process was repeated ten times for each container (G1, C1,
and S1). Then, we measured the accuracy using the data
collected from one user for measurement and the others for
calibration. As illustrated in Fig. 23, LiquidListener provides
a high level of accuracy in measuring liquid volumes (e.g.,
an average error ratio of 1.7%, 2.3%, and 2.2% for each
type of container). Some users (e.g., U3) had significantly
different tapping styles from others. However, only a subtle
increase in error was observed, indicating that tapping styles
have a minimal influence on the measurement.

Through the above experiments, we confirmed that
LiquidListener works robustly in most cases. No additional
calibration for a specific container is required even in
environmental changes. However, a few exceptions exist. One
possible solution to avoid such exceptional situations would
be to provide users with simple guidelines. For example,
we can ask them to tap the container’s upper or middle part
while not holding it.

VIII. DISCUSSION
A. USE OF HEAVY TAPPING TOOLS
Although LiquidListener requires lightweight tapping tools,
such as teaspoons or pens, some may prefer to use heavier
objects. For example, a user can directly use a smartphone,
which records singing sounds, as a tapping tool, as in
Knocker [44], a knock sound-based system that supports
object recognition with a smartphone. This usage makes
LiquidListener more convenient because the user does not
need to prepare an additional tool for tapping. However,

in the experiments where the subjects hit containers with their
smartphones, we observed that the containers were likely to
be pushed back or damaged easily, resulting in difficulties in
recording and making singing sounds. As future work on this
matter, we consider using a smartphone’s vibration motor to
generate singing sounds and detect liquid volumes with the
smartphone.

B. TYPES OF UNMEASURABLE CONTAINERS
We observed that LiquidListener has difficulty measuring
liquid volume for three types of containers. The first type
is paper containers. Paper material inherently has a much
higher damping ratio, which is an essential condition for
vibration. Thus, it cannot generate vibrations caused by
external forces, leading to no production of singing sounds.
Therefore, the system is unable to measure liquid volume in
paper containers.

The second type is thermos bottles that feature a double-
walled internal structure. The space between the double
walls is maintained in a vacuum state to minimize thermal
conductivity. Thus, even if the outer wall of the container is
struck, the applied force experiences a significant attenuation
while propagating the inner wall, making it impossible for
LiquidListener to measure the liquid volume inside thermos
bottles.

The third type is a container with a closed lid. The lid
can block the propagation of singing sounds, significantly
attenuating their amplitude. Therefore, the proposed system
fails to sense the liquid level. However, besides these
cases, we confirmed through intensive experiments that
LiquidListener has high deployability, supporting containers
comprising various materials, such as glass, ceramic, stain-
less steel, and even plastic.

C. PRIOR INFORMATION ON CONTAINER CAPACITY
As mentioned, LiquidListener requires the capacity informa-
tion of a container to calculate liquid volume, which vendors
commonly provide through product manuals. The proposed
system manages this information as a database, supporting
a wide range of containers. However, if the capacity is not
given, the proposed system can ask a user to measure the
container’s height and radius using a ruler or a measuring
tool app on the smartphone and calculate the capacity
approximately. The error ratio for sensing liquid volume
in cylindrical containers with the approximate capacity is
within 2.7% on average, which is negligible. In contrast,
for noncylindrical containers such as wine glasses, the error
ratio increases up to 10.4% because users cannot accurately
estimate the capacity due to their complex shape. Thus,
if users attempt to measure liquid volume in noncylindrical
containers with an unknown capacity, LiquidListener notifies
them that the measurement may be inaccurate.

D. PERFORMANCE IN LARGE CONTAINERS
LiquidListener primarily targets cup-like containers used for
drinking water or other beverages. The experiment found
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that LiquidListener could also measure liquid volumes with a
similar error ratio of about 2% to 3%, even in larger containers
(e.g., pots). This outcome is because the system calculates
the liquid volume by considering the ratio of the current
liquid level to the total height of the container, according
to (5). However, as the container’s maximum capacity v∗

in (5) increases, the absolute error value might inevitably
increase. Thus, the accuracy of liquid volume sensing must
be further improved to use LiquidListener practically in large
containers. We leave this problem as future work.

IX. CONCLUSION
This study presents LiquidListener, a novel sensing method
that enables the ubiquitous measurement of liquid volume
in containers while providing a high level of accuracy,
deployability, and usability. The key idea of LiquidListener
is to predict the liquid volume by capturing and analyzing
the singing sound of a container. To realize this method,
we devised effective acoustic-based sensing algorithms to
detect the pitch of the singing sound robustly despite
environmental noise. The method performs calibration with
little effort and precisely calculates the liquid volume of
the container. The extensive experiments demonstrate that
LiquidListener can detect liquid volume in containers of
various materials and shapes with high accuracy, even under
diverse situations and dynamically changing environments.
Currently, LiquidListener is limited to containers without
lids; however, extending its capability to measure water
levels in sealed containers leaves a goal for future work.
This advancement would ensure drinking water safety
and management across various applications. We believe
that LiquidListener can serve as a promising assistant for
ubiquitous liquid volume sensing in daily life with many
practical application scenarios, such as in healthcare systems
for tracking water intake.
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