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ABSTRACT Class-conditional image generation using generative adversarial networks (GANs) has been
investigated through various techniques; however, it continues to face challenges such as mode collapse,
training instability, and low-quality output in cases of datasets with high intra-class variation. Furthermore,
most GANs often converge in larger iterations, resulting in poor iteration efficacy in training procedures.
While Diffusion-GAN has shown potential in generating realistic samples, it has a critical limitation in
generating class-conditional samples. To overcome these limitations, we propose a novel approach for
class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-
based noise injection process. DuDGAN consists of three unique networks: a discriminator, a generator,
and a classifier. During the training process, Gaussian-mixture noises are injected into the two noise-
aware networks, the discriminator and the classifier, in distinct ways. This noisy data helps to prevent
overfitting by gradually introducing more challenging tasks, leading to improved model performance. As a
result, DuDGAN outperforms state-of-the-art conditional GAN models for image generation in terms of
performance. We evaluated DuDGAN using the AFHQ, Food-101, CIFAR-10, and BAAT datasets and
observed superior results across metrics such as FID, KID, Precision, and Recall score compared with
comparison models; FID decreases 12.9% and 5.1% on average for AFHQ and CIFAR-10, respectively,
highlighting the effectiveness of the proposed approach.

INDEX TERMS Conditional image generation, deep learning, diffusion-based probabilistic models,
generative adversarial networks.

I. INTRODUCTION
Generative adversarial networks (GANs) and their numerous
variations have demonstrated significant success within the
realm of computer vision. These networks have shown
impressive performance in a wide array of tasks, such
as image generation [1], [2], [3], [4], [5], image-to-
image translation [6], [7], [8], [9], [10], video gen-
eration [11], [12], [13], 3D reconstruction [14], [15],
[16], [17], and GAN inversion [18], [19], [20]. The
field of image generation, in particular, has experienced
considerable advancements in both quality and diver-
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sity, largely attributed to the development of style-based
architectures [21], [22], [23], [24].

Typically, image generation using GANs can be classified
into two categories: unconditional and conditional image
generation. While unconditional image generation does not
require any additional information, the conditional approach
necessitates supplementary input, such as a specific image,
text prompt, or class label. A majority of conditional GAN
models aim to control the output image through auxil-
iary supervision during the training process. Consequently,
numerous studies, including [3], [25], [26], [27], have been
conducted to enhance the quality of generated images with
class-conditional information. Despite the notable results
achieved thus far, class-conditional image generation remains
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FIGURE 1. Structural overview of DuDGAN. An arbitrary input image is first sampled from the training dataset, which is then diffused by an
independent noise schedule for both the discriminator and the classifier. Subsequently, the generator produces high-quality and
class-specific images with the aid of the supervision of the discriminator and classifier.

more challenging due to the need for learning over smaller
intra-class data distributions. Additionally, these methods are
hindered by the necessity of a vast, labeled dataset and plenty
of iterations to ensure stable training.

Nevertheless, the process of collecting and curating a
large, class-specific dataset is both labor-intensive and time-
consuming. Moreover, in this case, conditional GANs often
encounter several issues during the training phase, such
as mode collapse and gradient explosion problems [28],
[29], [30]. Consequently, it is crucial to explore suitable
techniques for training conditional GANs with limited
data.

While some GAN training methods for handling the
issues have been proposed [23], [31], [32], these approaches
predominantly focus on training within an unconditional
data regime rather than using class-labeled images. Indeed,
some recent research has aimed to enhance conditional image
generation with small datasets. For instance, Transitional-
CGAN [28] introduced a novel training strategy that
combines unconditional and conditional training to address
condition-induced mode collapse. However, this method
primarily concentrates on reducing supervision for conditions
during the early training stage and thus may not be an
effective solution for preventing collapse in later stages of
training. Moreover, this approach is not efficient in terms of
iteration efficacy due to the extensive scales involved in the
transitional process.

In response to these challenges, we present DuDGAN
(Fig. 1), a robust method for class-conditional image
generation that excels in data and iteration efficient training.
DuDGAN comprises three distinct networks: a generator,
a discriminator, and a classifier. Drawing inspiration from
previous work [32] that trains a discriminator using noise
injection, the objective is for a timestep-dependent classifier
to learn and output class-conditional information during
training while incorporating a diffusion-based noise injection

process. Concurrently, the timestep-dependent discriminator
acquires prior knowledge from the classifier to discern
whether images are real or fake.

The classifier’s output consists of two types: high-
dimensional class information for calculating contrastive
loss [33] and class-dimensioned logits for classification loss.
Throughout the training process, we employ an appropri-
ate diffusion intensity for both the discriminator and the
classifier, determined by each network’s status. Thanks to
dual-diffusion process, DuDGAN generates high-fidelity and
diverse images in datasets with class imbalances and high
intra-class variation.

Our key contributions are as follows:
• We investigate the impact of using an additional
classifier trained with a diffusion-based noise injection
process for class-conditional image generation.

