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A B S T R A C T

A manipulated charging behavior of electric vehicles (EVs) due to an adversary along with the uncertain
photovoltaic (PV) generation outputs and loads may lead to unstable power distribution system operations
with voltage and current violations. To resolve this issue, this paper proposes an optimization framework
where the following two types of uncertainties are addressed: (i) the natural uncertainties of PV generation
outputs/loads and (ii) artificial uncertainties of load altering attacks (LAAs) on EV charging stations (EVCSs)
via the manipulation of EV charging control signals. The proposed framework is formulated as a Wasserstein
metric-integrated distributionally robust optimization (DRO)-based Volt/VAR optimization (VVO) problem.
The proposed DRO-based VVO framework combined with PV planning and curtailment aims to minimize
substation energy and voltage imbalance along with the complete removal of the constraint violations while
handling uncertain PV generation outputs/loads and LAAs. To use off-the-shelf optimization solvers, tractable
reformulation of the chance constraints of the voltage, current, and curtailed PV real power of the original DRO
problem is provided. Numerical examples tested over IEEE 13-bus and 37-bus systems with PV systems and
EVCSs show the efficiency of the proposed DRO framework in terms of substation energy, voltage imbalance,
and PV planning/curtailment cost under stochastic LAAs.
1. Introduction

Recently, distributed energy resources such as solar photovoltaic
(PV) systems and electric vehicles (EVs) at EV charging stations (EVCSs)
have been increasingly deployed to ensure stable and economical
power distribution system operations. To this end, distribution system
operators (DSOs) perform Volt/VAR optimization (VVO) as a key step
in distribution management (Singh et al., 2020). From the perspective
of distribution grid operation, VVO aims to minimize power losses and
voltage violations by exploiting the reactive power capability of PV
systems via their smart inverters under various loads including charging
of EVs (Nguyen and Choi, 2023). In addition, from the perspective of
distribution grid planning, PV planning, which includes the optimal
placement/capacity sizing of PV systems (Cai et al., 2020) and PV real
power curtailment (Schermeyer et al., 2018) is essential for ensuring
reliable grid operations and avoiding economic losses when a large
number of PV systems are penetrated.

Notably, the following two factors may threaten efficient distri-
bution grid operation and planning based on PV systems: (i) natural
uncertainties in PV generation outputs and loads and (ii) artificial
uncertainties of malicious cyber-attacks on distribution grids. With the
growing penetration of PV systems and various controllable loads such
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as EVs in a distribution grid, the stability of distribution grid operations
can be increasingly threatened owing to inadequate handling of their
inherent uncertainties (e.g., intermittent PV generation outputs and
random arrival/departure times of EVs). Furthermore, the increasingly
realistic cyber-attacks on distribution grids may result in large-scale
blackouts and severe economic losses. For example, the cyber-attacks
in Ukraine in 2015, based on the manipulation of the control signals
of generators and circuit breakers transmitted by DSOs, led to an ex-
tensive blackout (Liang et al., 2017). To address such issues, this study
aims to develop a natural and artificial uncertainty-aware optimization
framework, in which the impact of cyber-attacks on EVCSs through
the manipulation of EV charging control signals is mitigated by PV
planning and curtailment under uncertain PV generation outputs and
loads. The research relevant to this study can be summarized in the
following three categories.

• PV planning and curtailment: Researchers formulated an optimiza-
tion problem for determining the optimal location and size of
distributed generators (DGs) including PV systems (Al Abri et al.,
2013), in which the voltage stability margin is improved while
considering probabilistic DG generation and load characteristics.
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Nomenclature

The main notations used throughout this paper are summarized
here. Bold symbols represent vectors or matrices. Other undefined
symbols are explained in the text.

Sets and indices

 Set of buses in a distribution system.
 EVCS Set of buses with EVCSs.
 L Set of buses with loads.
 PV Set of buses with PV systems.
 Set of scheduling time horizon.
𝛷 Set of phases.
𝜙 Index of phase where 𝜙 ∈ 𝛷.
𝐸 Index of EVCS where 𝐸 ∈  EVCS.
𝑒 Index of EV at EVCS 𝐸 where 𝑒 ∈  EVCS

𝐸 .
𝑖 Index of bus where 𝑖 ∈  .
𝑖𝑗 Index of line from bus 𝑖 to 𝑗 where 𝑖, 𝑗 ∈  .
𝑙 Index of load where 𝑙 ∈  L.
𝑝 Index of PV system where 𝑝 ∈  PV.
𝑡 Index of scheduling time where 𝑡 ∈  .

Parameters

𝐚,𝐛, 𝐜,𝐝𝑖𝑗 Parameter vectors for the linear power flow
model.

𝐄𝑖𝑗 ,𝐁𝑖𝑗 Auxiliary matrices.
𝐌,𝐊,𝐆, 𝐉𝑖𝑗 Parameter matrices for the linear power

flow model.
𝐰,𝐖 Three-phase zero-load vector and matrix.
𝐘 Three-phase bus admittance matrix.
𝜋1 Price of PV system installation.
𝜋2 Price of PV system capacity upgrade.
𝜋3 Price of PV generation output curtailment.
𝜓 Coefficient of PV reactive power limit.
𝑝(𝑞)load Predicted real(reactive) power demand.
𝑝EVCS Predicted EVCS real power demand.
𝑝EV Sampled EV charging demand.
𝑝PV Predicted PV real power generation output.
𝑥EV Predicted binary EV charging signal.
𝑧 Binary location status for existing PV sys-

tem.
𝑖min(max)
𝑖𝑗 Minimum(maximum) current magnitude at

line 𝑖𝑗.
𝑝PV,max Maximum PV real power output.
𝑠PV,+,max Maximum additional PV capacity.
𝑢(𝛾)PV Coefficient of PV capacity(curtailment).
𝑣min(max) Minimum(maximum) voltage magnitude.

Variables

𝐢𝑖𝑗,𝑡 Vector of complex current at line 𝑖𝑗 and
time 𝑡.

𝐬𝑠,𝑡 Vector of complex power at substation 𝑠 and
time 𝑡.

𝐯𝑡 Vector of complex voltages at time 𝑡.
𝑖 Complex current.

A probability-weighted robust optimization method was devel-
oped (Zhang et al., 2018b), in which the total profit of the DSO
is maximized by optimally allocating DGs in microgrids along
with the modeling of uncertainties in the DG generation and load.
3437
𝑝(𝑞)inj Real(reactive) power injection.
𝑝PV,c Curtailed PV real power.
𝑞(𝑠)PV PV reactive(apparent) power output.
𝑠PV,+ Added PV capacity.
𝑧 Binary location status for added PV system.

Furthermore, a two-stage stochastic programming optimization
problem was formulated (Zhang et al., 2018a), in which the
optimal locations and sizes of the PV systems and EVCSs are
determined in a coupled transportation and power network. The
solving time of the optimization problem was reduced using a
generalized Benders decomposition algorithm. Moreover, a prob-
abilistic approach for maximizing the hosting capacity of PV
systems was proposed (Ali et al., 2021), in which the size of
the PV system inverter for the watt-VAR function is optimized
with the incorporated inverter reactive power capability. Other
researchers proposed an optimal charging and discharging strat-
egy (Kim et al., 2020) using energy storage systems to minimize
PV power curtailment and maximize the profit of PV power
producers. In Liu et al. (2020), several household-centric indices
were introduced to fairly evaluate the influence of various PV
curtailment schemes on residential distribution networks in terms
of PV harvesting, energy export, and financial benefits. An ap-
proach to plan the PV sizing and utilize the PV curtailment using
steady-state security region was proposed (Sun et al., 2022) to
economically improve the penetration of renewable energies into
the distribution system. In Wang et al. (2024), a joint planning
method of PV installation size and location with wind turbine and
multi-timescale flexible resources was proposed for economical
investments and operating costs.

• Cyber-attacks on EVCSs: To exploit the vulnerability of internet-
based smart grid applications, load altering attacks
(LAAs) (Mohsenian-Rad and Leon-Garcia, 2011) have been de-
vised to compromise the control signals for the optimal operation
of controllable loads including EVs. Compared with the cyber-
attacks on power grids based on communication networks and
control centers, such as switching attacks (Liang et al., 2019),
denial-of-service attacks (Cheng et al., 2022), false data injection
attacks on state estimation (Tran et al., 2021), and direct control
signal manipulation on EVCS (Basnet and Ali, 2023), LAAs are
more realistic because they manipulate only the control signal
without breaking through communication network and control
center. In LAA-based EVCS attack (ElHussini et al., 2021), a
sudden surge in the power demand and supply of EVCSs occurs
through the LAA-based switching manipulation of EV charging
and discharging. Researchers (Acharya et al., 2020b) also devel-
oped a novel LAA that injects a botnet malware into EVs and
EVCSs, resulting in undervoltage and power outages in the distri-
bution grid. In an LAA-based optimization framework (Acharya
et al., 2020a), the adversary compromises the EV charging com-
mands and suddenly decreases the demand in the power grid,
resulting in an over-frequency grid condition. Furthermore, a
two-stage optimization problem was formulated for mitigating
the adverse impact of LAAs on the distribution grid via EV
charging signal distortion (Liu and Wang, 2022). The researchers
determined the optimal location/size and operation status of soft
open point devices to maintain a normal voltage profile in the
event of LAAs.

• Uncertainty-aware optimization for power system operation: Conven-
tionally, stochastic optimization (SO) (Kou et al., 2018; Budiman
et al., 2022) and robust optimization (RO) techniques (Jabr,
2013) have been adopted to address the uncertainties in power
system operations. However, SO requires prior knowledge of the
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Fig. 1. Model of the proposed framework for DRO-based VVO with PV planning and curtailment.
true distribution of uncertain parameters, and RO yields an ex-
cessively conservative solution based on the worst-case situation.
To address these limitations, distributionally robust optimization
(DRO) has emerged (Gao and Kleywegt, 2023). Because DRO
uses the Wasserstein metric, knowledge of the true distribution
of uncertain parameters is not required, and a less conservative
robust solution is obtained using an ambiguity set consisting of
the potential distributions of uncertain parameters (Xie, 2019).
Thus, the Wasserstein-based DRO method has the following ad-
vantages: (i) tractable reformulation, (ii) asymptotic consistency,
and (iii) finite sample guarantee. The DRO method has been used
to realize power flow optimization (Guo et al., 2019), multi-
energy system operation in wholesale electricity markets (Nasiri
et al., 2023), microgrid operation integrated with hydrogen fuel-
ing station (Wu et al., 2019), prosumer energy management (Guo
et al., 2022), and conservation voltage reduction using the data
enriched method that recovers the high-resolution PV generation
and load data (Zhang et al., 2024).

However, the previous studies on mitigating the impact of LAAs
on power distribution systems have the following limitations. First,
most of the LAA-mitigation methods were formulated in a deterministic
optimization (DO) problem that does not explicitly take into account
uncertainty. Since the natural uncertainties associated with PV gener-
ation output and load demand exist in real-world power distribution
systems, the DO method may not calculate accurate mitigation solution
of LAAs on such realistic power system operation. Second, the existing
works exploited PV planning and curtailment to ensure stable and
profitable power distribution system operations in the presence of
no LAAs; however, the PV flexibility can be potentially utilized to
maintain robust distribution system planning/operation against LAAs
through PV planning and curtailment. Third, the existing frameworks
can be applied only to balanced distribution systems; however, actual
distribution systems are inherently unbalanced.

To overcome these limitations, this paper proposes a DRO frame-
work in which the DSO performs a PV planning/curtailment-integrated
VVO in a realistic three-phase unbalance distribution system while
handling both the uncertain PV generation output/load and LAA on
EVCS. A key part of the proposed DRO framework is to incorporate
PV planning and curtailment process into VVO to ensure reliable and
robust distribution grid planning and operation against the PV gener-
ation output/load and LAA uncertainties. For PV system, the planning
and operation are simultaneously realized as follows. In the planning
stage, the optimal PV deployment factors, such as the optimal size and
3438
location, are determined. Subsequently, the real power generated by
the PV panels is optimally curtailed to satisfy operational constraints
within a short-term interval (e.g., every 5 min) followed by a typical
VVO. The key contributions of this study can be summarized as follows:

• Development of a DRO-based VVO model under uncertainties: In
contrast with conventional methods excluding the natural uncer-
tainties of PV generation outputs and loads under the artificial
uncertainties of LAAs, we propose a universal uncertainty-aware
optimization framework into which both the natural and artificial
uncertainties are incorporated simultaneously as shown in Fig. 1.
The proposed DRO-based VVO framework contributes to resolv-
ing the natural uncertainties and LAAs on EVCS for a reliable
and robust realistic three-phase unbalanced distribution system
operation.

• Exploitation of PV planning and curtailment in the DRO-based VVO
model: We incorporate the PV planning and curtailment processes
into the DRO-based VVO problem. The added PV planning and
curtailment functions aid to further mitigate the impact of the
LAAs on distribution grid operations in the presence of the PV
generation output and load uncertainties.

• Tractable reformulation of the DRO-VVO problem: We present
tractable reformulations for the chance constraints of voltage
magnitude, current magnitude, and curtailed PV real power in
the PV planning/curtailment-integrated DRO problem. The DRO
problem with the deterministic constraints obtained from the
reformulation can be solved by off-the-shelf optimization solvers
efficiently.

• Performance validation of the DRO-based VVO method: Simulation
results obtained on IEEE 13-bus and 37-bus systems demon-
strate the effectiveness of the proposed method in terms of opti-
mization infeasibility, reduction of substation energy/voltage im-
balance, PV deployment/curtailment, and solution conservatism
along with sample efficiency.

In summary, this study proposes a PV planning/curtailment-
integrated DRO-based VVO framework in the presence of the natural
uncertainty and LAA on EVCS. Under uncertain and cyber attack
environment, the integrated PV planning and curtailment processes aid
to maintain stable distribution planning/operation with the minimized
real power loss and voltage imbalance as well as mitigate the impact
of LAA on EVCS through the real/reactive power dispatch of the
PV systems. Given the parameters (e.g., distribution network parame-

ter/topology/constraint, predicted PV/load/EVCS operation data based
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on their historical data, and operational limits of PV systems), the
proposed optimization framework calculates the values of decision vari-
ables (e.g., optimal location and size of PV systems, curtailed PV real
generation outputs, and adjusted PV reactive power output). The pro-
posed framework can potentially be used as a crucial uncertainty-aware
application in distribution management system because it addresses
both the natural uncertainties of PV generation outputs/loads and the
artificial uncertainties of LAAs based on the DRO method by exploiting
existing PV planning and curtailment methods.

The remaining paper is organized as follows. Section 2 introduces
the system model with a linearized three-phase unbalanced distribution
system. The attack and its mitigation strategy are described in Sec-
tion 3. Section 4 presents the introduction and tractable reformulation
of the DRO problem. Section 5 describes the simulation analysis for
validating the proposed method, and Section 6 presents the concluding
remarks.

2. System model

2.1. Notation

Bold symbols represent vectors or matrices. Hat symbols represent
estimates of true parameter values. For an 𝑁×1 complex vector 𝐱 ∈ C𝑁 ,
𝐱 denotes the conjugate of 𝐱, and diag(𝐱) returns an 𝑁 × 𝑁 diagonal
matrix with the elements of 𝐱. j denotes an imaginary unit of the
complex vector. | ⋅ | represents the absolute value of a number or vector
or the cardinality of a set. (⋅)⊤ represents the transpose of a vector.

2.2. Unbalanced distribution system model

For the set  of buses, consider a three-phase linear unbalanced AC
distribution power flow model (Bazrafshan and Gatsis, 2018) with | |

buses having the following complex three-phase bus admittance matrix

𝐘 =
[

𝐘00 𝐘0𝐿
𝐘𝐿0 𝐘𝐿𝐿

]

∈ C3(| |+1)×3(| |+1) (1)

here 𝐘00 ∈ C3×3,𝐘0𝐿 ∈ C3×3| |,𝐘𝐿0 ∈ C3| |×3, and 𝐘𝐿𝐿 ∈ C3| |×3| |

re the submatrices of the admittance matrix including the substation.
ased on the fixed-point linearization method, the linear models of the
oltage, voltage magnitude, substation apparent power, and current at
ime 𝑡 are expressed as (Bernstein and Dall’Anese, 2017)

𝐯𝑡 = 𝐌𝑌 𝐱𝑌𝑡 +𝐌𝛥𝐱𝛥𝑡 + 𝐚 (2)

𝐯𝑡| = 𝐊𝑌 𝐱𝑌𝑡 +𝐊𝛥𝐱𝛥𝑡 + 𝐛 (3)

𝐬𝑠,𝑡 = 𝐆𝑌 𝐱𝑌𝑡 +𝐆𝛥𝐱𝛥𝑡 + 𝐜 (4)

𝐢𝑖𝑗,𝑡 = 𝐉𝑌𝑖𝑗𝐱
𝑌
𝑡 + 𝐉𝛥𝑖𝑗𝐱

𝛥
𝑡 + 𝐝𝑖𝑗 . (5)

Here, 𝐱𝑌 (𝛥)𝑡 =
[

𝐩inj,𝑌 (𝛥)
𝑡

⊤
,𝐪inj,𝑌 (𝛥)
𝑡

⊤]⊤ represents the real (𝐩inj,𝑌 (𝛥)
𝑡 ∈

3| |) and reactive (𝐪inj,𝑌 (𝛥)
𝑡 ∈ R3| |) power injection vectors with

ye (delta) phase configuration at time 𝑡. The vectors 𝐯𝑡 ∈ C3| | and
𝐯𝑡| ∈ R3| | denote the complex voltages and voltage magnitudes for
ll buses and phases at time 𝑡, respectively. The apparent power at
ubstation 𝑠 is defined as 𝐬𝑠,𝑡 = 𝐩𝑠,𝑡 + j𝐪𝑠,𝑡 where 𝐩𝑠,𝑡,𝐪𝑠,𝑡 ∈ R3 are the
eal and reactive power values at the substation at time 𝑡, respectively.