• We propose a novel training approach termed dual-
diffusion, which signifies the collaboration between the
discriminator and the classifier, both of which are trained
using diffusion-based noise injection.

• DuDGAN achieves fast convergence within a limited
number of iterations, thereby accomplishing both high-
quality generation and iteration-efficient training under
limited class-wise data and an inter-class imbalanced
condition.

• As a result, DuDGAN achieves superior performance
in compared to state-of-the-art GAN models on
the AFHQ [5], Food-101 [34], CIFAR-10 [35], and
BAAT [36].

II. RELATED WORK
A. CLASS-CONDITIONAL GENERATIVE ADVERSARIAL
NETWORKS
GANs [37] are deep generative models designed to produce
realistic data by approximating a real data distribution p(x).
Two primary neural networks, the discriminator and the
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generator, undergo simultaneous training to achieve their
objectives. The discriminator learns to differentiate between
real and fake data, while the generator strives to generate
data that can deceive the discriminator. In this context, the
objective function for Vanilla GAN [37] can be expressed as:

min
G

max
D

V (G,D) = Ex∼p(x)[log(D(x))]

+ Ez∼p(z)[log(1− D(G(z)))] (1)

where z ∼ p(z) is a noise vector randomly sampled from
a particular distribution (e.g., Gaussian distribution) and
x ∼ p(x) is sampled from the real data distribution. Under
ideal conditions, the discriminator outputs a probability of
one-half for any given input.

However, unconditional GAN models are unable to
generate the desired images as they train over the entire data
distribution, regardless of class-wise information. To address
this issue, Mirza and Osindero introduced CGAN [25], which
generates conditional images by incorporating a class label
into both the generator and discriminator. The basic form
of the objective function for conditional GANs with discrete
class-conditional information c is as follows:

min
G

max
D

V (G,D) = Ex∼p(x)[log(D(x, c))]

+ Ez∼p(z)[log(1− D(G(z, c)))]. (2)

Several studies have been conducted in this area.
ACGAN [26] enhances the performance of conditional
image generation by employing an auxiliary classifier to
output class information for backpropagation. Transitional-
CGAN [28] uses a linear transition function for each network
during the training phase, which takes unconditional training
first and then conditional training to prevent mode-collapse
from limited data while class-conditioning. Rebooting-
ACGAN [29] projects a vector onto a hypersphere to mitigate
mode collapse caused by gradient explosion.

B. DIFFUSION-BASED PROBABILISTIC MODELS
Particularly within the domain of computer vision, the
diffusion probabilistic model is considered the general form
of denoising diffusion probabilistic models (DDPM) [38].
It consists of a two-way Markov chain, known as the forward
and reverse processes. In the forward process, Gaussian
noise is gradually injected into the data at discrete timesteps
t ∈ {0, 1, . . . ,T−1,T }. As a result, the data becomes random
noiseN (0,1) after the final T steps. Note that the predefined
variance schedule βt and variance I in the equations below
do not have any learnable parameters. The equation for the
forward noising process is as follows:

F(xt | xt−1) := N (xt ;
√
1− βtxt−1, βt I ), βt ∈ (0, 1). (3)

In contrast, the reverse process entails denoising the data
from noise to target data. This process is governed by a set of
parameters θ . The reverse process can be represented as the
model of latent variables:

Rθ (xt−1 | xt) := N (xt−1;µθ (xt , t) , 6θ (xt , t)) . (4)

The set of parameters θ at each denoising step can
be calculated by parameterizing a specific neural network
within the model. Diffusion-GAN [32] demonstrates that
diffusion-based data augmentation is effective for mode-
catching and provides non-leaking augmentation for the
discriminator. In this paper, we explore the efficacy of the
forward noise injection process in improving the quality of
image generation in a class-conditional setting.

From the perspective of the diffusion-based model itself,
DuDGAN has a similar direction with a few recent works,
such as classifier diffusion guidance [39], which aims to
pass an informative gradient of the classifier to the diffusion
network for high-quality conditional image generation, but
DuDGAN aims to jointly optimize components of GAN
networks (not a diffusion network) and thus does not require
a two-step training stage with a frozen classifier.

III. METHOD
A. NOISE INJECTION THROUGH FORWARD DIFFUSION
PROCESS
The primary training objective of a class-conditional GAN
is to generate high-quality and photorealistic conditional
samples by training through the real data distribution p(x),
while predicting modes over a limited class-wise distribution
p(x|c), which is a subset of p(x). In this process, Gaussian
noise is injected into both the discriminator’s and classifier’s
inputs using a forward diffusion chain. As mentioned
in Section II, a distribution component derived from the
noise injection process of an arbitrary noisy sample xj ∈
{x0, . . . , xTk } at specific iteration k through the forward
Markov chain can be expressed as a closed-form Gaussian
distribution [38], [40]:

FTk (xj|x0) = N (xj;
√

ᾱjx0, (1− ᾱj)σ 2I ), (5)

where the distribution depends on timestep and Tk , a max-
imum timestep at the iteration. In the equation, ᾱj :=∏j

k=1 1− βk , and x0 is the real or generated image that is not
perturbed by the Gaussian noise. Furthermore, by applying
the reparameterization trick [38], [41], the noisy sample xj
can be summarized as the linear combination of original data
and noise:

xj =
√

ᾱjx0 +
√
1− ᾱjσϵ,

j ∈ T := {0, 1, . . . ,Tk − 1,Tk}. (6)

In discrete timestep j, Gaussian noise is injected into real or
generated images by the equation. As the timestep increases,
more information loss occurs in the sample.