For a given power injection vector 𝐬 =
[

(𝐬𝑌 )⊤, (𝐬𝛥)⊤
]⊤, let 𝐯 and 𝐬̃ =

(̃𝐬𝑌 )⊤, (̃𝐬𝛥)⊤
]⊤ represent the solution of the fixed-point equation (Bern-

tein et al., 2018). Then, consider the first iteration of the following
ixed-point equation initiated at 𝐯:

= 𝐰 + 𝐘−1
𝐿𝐿

(

diag(𝐯)−1𝐬𝑌 +𝐇⊤diag(𝐇𝐯)−1𝐬𝛥
)

(6)

where 𝐰 = −𝐘−1
𝐿𝐿𝐘𝐿0𝐯0 is the known zero-load voltage, 𝐯0 ∈ C3 is the

ector of substation voltages, and 𝐇 is a 3(| | − 1) × 3(| | − 1) block-
diagonal matrix where all diagonal submatrices are [1 − 1 0; 0 1 −
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1; −1 0 1]. Using 𝐖 = diag(𝐰) and the result (6), the parameter matrices
and vectors for (2)–(4) can be written as follows:

𝐌𝑌 = (𝐘−1
𝐿𝐿diag(𝐯)−1,−j𝐘−1

𝐿𝐿diag(𝐯)−1) (7)

𝐌𝛥 = (𝐘−1
𝐿𝐿𝐇

⊤diag(𝐇𝐯)−1,−j𝐘−1
𝐿𝐿𝐇

⊤diag(𝐇𝐯)−1) (8)

𝐚 = 𝐰 (9)

𝐊𝑌 = |𝐖|Re
{

𝐖−1𝐌𝑌 } (10)

𝐊𝛥 = |𝐖|Re
{

𝐖−1𝐌𝛥} (11)

𝐛 = |𝐰| (12)

𝐆𝑌 = diag(𝐯𝟎)𝐘0𝐿𝐌
𝑌

(13)

𝐆𝛥 = diag(𝐯𝟎)𝐘0𝐿𝐌
𝛥

(14)

𝐜 = diag(𝐯0)
(

𝐘00𝐯0 + 𝐘0𝐿𝐰
)

. (15)

To express the current, the phase impedance and shunt admittance
matrices of the line spanning from bus 𝑖 to 𝑗 are defined as 𝐙𝑖𝑗 ∈ C3×3

and 𝐘𝑖𝑗 ∈ C3×3, respectively. The current vector 𝐢𝑖𝑗 = [𝑖𝑖𝑗,𝑎, 𝑖𝑖𝑗,𝑏, 𝑖𝑖𝑗,𝑐 ]⊤ of
line 𝑖𝑗 is expressed as

𝑖𝑗 =
[

(𝐘𝑖𝑗 + 𝐙−1
𝑖𝑗 )𝐄𝑖 − 𝐙−1

𝑖𝑗 𝐄𝑗
]

𝐯 (16)

here 𝐄𝑖 = [𝟎3×3(𝑖−1), 𝐈3, 𝟎3×3(| |−𝑖)]. Given 𝐁𝑖𝑗 =
[

(𝐘𝑖𝑗 + 𝐙−1
𝑖𝑗 )𝐄𝑖−

𝐙−1
𝑖𝑗 𝐄𝑗

]

, the parameter matrices and vector for (5) can be obtained
sing (2) and (16) as follows:
𝑌
𝑖𝑗 = 𝐁𝑖𝑗𝐌𝑌 , 𝐉𝛥𝑖𝑗 = 𝐁𝑖𝑗𝐌𝛥, 𝐝𝑖𝑗 = 𝐁𝑖𝑗𝐰. (17)

.3. VVO model

In this subsection, all the variables and parameters for the VVO
odel are represented by the elements of their corresponding vectors.

et us define the set of buses as  . The set  includes the following
hree subsets: (i)  PV for PV systems, (ii)  L for loads, and (iii)  EVCS

or EVCSs. Therefore, the indices 𝑖, 𝑝, 𝑙, and 𝐸 represent the locations
f the buses (𝑖 ∈  ), PV systems (𝑝 ∈  PV), loads (𝑙 ∈  L), and EVCSs
𝐸 ∈  EVCS), respectively, where  PV, L, EVCS ⊆  . The index 𝜙
epresents the phase 𝜙 ∈ 𝛷 ∶= {𝑎, 𝑏, 𝑐}.

.3.1. Operating constraints
For each phase 𝜙 and time 𝑡 with the 𝑌 (𝛥) phase configuration,

onstraint (18) corresponds to the real power injection (𝑝inj,𝑌 (𝛥)
𝑖,𝜙,𝑡 ) at bus

, which consists of the predicted PV real power generation output
𝑝PV
𝑝,𝜙,𝑡) at bus 𝑝, predicted real power load demand (𝑝load

𝑙,𝜙,𝑡 ) at bus 𝑙,
nd predicted aggregated EV real charging power (𝑝EVCS

𝐸,𝜙,𝑡 ) at bus 𝐸.
onstraint (19) corresponds to the reactive power injection (𝑞inj,𝑌 (𝛥)

𝑖,𝜙,𝑡 )
t bus 𝑖, which consists of the reactive power (𝑞PV

𝑝,𝜙,𝑡) of the PV system
t bus 𝑝 and predicted reactive power load demand (𝑞load

𝑙,𝜙,𝑡 ) at bus 𝑙. The
anges of admissible voltages and currents for all buses and lines are
xpressed in (20)–(21). According to (21), the real part of the complex
urrent (𝑖𝑖𝑗,𝜙,𝑡) must be below its maximum limit Re(𝑖max

𝑖𝑗,𝑡 ). We set the
ower factor of the current limit as 0.9 to ensure that the real part of the
urrent limit can be parameterized, thereby facilitating the formulation
f a tractable DRO problem along with current limit constraints. Details
egarding the current limit for an AC system considering the apparent
ower can be found in Andrianesis et al. (2022).

𝑝inj,𝑌 (𝛥)
𝑖,𝜙,𝑡 = 𝑝PV

𝑝,𝜙,𝑡 − 𝑝
load
𝑙,𝜙,𝑡 − 𝑝

EVCS
𝐸,𝜙,𝑡 (18)

𝑞inj,𝑌 (𝛥)
𝑖,𝜙,𝑡 = 𝑞PV

𝑝,𝜙,𝑡 − 𝑞
load
𝑙,𝜙,𝑡 (19)

𝑣min ≤ |𝑣𝑖,𝜙,𝑡| ≤ 𝑣max (20)

Re(𝑖max
𝑖𝑗,𝑡 ) ≤ Re(𝑖𝑖𝑗,𝜙,𝑡) ≤ Re(𝑖max

𝑖𝑗,𝑡 ). (21)
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Constraint (22) limits the reactive power (𝑞PV
𝑝,𝜙,𝑡) of the PV system

t bus 𝑝 using its apparent power (𝑠PV
𝑝,𝜙) and the maximum real power

𝑝PV,max
𝑝,𝜙,𝑡 ). For the reduction of computation complexity, the predicted

alues of PV generation output (𝑝PV
𝑝,𝜙,𝑡), and real (reactive) load (𝑝(𝑞)load

𝑙,𝜙,𝑡 )
re calculated via the average of their corresponding historical data
sing open datasets (IEEE-PES, 2015). The total predicted charging
emand (𝑝EVCS

𝐸,𝜙,𝑡 ) of EVs at EVCS is calculated as the sum of ran-
omly generated charging powers of individual EVs using (26) and EV
ataset (Wu et al., 2010).

𝑝PV,max
𝑝,𝜙,𝑡 )2 + (𝑞PV

𝑝,𝜙,𝑡)
2 ≤ (𝑠PV

𝑝,𝜙)
2. (22)

2.3.2. Objective function
For each phase 𝜙 ∈ 𝛷 and time 𝑡 ∈  , the DSO conducts VVO

y minimizing the weighted multi-objective function  VVO (23) with
positive weights 𝜔1 and 𝜔2.

 VVO = 𝜔1𝐽1 + 𝜔2𝐽2 (23)

𝐽1 =
∑

𝑡∈

∑

𝜙∈𝛷
𝑝𝑠,𝜙,𝑡 (24)

𝐽2 =
∑

𝑡∈

∑

𝑖∈
||𝑣𝑖,𝑎,𝑡| − |𝑣𝑖,𝑏,𝑡||

+ ||𝑣𝑖,𝑏,𝑡| − |𝑣𝑖,𝑐,𝑡|| + ||𝑣𝑖,𝑐,𝑡| − |𝑣𝑖,𝑎,𝑡|| (25)

where 𝐽1 and 𝐽2 in (24) and (25) denote the total real power flow at the
substation for the three phases and the total voltage imbalance among
the three phases for all buses during the entire scheduling period | |,
respectively.

3. LAA on EVCS and mitigation strategy

3.1. Statement of load altering attack problem

The DSO performs inverter-based VVO in an unbalanced three-phase
distribution system with PV systems and EVCSs. The VVO controls the
reactive powers of the PV systems via their smart inverters to minimize
the total real power flow at the substation and total voltage imbalance
among the three phases for all buses during the scheduling period. We
consider a situation in which the LAA distorts the controllable loads
(i.e., the charging of EVs at EVCSs) by directly manipulating their
charging control signals.

For EV 𝑒 ∈  EVCS
𝐸 at EVCS 𝐸 ∈  EVCS and time 𝑡, the total predicted

charging demand 𝑝EVCS
𝐸,𝜙,𝑡 of EVs in (18) can be expressed as

𝑝EVCS
𝐸,𝜙,𝑡 =

∑

𝑒∈ EVCS
𝐸

𝑥EV
𝑒,𝑡 𝑝

EV
𝑒,𝑡 (26)

where 𝑝EV
𝑒,𝑡 is a sampled random EV charging power, and 𝑥EV

𝑒,𝑡 is a binary
EV charging control signal that determines the status of EV charging
(i.e., ‘‘1’’ for charging and ‘‘0’’ for non-charging). Given the total EV
charging demand (26), the LAAs can be categorized into the following
two types:

• Type A attack: Changes the EV charging status from 𝑥EV
𝑒,𝑡 = 0 to

𝑥EV
𝑒,𝑡 = 1.

• Type B attack: Changes the EV charging status from 𝑥EV
𝑒,𝑡 = 1 to

𝑥EV
𝑒,𝑡 = 0.

Type A attacks may result in line overloading and voltage lower
imit violation with high voltage drop owing to an increase in the EV
harging demand. In contrast, Type B attacks may decrease the EV
harging demand, leading to undesirable load reduction. Furthermore,
ype B attacks can indirectly cause the PV system to control its real and
eactive power supplies differently and resort to a higher real power
urtailment. These detrimental impacts of Type A (or Type B) attacks
re aggravated when the distribution system has a high (or low) PV
enetration with low (or high) load demand. The charging demand and
tatus of the EV are considered to be stochastic in this analysis, and the
3440

ata are generated from a dataset. c
.2. PV planning and curtailment-based attack mitigation

This section presents the LAA-mitigation strategy through which
he DSO performs PV planning and curtailment aimed at determining
ptimal location and size of the PV systems and PV generation outputs,
espectively.

To formulate the VVO problem integrated with the PV planning and
urtailment-based attack mitigation strategy, constraint (22) associated
ith the reactive power capability of PV systems is rewritten as follows:

𝑝PV
𝑝,𝜙,𝑡 + 𝑝

PV,c
𝑝,𝜙,𝑡 = 𝑝PV,max

𝑝,𝜙,𝑡 (27)

𝑝PV,max
𝑝,𝜙,𝑡 = 𝑢PV

𝑝,𝑡 𝑠
PV
𝑝,𝜙 (28)

𝑝PV,c
𝑝,𝜙,𝑡 ≤ 𝛾𝑝PV,max

𝑝,𝜙,𝑡 (29)

(𝑝PV
𝑝,𝜙,𝑡)

2 + (𝑞PV
𝑝,𝜙,𝑡)

2 ≤ (𝑠PV
𝑝,𝜙)

2 (30)

−𝜓𝑠PV
𝑝,𝜙 ≤ 𝑞PV

𝑝,𝜙,𝑡 ≤ 𝜓𝑠PV
𝑝,𝜙 (31)

𝑠PV
𝑝,𝜙 = 𝑠̂PV

𝑝,𝜙 + 𝑠PV,+
𝑝,𝜙 (32)

0 ≤ 𝑠PV,+
𝑝,𝜙 ≤ 𝑠PV,+,max(𝑧𝑝 + 𝑧𝑝). (33)

Constraint (27) represents the maximum real power (𝑝PV,max
𝑝,𝜙,𝑡 ) of PV

system 𝑝 at phase 𝜙 and time 𝑡, which consists of the real power (𝑝PV
𝑝,𝜙,𝑡)

nd curtailed real power (𝑝PV,c
𝑝,𝜙,𝑡) of the PV system. The maximum PV real

ower is expressed as a percentage (𝑢PV
𝑝,𝑡 ) of the maximum irradiance

of the PV capacity (𝑠PV
𝑝,𝜙) in (28) where 0 ≤ 𝑢PV

𝑝,𝑡 ≤ 1. Constraint (29)
limits the curtailed PV real power (𝑝PV,c

𝑝,𝜙,𝑡), which is described in terms
of the maximum PV real power (𝑝PV,max

𝑝,𝜙,𝑡 ) and its coefficient (0 ≤ 𝛾 ≤
1). Constraints (30) and (31) restrict the capacity and reactive power
(𝑞PV
𝑝,𝜙,𝑡) of the PV system with 0 ≤ 𝜓 ≤ 1, respectively. The capacity of

PV system is expressed as the sum of the existing PV capacity (𝑠̂PV
𝑝,𝜙)

nd newly added PV capacity (𝑠PV,+
𝑝,𝜙 ) in (32). The added PV capacity

s limited in (33) where 𝑧𝑝 is a binary parameter for the location of
he existing PV system and 𝑧𝑝 is a binary variable that determines
he optimal location of the new PV system. 𝑠PV,+,max is the maximum
dditional PV capacity.

Next, the weighted multi-objective function  VVO-PC (34) with pos-
tive weights 𝜔3 and 𝜔4 is added to  VVO (23) to minimize the instal-
ation and capacity upgrade costs (𝐽3) of PV systems and curtailment
ost (𝐽4) of the PV generation output:

VVO-PC = 𝜔3𝐽3 + 𝜔4𝐽4 (34)

𝐽3 =
∑

𝜙∈𝛷

∑

𝑝∈ PV
𝜋1𝑧𝑝 + 𝜋2𝑠

PV,+
𝑝,𝜙 (35)

𝐽4 =
∑

𝑡∈

∑

𝜙∈𝛷

∑

𝑝∈ PV
𝜋3𝑝

PV,c
𝑝,𝜙,𝑡 (36)

here 𝜋1 and 𝜋2 in (35) are the prices for the PV system installation
nd capacity upgrade, respectively, and 𝜋3 in (36) is the price for the
V generation output curtailment.

. DRO PROBLEM formulation

A DRO problem is formulated for the DSO to maintain stable
ower distribution operations through PV system installment/capacity
pgrade and PV real power curtailment in scenarios involving LAAs
n EVCSs under uncertainties in the PV generation outputs and loads.
sing an ambiguity set based on the Wasserstein metric (Section 4.1),

he chance constraints of voltage/current magnitude and curtailed PV
eal power due to uncertain PV generation outputs and loads are
ormulated (Section 4.2). Subsequently, tractable reformulations of the

hance constraints are presented (Section 4.3).
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4.1. Ambiguity set based on the wasserstein metric

To evaluate the inherent uncertainty in PV generation outputs and
loads, the following Wasserstein metric of two probability distributions
P1,P2 ∈ (𝛯) is defined:

𝑊 (P1,P2) ∶= inf
{

∫𝛯2
‖𝝃1 − 𝝃2‖Q(𝑑𝝃1, 𝑑𝝃2)

}

(37)

where Q denotes a joint distribution of two random vectors 𝝃1 and
2 with marginal distributions P1 and P2, (𝛯) represents a proba-

bility space containing all probability distributions P supported on the
uncertainty set 𝛯, and ‖ ⋅ ‖ indicates an arbitrary norm.

Using the Wasserstein metric (37), an ambiguity set 𝑁 (𝛿) is con-
structed, which is expressed as a Wasserstein ball of radius 𝛿 centered
at the empirical distribution P̂𝑁 :

𝑁 (𝛿) =
{

P ∈ (𝛯) ∶ 𝑑𝑊 (P̂𝑁 ,P) ≤ 𝛿
}

(38)

In (38), the empirical distribution P̂𝑁 is constructed with 𝑁 historical
samples 𝝃̂𝑖 :

P̂𝑁 ∶= 1
𝑁

𝑁
∑

𝑖=1
𝛿𝝃̂𝑖 (39)

here 𝛿𝝃̂𝑖 represents the unit point mass at 𝝃̂𝑖.

.2. Chance constraints

In the presence of uncertain PV generation outputs and loads, the
eterministic constraints for voltage magnitude (20), current magni-
ude (21), and curtailed PV real power (29) can be transformed into
he following chance constraints:

inf
P∈𝑁 (𝛿)

P
{

𝑣min ≤ |𝑣𝑖,𝜙,𝑡|
}

≥ 1 − 𝛽 (40)

inf
P∈𝑁 (𝛿)

P
{

|𝑣𝑖,𝜙,𝑡| ≤ 𝑣max} ≥ 1 − 𝛽 (41)

inf
P∈𝑁 (𝛿)

P
{

−Re(𝑖max
𝑖𝑗,𝑡 ) ≤ Re(𝑖𝑖𝑗,𝑡)

}

≥ 1 − 𝛽 (42)

inf
P∈𝑁 (𝛿)

P
{

Re(𝑖𝑖𝑗,𝑡) ≤ Re(𝑖max
𝑖𝑗,𝑡 )

}

≥ 1 − 𝛽 (43)

inf
P∈𝑁 (𝛿)

P
{

𝑝PV,c
𝑝,𝜙,𝑡 ≤ 𝛾𝑝PV,max

𝑝,𝜙,𝑡

}

≥ 1 − 𝛽. (44)

According to these chance constraints, with a minimum probability
of 1 − 𝛽 under the worst-case probability distribution P within the
ambiguity set 𝑁 (𝛿), the voltage magnitude |𝑣𝑖,𝜙,𝑡| must be within its
allowable range in (40) and (41), and the real current magnitude and
curtailed PV real power must be less than or equal to the current limit
in (42) and (43) and scaled maximum real power output (44) of the PV
system, respectively.

4.3. Reformulation of the chance constraints

For the Wasserstein-metric-based DRO problem, a general form for
the feasible set of the chance constraints (40)–(44) can be expressed as

inf
P∈𝑁 (𝛿)

P
{

𝝃 ∶ 𝐚(𝐱)⊤𝝃𝑘 ≤ 𝐛𝑘(𝐱),∀𝑘 ∈ 
}

≥ 1 − 𝛽. (45)

Here, 𝐱 is the vector of decision variables. 𝝃𝑘 is the random vector
supported on the uncertainty set 𝛯𝑘 where 𝑘 ∈  is the index of
constraints. 𝐚(𝐱) = (𝜂1𝐱, 𝜂2)⊤ is the affine function of 𝐱 with parameters
𝜂1 and 𝜂2, which includes the random variables. The function 𝐛𝑘(𝐱) does
not have random variables.

For a tractable reformulation of the chance constraints, the fea-
sible set can be transformed into the following mixed-integer form
3441

based on optimization methods including the strong duality theorem,
conditional-value-at-risk notion, and big-M method (See Corollary 1
and Proposition 1 (Xie, 2019)):

𝛿𝜈 − 𝛽𝜅 ≤ 1
𝑁

𝑁
∑

𝑗=1
𝑧𝑗 (46)

𝑧𝑗 + 𝜅 ≤ 𝑠𝑗 (47)

𝑠𝑗 ≤ 𝑏𝑘(𝐱) − 𝐚(𝐱)⊤𝝃̂𝑗,𝑘 +𝑀𝑗 (1 − 𝑦𝑗 ) (48)

𝑠𝑗 ≤𝑀𝑗𝑦𝑗 (49)

‖𝐚(𝐱)‖∗ ≤ 𝜈 (50)

𝜈 > 0, 𝜅 ≥ 0, 𝑠𝑗 ≥ 0, 𝑧𝑗 ≤ 0, 𝑦𝑗 ∈ {0, 1}. (51)

Here, 𝝃̂𝑗,𝑘 is the 𝑗th sample of the random vector at constraint 𝑘,
from a sample set {𝝃̂1,𝑘, 𝝃̂2,𝑘,… , 𝝃̂𝑁,𝑘}; 𝜈, 𝜅, 𝑠𝑗 , 𝑧𝑗 and 𝑦𝑗 are auxiliary
variables; 𝑀𝑗 is a big-M coefficient; ‖𝐚(𝐱)‖∗ represents the L-1 or
L-inf norm for the linear programming form and L-2 norm for the
second-order cone programming form.

We consider two types of random vectors, 𝝃PV and 𝝃load, which
correspond to the PV generation outputs and loads, respectively. The
chance constraints (40)–(44) can be transformed into the deterministic
constraints (46)–(51) using the samples of the random vectors.

A key part of this transformation is to construct the inequality
constraint (48). For the constraint (44), we start with the deterministic
constraint 𝑝PV,c

𝑝,𝜙,𝑡 ≤ 𝛾𝑝PV,max
𝑝,𝜙,𝑡 . In (28), we replace 𝑢PV

𝑝,𝑡 by the sample 𝜉PV
𝑝,𝑗

of the random variable to derive the following constraint:

𝑠𝑗 ≤ −𝑝PV,c
𝑝,𝜙,𝑡 + 𝛾𝑠

PV
𝑝,𝜙𝜉

PV
𝑝,𝑗 +𝑀𝑗 (1 − 𝑦𝑗 ). (52)

Similarly, using the sample 𝜉load
𝑙,𝑗 of the random variable for the load,

ach inequality constraint (48) for the chance constraints (40)–(43) is
erived as follows:

𝑗 ≤ − |𝑣min
| + 𝐰𝑚 +𝐊𝑌 (𝛥)

𝑚 ((−𝐩̂EVCS
𝐸 − 𝐩PV,c

𝑝 )⊤, (𝐪PV
𝑝 )⊤)⊤

+ 𝐊𝑌 (𝛥)
𝑚 ((−𝜉PV

𝑝,𝑗 𝐬
PV
𝑝 )⊤, (𝟎3| |

)⊤)⊤

+ 𝐊𝑌 (𝛥)
𝑚 ((−𝜉load

𝑙,𝑗 𝐩load,nom
𝑙 )⊤, (𝟎3| |

)⊤)⊤

+ 𝐊𝑌 (𝛥)
𝑚 ((𝟎3| |

)⊤, (−𝜉load
𝑙,𝑗 𝐪load,nom

𝑙 )⊤)⊤ +𝑀𝑗 (1 − 𝑦𝑗 ) (53)

𝑗 ≤|𝑣max
| − 𝐰𝑚 −𝐊𝑌 (𝛥)

𝑚 ((−𝐩̂EVCS
𝐸 − 𝐩PV,c

𝑝 )⊤, (𝐪PV
𝑝 )⊤)⊤

− 𝐊𝑌 (𝛥)
𝑚 ((−𝜉PV

𝑝,𝑗 𝐬
PV
𝑝 )⊤, (𝟎3| |

)⊤)⊤

− 𝐊𝑌 (𝛥)
𝑚 ((−𝜉load

𝑙,𝑗 𝐩load,nom
𝑙 )⊤, (𝟎3| |

)⊤)⊤

− 𝐊𝑌 (𝛥)
𝑚 ((𝟎3| |

)⊤, (−𝜉load
𝑙,𝑗 𝐪load,nom

𝑙 )⊤)⊤ +𝑀𝑗 (1 − 𝑦𝑗 ) (54)

𝑠𝑗 ≤ − Re(𝑖max
𝑖𝑗,𝑚 ) + Re

{

𝑑𝑖𝑗,𝑚
}

+ Re
{

𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝐩̂EVCS
𝐸 − 𝐩PV,c

𝑝 )⊤, (𝐪PV
𝑝 )⊤)⊤

+ 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝜉PV
𝑝,𝑗 𝐬

PV
𝑝 )⊤, (𝟎3| |

)⊤)⊤

+ 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝜉load
𝑙,𝑗 𝐩load,nom

𝑙 )⊤, (𝟎3| |

)⊤)⊤

+ 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((𝟎3| |

)⊤, (+𝜉load
𝑙,𝑗 𝐪load,nom

𝑙 )⊤)⊤
}

+𝑀𝑗 (1 − 𝑦𝑗 ) (55)

𝑠𝑗 ≤Re(𝑖max
𝑖𝑗,𝑚 ) − Re

{

𝑑𝑖𝑗,𝑚
}

− Re
{

𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝐩̂EVCS
𝐸 − 𝐩PV,c

𝑝 )⊤, (𝐪PV
𝑝 )⊤)⊤

− 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝜉PV
𝑝,𝑗 𝐬

PV
𝑝 )⊤, (𝟎3| |

)⊤)⊤

− 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((−𝜉load
𝑙,𝑗 𝐩load,nom

𝑙 )⊤, (𝟎3| |

)⊤)⊤

− 𝐉𝑌 (𝛥)𝑖𝑗,𝑚 ((𝟎3| |

)⊤, (−𝜉load
𝑙,𝑗 𝐪load,nom

𝑙 )⊤)⊤
}

+𝑀𝑗 (1 − 𝑦𝑗 ) (56)

here 𝑚 is the index of the 𝑚th row of the matrix. The uncertainty
of the deterministic load 𝐩(𝐪)load

𝑙 is characterized by the product of its
nominal value 𝐩(𝐪)load,nom

𝑙 and the sample 𝜉load
𝑙,𝑗 of the random variable.

Finally, the proposed DRO problem is formulated as follows:

min VVO +  VVO-PC (57)
s.t.
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Fig. 2. IEEE 13-bus system with one PV system and three EVCSs.

Fig. 3. IEEE 37-bus system with three PV systems and three EVCSs.

Power flow constraints ∶ (3)–(5), (7)–(15), (17) (58)

PV/EVCS operational constraints ∶ (18), (19), (26) (59)

PV planning/curtailment constraints ∶ (28), (30)–(33) (60)

Tractable constraints: (46)–(56). (61)

5. Numerical examples

5.1. Simulation setup

The performance of the proposed framework was quantified over
unbalanced IEEE 13-bus and 37-bus systems, as shown in Figs. 2
and 3, respectively. For both systems, the profiles of PV generation
outputs and loads were extracted from open datasets with data for
three months (IEEE-PES, 2015), as shown in Figs. 4(a) and 4(b). For
the IEEE 13-bus system, one PV system with a capacity of 200 kVA was
installed at bus 671. Three EVCSs were connected to buses 633, 645,
and 675 with and each EVCS having 40 charging poles with a maximum
charging power of 8 kW. For the IEEE 37-bus system, three PV systems
with a capacity of 150 kVA were installed at buses 711, 725, and 744.
Three EVCSs were connected to buses 703, 706, and 710 with each
EVCS having 80 charging poles with a maximum charging power of
8 kW. 1000 data samples associated with the charging behavior of EVs
were generated using the National Travel Survey datasets (Wu et al.,
2010) for the driving distributions of weekdays. The number of EVs for
three EVCSs at each time step are presented in Fig. 5. The base apparent
power and voltage in the IEEE 13-bus and 37-bus system are set to {5
MVA, 4.16 kV} and {2.5 MVA, 4.8 kV}, respectively.

The weights of the multi-objective function (57) were set as {𝜔1 =
10, 𝜔2 = 0.5, 𝜔3 = 1.2, 𝜔4 = 2}. For the objective functions 𝐽3 (35) and
𝐽4 (36), the prices for the installation, capacity upgrade, and curtail-
ment of the PV system were set as {𝜋1 = $20K, 𝜋2 = $1K∕kVA, 𝜋3 =
$10∕kWh}, respectively. The minimum and maximum voltage mag-
nitude limits were set as 𝑣min = 0.95 p.u. and 𝑣max = 1.05 p.u.,
respectively. The limits for the PV curtailment and PV reactive power
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Table 1
Case classification.

Optimization method Case number Planning addition Attack occurrence

DO Case 1 No No
Case 2 Yes

DRO

Case 3 No No
Case 4 Yes

Case 5 Yes No
Case 6 Yes

Table 2
Percentage of voltage and current violations in the IEEE 13-bus system for Cases 1 and
2.

Case 1 2-1 (bus 633) 2-2 (bus 645)

Voltage violation (%) 0 2.11 2.96
Current violation (%) 0 4.72 7.17

were set as 𝛾 = 0.2 and 𝜓 = 0.8, respectively. The values of the nominal
loads and current limits were obtained from OpenDSS. The parameters
for the DRO problem were set as follows: 𝛽 = 0.05, 𝑁 = 20, and 𝛿 = 1.
The big-M coefficient was set as 𝑀 = 1000.

Table 1 classifies the six cases designed for the simulation study.
Cases 1 and 2 correspond to DO methods with only the objective
function  VVO (i.e., no PV planning) in scenarios not involving and
involving LAAs, respectively. Cases 3–6 represent the DRO methods
that manage the uncertainties in the PV generation outputs and loads.
In terms of planning with the objective function  VVO-PC and its cor-
responding constraints, the aforementioned four cases are categorized
into two groups: {Case 3, Case 4} without the planning stage and {Case
5, Case 6} with the planning stage. Each group is divided into two cases
based on the existence of the LAA. The LAAs may occur simultaneously
on various EV chargers in the EVCSs during the entire scheduling
period. In addition, the LAAs are assumed to attack 20% randomly
selected from all charging poles in the EVCSs at each time step. The
proportion of Type A and Type B attacks are randomly calculated using
the Gaussian distribution. The proposed strategy was simulated in a
computer with an AMD Ryzen 7 2700X Processor clocked at 3.7 GHz
and 32 GB of RAM using the YALMIP optimization tool with Gurobi
9.0 solver through MATLAB R2022a.

5.2. Comparison of simulation results for the six cases

5.2.1. Case 1 vs. Case 2
This comparison highlights the impact of the LAAs at buses 633

and 645 on the voltage and current violations of the DO-based VVO
problem. The worst-case scenario involving the maximum PV gener-
ation outputs under 1000 random scenarios is considered, which in-
creases the voltage level above its lower limit. When the VVO problem
yields an infeasible solution with the voltage and current violations, a
distribution load flow problem is solved using OpenDSS.

Table 2 compares the voltage and current violations in the IEEE 13-
bus system between Cases 1 and 2. The voltage and current violations
represent the percentage of the number of buses and lines with voltage
and current violations with respect to the total number of buses and
lines in 1000 random scenarios, respectively. Figs. 6 and 7 show the
probabilities of voltage and current violations for all buses and phases
under LAAs at buses 633 and 645, respectively. Note from Table 2 and
these figures that the LAAs generate significant voltage and current
violation via the distortion of EVs charging at EVCSs. These observa-
tions motivate us to develop LAA-mitigation strategy using the DRO
method, which alleviates the LAA-induced constraint violations while
addressing the various uncertainties in power distribution systems.
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Fig. 4. Actual and average profiles of (a) PV generation output and (b) load.
Fig. 5. Number of EVs during the entire scheduling period at: (a) EVCS1, (b) EVCS2, and (c) EVCS3.
Fig. 6. Probability of voltage violations in the IEEE 13-bus system: (a) LAA at bus 633 and (b) LAA at bus 645.
Fig. 7. Probability of current violations in the IEEE 13-bus system: (a) LAA at bus 633 and (b) LAA at bus 645.
5.2.2. Case 3 vs. Case 4
Table 3 presents the values of the total real power flow (𝐽1) at the

substation and total voltage imbalance (𝐽2) for Cases 3 and 4 using
the DRO method without PV planning. Unlike the DO method used in
3443
Cases 1 and 2, the method used in Cases 3 and 4 resolves the solution
infeasibility issue under the LAAs along with uncertainty in the PV
generation outputs and loads. However, as shown in Table 3, the LAAs
at buses 633 and 645 increase the substation real power and voltage
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Table 3
Performance comparison for Cases 3 and 4 of the IEEE 13-bus system.

Case 3 4-1 (bus 633) 4-2 (bus 645)

Substation energy 𝐽1 (MWh) 572.81 608.29 605.95
Voltage imbalance 𝐽2 (p.u) 74.46 76.07 75.79

Table 4
Performance comparison for Cases 5 and 6 of the IEEE 13-bus system.

Case 5 6-1 (bus 633) 6-2 (bus 645)

Substation energy 𝐽1 (MWh) 483.42 485.39 484.26
Voltage imbalance 𝐽2 (p.u) 61.17 62.78 62.5
PV deployment cost 𝐽3 (K$) 141 139 136
PV curtailment cost 𝐽4 ($) 204 239 223
PV location 671 645 671 633 671 645
PV capacity (kVA) 225 96 227 92 227 89
PV curtailment (%) 0.4 3.8 1.2 8.1 0.9 9.2

Table 5
Average substation energies and total PV costs associated with the RO, DRO, and SO
methods in the IEEE 13-bus system.

Method RO DRO SO

Substation energy (MWh) 512.69 484.26 468.39
Total PV cost ($) 167,599 136,223 125,316

imbalance by {6.19%, 2.16%} and {5.78%, 1.78%}, respectively. These
detrimental effects must be reduced to ensure stable and economical
distribution system operations.

5.2.3. Case 5 vs. Case 6
Table 4 presents the results of Cases 5 and 6 that use the proposed

DRO method with the planning stage. Compared with those in Cases
3 and 4, the real power flow at the substation and voltage imbalance
for Cases 5 and 6 decrease significantly owing to the addition of
the planning stage. However, the added planning stage incurs the PV
deployment cost (𝐽3) (i.e., the sum of the costs for PV installation and
capacity upgrade) and curtailment cost (𝐽4) associated with the existing
and newly added PV systems.

Table 4 indicates that the new PV systems for Cases 6–1 and 6–2
are installed at buses 633 and 645, respectively, and their capacities
are smaller than those for Case 5, which decreases the PV deployment
cost. In contrast, Cases 6–1 and 6–2 have higher PV curtailment costs
than those in Case 5. These results are attributable to the fact that
the PV systems with the reduced capacity and high curtailment of PV
generation outputs prevent over-and undervoltage/current violations.
Moreover, the locations of the new PV systems for Cases 6–1 and 6–2
are consistent with the buses attacked by the LAAs, which mitigates the
adverse impacts of these attacks on the distribution system operations.
Both attack types, in fact, affect the planning and operation aspects. In
particular, the attack increases the PV capacity at bus 671, indicating
a slight contribution from Type A attack to the adjustment of PV
planning. Conversely, the capacity at buses 633 or 645 may decrease
after the attack, attributable to the Type B attack. In other words, the
Type B attack escalates the PV curtailment owing to the undesired
reduction in the load in the EVCS. In such scenarios, PV curtailment,
which is inevitable, must be adequately exploited. The aforementioned
results provide valuable insights for the system operator on how to
approach the planning problem in the event of an attack and prepare
for possible curtailment scenarios.

5.3. Comparison with SO and RO methods

The performance of the proposed DRO method is compared with
that of the SO and RO methods. The SO model is implemented using the
sample average approximation technique (Birge and Louveaux, 2011)
with 1000 samples. The basic formulation of the RO model is provided
3444

a

Fig. 8. Confidence levels of the RO, DRO, and SO methods in the IEEE 13-bus system.

Fig. 9. Comparison of substation energies in five scenarios with varying Wasserstein
radii 𝛿 in the IEEE 13-bus system.

in Appendix. To fairly compare the performance of the RO, DRO, and
SO methods, the same weights of the objective functions are set to the
aforementioned three methods under the five scenarios.

Table 5 presents the average substation energies and total PV costs
(i.e., the sum of PV deployment and curtailment costs) of the RO, DRO,
and SO methods under the five scenarios. Note from this table that the
RO and SO methods yield the highest and lowest substation energies
and total PV costs, respectively. This phenomenon occurs because the
RO satisfies all the constraints considering a worst-case scenario with-
out any violation regardless of the probability distribution, whereas
the actual data deviates from the actual distribution in the SO. The
DRO outperforms these methods as it ensures a balance between the
robustness of the solution and optimality with respect to the true
distribution of the data. In terms of the sample efficiency, the DRO
outperforms the SO with considerably fewer samples.

5.4. Out-of-sample test results

In the out-of-sample analysis, the confidence level can indicate the
accuracy of all considered methods. The confidence level is defined as
a criterion set by the chance-constrained model using the parameter
𝛽, such that each simulation scenario results in a solution without
constraint violation with a probability of (1 − 𝛽) × 100%. For this
analysis, five scenarios containing different historical sample data are
applied instead of using the predetermined distribution. In the case
studies, the confidence level is set as 95%, which means that the
probability of the violations under uncertainties should be lower than
5%. When the distribution of the scenario is accurate, the confidence
level is guaranteed by both DRO and SO. However, the confidence
level is not guaranteed by SO if the assumed probability distribution
deviates from the real probability distribution. As shown in Fig. 8, the
RO method maintains 100% robustness, the DRO method maintains a
satisfactory level of approximately 98%, and the SO method fails in
several scenarios.

5.5. Substation energy and total PV cost for different wasserstein radii 𝛿

Fig. 9 shows the substation energy under five scenarios associ-

ted with different sets of samples with increasing 𝛿. In general, the
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Fig. 10. Comparison of total PV costs with varying Wasserstein radii 𝛿 in the IEEE
3-bus system.

Table 6
Performance comparison for Cases 5 and 6 in the IEEE 13-bus system with either Type
A or Type B attack.

Case 5 Type A attack Type B attack

Substation energy 𝐽1 (MWh) 483.42 484.25 495.13
Voltage imbalance 𝐽2 (p.u) 61.17 60.83 63.26
PV deployment cost 𝐽3 (K$) 141 152 136
PV curtailment cost 𝐽4 ($) 204 162 245
PV location 671 645 671 645 671 645
PV capacity (kVA) 225 96 231 101 210 67
PV curtailment (%) 0.4 3.8 0.5 1.8 1.1 8.9

substation energy increases with increasing 𝛿. At large 𝛿 values, the sub-
station energy is highly conservative because undesired distributions
are included into the ambiguity set. Fig. 10 shows the total PV cost
(PV installation and curtailment costs) with different parameter inputs
of 𝛿. The increasing Wasserstein radius affects the increment of the
PV cost. This phenomenon occurs because a large 𝛿 is associated with
a more conservative solution owing to the pathological distributions
contained in the ambiguity set. Thereby, lower 𝛿 values are preferred
o minimize the substation energy and total PV cost. However, a lower 𝛿
ay not reflect various uncertain environments due to a less number of
ncertainty samples in a smaller ambiguity set. On the aforementioned
rade-off relationship, the DSOs may adaptively tune the Wasserstein
adius to reduce the value of the objective function more or reflect the
ncertainty further.

.6. Occurrence of attack types

To further explore the attack types, the simulation of Case 5 is
hosen as the baseline. The LAA is considered to occur at bus 645.
everal charging poles are completely affected by either Type A or
ype B attacks. The ratio of the attack is set to 20% of the available
harging poles. Table 6 shows that attack affects mainly the size of the
V or the amount of curtailed PV power. When the bus suffers from
Type A attack, the PV deployment cost increases because the system
ust allocate higher load demand from the EVCS. However, the cost of

urtailment decreases by 20.6% from $204 to $162. The Type B attack
ncurs a smaller PV size compared with that in Case 5 but increases
he PV curtailment cost by 20.1% from $204 to $245. These results are
ttributable to the fact that the stochastic uncertainty is highly affected
y the variability in the load demand, resulting from the charging
emand in the EVCS. Type B attacks are characterized by a high
ubstation energy and voltage imbalance because of less PV deployment
nd more PV curtailment. In conclusion, Type A attack affects the
V deployment, whereas Type B attack affects the PV curtailment.
herefore, the combination of both attack types is considered in this
tudy to emphasize the previous baseline study.

.7. Sensitivity analysis of the objective functions with respect to varying
eights

The impact of varying weights on the objective functions 𝐽1 ∼ 𝐽4
3445

n the proposed DRO problem is quantified in Case 6–2. Fig. 11(a)
Table 7
Performance comparison for Cases 5 and 6 in the IEEE 13-bus system with different
EV charging rates.

Case 5 Type A attack Type B attack

Substation energy 𝐽1 (MWh) 629.32 683.52 689.74
Voltage imbalance 𝐽2 (p.u) 65.72 67.37 68.05
PV deployment cost 𝐽3 (K$) 162 183 167
PV curtailment cost 𝐽4 ($) 204 162 245
PV location 671 645 671 645 671 645
PV capacity (kVA) 240 102 243 120 253 94
PV curtailment (%) 0.6 2.8 0.7 0.8 1.2 7.1

Table 8
Performance of Case 4 in the IEEE 37-bus system.

Case 4-1 (bus 703) 4-2 (bus 706) 4-3 (bus 710)

Substation energy (MWh) 496.82 503.60 505.97
Voltage imbalance (p.u) 220.75 219.84 221.26

compares the results between the substation energy (𝐽1) and voltage
mbalance (𝐽2) with respect to varying 𝜔1 (𝜔1 = 0.1, 1, 10, 25, 50) given
he fixed 𝜔2 = 0.5, 𝜔3 = 1.2, and 𝜔4 = 2. We observe from this figure
hat there exists a trade-off relationship between the substation energy
nd voltage imbalance according to changes in 𝜔1. In other words,
higher (or lower) 𝜔1 yields a lower (or higher) substation energy;

owever, it yields a higher (or lower) voltage imbalance. Fig. 11(b)
ompares the results between the PV deployment cost (𝐽3) and PV
urtailment cost (𝐽4) with respect to varying 𝜔3 (𝜔3 = 0.1, 0.5, 1.2, 2, 3)
iven the fixed 𝜔1 = 10, 𝜔2 = 0.5, and 𝜔4 = 2. As expected, it is
bserved from this figure that the objective functions 𝐽3 and 𝐽4 have a
rade-off relationship between the reduction of the PV deployment and
urtailment costs in terms of the weight 𝜔3. Based on the aforemen-
ioned simulation results, DSOs may adaptively adjust these weights to
ituations in which they aim to perform their own purposes according
o a trade-off relationship between the objective functions in terms of
he weights.

.8. Validation of the proposed DRO model with different EV charging rates

The performance of the proposed DRO approach in Cases 5 and 6
s assessed in the IEEE 13-bus system with three EVCSs that have the
harging poles with different charging rates. Each EVCS is assumed to
ave 68 charging poles with different maximum charging powers as
ollows: (i) 40 charging poles with 8 kW, (ii) 20 charging poles with
2 kW, (iii) 5 charging poles with 120 kW, and (iv) 3 charging poles
ith 240 kW. The total charging demand of each EVCS with different
V charging rates increases around 1240 kW. Note from Table 7 that,
ue to a significant increase of the EV charging demand, the substation
nergy, voltage imbalance, and PV deployment cost with different EV
harging rates increase more than those with uniform EV charging rates
hown in Table 6. Note also from Table 7 that Type A (or Type B) attack
t bus 645 increases the PV deployment cost (or PV curtailment cost)
ue to their attack characteristics, which is consistent with the result
n Table 6.

.9. Scalability

Tables 8 and 9 present the results of Cases 4 and 6 in the IEEE
7-bus system, respectively. Compared with those in Case 4, the sub-
tation energies and voltage imbalances in Case 6 for the attack on bus
703, 706, 710} are reduced by {25%, 26.6%, 24.6%} and {15.2%,
8.3%, 17.8%}, respectively, indicating the effectiveness of the pro-
osed approach. Table 9 shows that the performance of the DRO
ethod depends on the attack location, which affects the added PV

apacity, curtailment, and cost. Type A attacks affect the added PV
apacities, and PV curtailments can be implemented to address Type
attacks. In cases involving insufficient PV capacity, new PV systems
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Fig. 11. Sensitivity analysis of the objective functions with respect to varying weights: (a) 𝜔1 (𝜔2 = 0.5, 𝜔3 = 1.2, 𝜔4 = 2) and (b) 𝜔3 (𝜔1 = 10, 𝜔2 = 0.5, 𝜔4 = 2).
.

Table 9
Performance of Case 6 in the IEEE 37-bus system.

Case 6-1 (bus 703) 6-2 (bus 706) 6-3 (bus 710)

Substation energy 𝐽1 (MWh) 372.6 369.57 381.18
Voltage imbalance 𝐽2 (p.u) 187.13 179.59 181.95
PV deployment cost 𝐽3 (K$) 44 47 40
PV curtailment cost 𝐽4 ($) 301 275 289
PV location 711 725 744 725 744 711 744
PV capacity (kVA) 14 4 26 32 15 23 17
PV curtailment (%) 0.4 1.3 0.8 1.3 1.9 2.2 3.6

Table 10
Computation time (s) of the proposed DRL method in IEEE 13-bus and 37-bus systems

Test System Case 5 Case 6–1 Case 6-2

IEEE 13-bus system 192 216 218
IEEE 37-bus system 1052 1193 1258

are not necessarily installed. Instead, the capacities of the existing PV
systems are supplemented. The PV capacities are not added in each
case, and the addition depends on the attack scenario. These results
demonstrate the applicability of the proposed approach in the IEEE
37-bus system. Table 10 shows the computation time of the proposed
DRO method for Cases 5, 6–1, and 6–2 in the IEEE 13-bus and 37-bus
systems. Note from this table that the computation time with attack
(Cases 6–1 and 6–2) is larger than that without attack (Case 5) in both
systems. In addition, as expected, it is observed that the computation
time in the IEEE 37-bus system is larger than that in the IEEE 13-bus
system. From the perspective of the planning problem of PV systems,
these results demonstrate that the proposed DRO approach is computa-
tionally efficient and applicable for the deployment and curtailment of
PV systems that mitigate LAA against EVCS in the presence of PV/load
uncertainties.

5.10. Verification of the linear power flow model in the IEEE 13-bus and
37-bus systems

The performance between the linear and nonlinear power flow
models in the proposed approach is compared in terms of voltage
magnitude and substation energy. The nonlinear power flow is calcu-
lated by the Newton-iterative method using OpenDSS. Fig. 12 compares
the voltage magnitude and substation energy between the linear and
nonlinear power flow models in the IEEE 13-bus system, respectively.
Note from these figures that the maximum (average) error of voltage
magnitude/substation energy is computed as 0.0031 p.u./0.0212 p.u.
(0.0022 p.u./0.0048 p.u.). Fig. 13 compares the voltage magnitude and
substation energy between the linear and nonlinear power flow models
in the IEEE 37-bus system, respectively. Note from these figures that the
3446

maximum (average) error of voltage magnitude/substation energy is
computed as 0.0029 p.u./0.0189 p.u. (0.0021 p.u./0.0074 p.u.). Based
on the aforementioned results with a small error between the linear and
nonlinear power flow models, the linear power flow model adopted to
this study is quite accurate.

The novelty and valuable observations of the proposed method are
summarized as follows.

• To the best of authors’ knowledge, the proposed approach is the
first PV planning/curtailment-integrated DRO-based VVO frame-
work that maintains reliable and robust three-phase unbalanced
distribution system operations while addressing the uncertainties
of both PV generation output/load and LAA against EVCS.

• Improvement of solution feasibility: The proposed DRO method
resolves the solution infeasibility issue that occurs in the DO
method under the LAA in the presence of uncertain PV generation
output and load (compare the results of Sections 5.2.1 and 5.2.2).

• LAA impact mitigation via PV planning and curtailment: The DRO
with the planning/curtailment stage (Cases 5 and 6) reduces the
substation energy and voltage imbalance more significantly than
the DRO without the planning/curtailment stage (Cases 3 and 4)
(compare the results of Tables 3 and 4).

• Robust location and capacity upgrade of PV systems against LAA: To
mitigate the impact of the LAA on distribution grid operation, in
general the location of new PV systems and capacity upgrade of
existing PV systems are determined according to the following
two factors: (i) the location of attacked EVCSs and (ii) the location
of PV systems adjacent to the attacked EVCSs (see the results of
Tables 4 and 9).

• Impact analysis of PV planning/curtailment subject to two types of
LAAs: Type A attack increases the PV deployment cost and Type
B attack increases the PV curtailment cost. This is because the
former and latter attacks increase and decrease the EV charging
demands, respectively (see the results of Tables 6 and 7).

• Sample efficiency: Compared to the RO and SO method with 1000
samples, the proposed DRO method with 20 samples yields a
less conservative solution and sample efficiency along with the
satisfaction of confidence level (see the results of Table 5 and
Fig. 8).

6. Conclusions

This paper proposes a DRO-based VVO framework that mitigates
the impact of LAAs on EVCSs while addressing the uncertainties of PV
generation output and load in a three-phase unbalanced distribution
system. The key parts of the proposed framework include the following
two tasks: (i) a formulation of the DRO-based VVO problem using a
Wasserstein metric-based ambiguity set to handle the uncertainties of
PV generation output and load and (ii) an integration of PV planning

and curtailment process into the DRO-based VVO problem to mitigate
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Fig. 12. Performance comparison of the linear and nonlinear power flow models in the IEEE 13-bus system: (a) voltage magnitude and (b) substation energy.
Fig. 13. Performance comparison of the linear and nonlinear power flow models in the IEEE 37-bus system: (a) voltage magnitude and (b) substation energy.
he detrimental impact of LAAs on EVCS. Furthermore, to use off-the-
helf optimization solvers, the chance constraints of voltage, current,
nd curtailed PV power in the DRO problem are reformulated into
ractable deterministic constraints based on the strong duality theory.
umerical examples over IEEE 13-bus and 37-bus systems demonstrate

he effectiveness of the proposed framework in successfully alleviating
he substation energy and voltage imbalance by determining the opti-
al locations and capacity of PV systems along with its optimal real
ower curtailment under uncertain PV generation outputs/loads and
AAs on EVCSs. Furthermore, the proposed DRO method outperforms
he state-of-the-art SO and RO methods in terms of the out-of-sample
onfidence levels.

In future work, there are two research work efforts extended from
he proposed approach: (i) to build a realistic DRO-based VVO frame-
ork where legacy voltage regulating devices (e.g., on-load tap chang-
rs and capacitor banks) and inverters of PV systems cooperate to
ddress the natural and artificial uncertainties and (ii) to develop a
lanning algorithm that determines optimal locations of smart EVCSs
ntegrated with the PV system and energy storage system, which are
obust to LAAs on EVCSs.
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Appendix. Formulation of RO model

For the simulation of the RO method, the constraints of the volt-
age magnitude (20), current magnitude (21), and curtailed PV real
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power (29) limits are replaced by their corresponding robust counter-
parts using the results in Li et al. (2011). Consider the following general
optimization problem

min
∑

𝑗
 (𝑥𝑗 )

.t.
∑

𝑗
𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏̃𝑖, ∀𝑖

here 𝑥𝑗 is the 𝑗th decision variable, and 𝑎𝑖𝑗 and 𝑏̃𝑖 represent the actual
alues of the parameters subject to uncertainty in the 𝑗th decision
ariable associated with the 𝑖th constraint. The uncertainty-induced 𝑎𝑖𝑗
nd 𝑏̃𝑖 are expressed as

𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜉𝑖𝑗𝑎𝑖𝑗
𝑏̃𝑖 = 𝑏𝑖 + 𝜉𝑖𝑏̂𝑖

here 𝑎𝑖𝑗 and 𝑏𝑖 represent the nominal values of the parameters; 𝑎𝑖𝑗 and
𝑖 represent constant perturbation; and 𝜉𝑖𝑗 and 𝜉𝑖 are random variables
hat are subject to uncertainty. Using the expressions of 𝑎𝑖𝑗 and 𝑏̃𝑖
long with a predefined uncertainty set  , the original constraint is
eformulated as follows:

𝑗
𝑎𝑖𝑗𝑥𝑗 +

[

max
𝜉∈

{

∑

𝑗
𝜉𝑖𝑗𝑎𝑖𝑗𝑥𝑗 − 𝜉𝑖𝑏̂𝑖

}]

≤ 𝑏𝑖.

ased on the duality theory and the box uncertainty set ∞ = {𝜉||𝜉𝑗 | ≤
𝑖,∀𝑗}, the final robust counterpart is written as

𝑗
𝑎𝑖𝑗𝑥𝑗 + 𝛤𝑖

[

∑

𝑗
𝑎𝑖𝑗 |𝑥𝑗 | + 𝑏̂𝑖

]

≤ 𝑏𝑖

here 𝛤𝑖 ≥ 0 is a parameter that controls the level of robustness.
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