However, since DuDGAN focuses on training with class-
conditional images, each class-conditioned image xj is
affected by a conditional distribution defined as FTk under
maximum timestep Tk ∈ {T0,T1, . . . Tmax} at iteration k ,
and class c ∈ C := {c1, c2, . . . cmax} [32]:

(xj, cx0 ) ∼ FTk (xj ∈ cx0 | x0, j)

= N (xj;
√

ᾱjx0, (1− ᾱj)σ 2I ). (7)
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While the distribution represents information at an arbi-
trary iteration, it should also contain information about the
timestep variable j, which appears to be noise in images.
In this context, we define a discrete mapping f , which is
monotonically increasing and sum of the elements in the
range of f is one. The output of mapping behaves a weight
factor in the total mixture distribution:

∀j ∈ T , f : (j,Tmax) −→ wj. (8)

Extending this process to predefined total iterations, Eq. 7,
can be generalized as additional summation on class set and
maximum iteration during the training process; a Gaussian-
mixture distribution:

FTk (xj | x0) :=
∑
∀k∈K

∑
∀c∈C

{wj · FTk (xj ∈ cx0 | x0, j)}. (9)

For both real or generator-produced images, we can sample
from noised image in this distribution; ∀x0 ∈ {Xreal,Xgen}.
Implementation of DuDGAN diffusion process is based on
the DDPM [38], which injects Gaussian noise at the pixel-
level of the image.

B. ADDITIONAL CLASSIFIER FOR CONDITIONAL IMAGE
GENERATION
To achieve high-fidelity and diversity of generated images,
models for class-conditional image generation must have
the ability to handle extensive class-wise distribution as
much as whole distribution. This necessitates an additional
network that deals with class information. Inspired by
previous work [10], which demonstrates the effectiveness of
an independent classifier network intending to increase class-
wise and class-aware capacity for GAN training, DuDGAN
includes an independent classifier that receives real or
generated images with Gaussian-mixture noise and outputs
class information. Note that the classifier input consists only
of the real or generated image and does not contain class
labels. Consequently, the classifier can predict distribution
beyond the bounded information configured by class-wise
images for training.

This procedure prevents overfitting on the training set
and enables learning broadly of the class information. Fur-
thermore, classifier outputs comprise two-level conditional
information represented as fhigh and fcls. fhigh consists of a
high-dimensional latent code that contains high-frequency
class-conditional features, while fcls, class logits for domain
classification on the class of the input image and the class
predicted by the network, are formed of a vector whose
dimension is the same as class labels. For accurate training on
the classifier, the classifier is trained only with real images,
not with images generated by the generator. With an arbitrary
noisy image xj, classifier outputs can be written as:

(fhigh , fcls) = C
(
xj

)
. (10)

Moreover, the multi-dimensional features are able to feed
auxiliary information to the generator and the classifier in the
training process. which is not considered in typical GANs.

This serves to optimize the balance of training, and as a result,
fast convergence can be achieved within a limited number of
iterations.

C. DUAL-DIFFUSION PROCESS
DuDGAN targets training two neural networks simulta-
neously, the discriminator and the classifier, through an
independent diffusion-based noise injection process. For both
networks, DuDGAN is based on [32], which employs the
procedure of gradually presenting the discriminator with a
more challenging task by first showing clear samples and then
introducing noisy samples.

The discriminator, which undertakes the bi-classification
task of predicting the realness score by taking real and
generated images as input during the training process, aims to
self-supervise the noise intensity by leveraging a predefined
hyperparameter rd , which indicates the extent to which the
discriminator is overfitted to the training set [23], [32].
Considering that the intensity of noise is determined by the
process of iteration k , which is a multiple of 4, is summarized
as follows:

Pk,D = Pk−4,D + sign
(
rd − Dopt

)
∗ const . (11)

Note that Pk,D ∈ (0, 1) represents the maximum intensity
of the noise injection process in iteration k , and rd is
determined to be 0.6 by the experiment in [23].

The classifier aims to perform classification by labels
according to the input image. Similarly to Eq. 11, the
classifier receives a noisy sample with an independent noise
schedule. To improve classification, we predefined the noise
intensity for each iteration by dividing the total number of
predefined maximum iteration kmax . This can be interpreted
as a linear increase in noise intensity from the original image
to the fully noised image in proportion to the number of
iterations. Furthermore, we bound the maximum diffusion
intensity in training the classifier for better classification. The
noise intensity for the independent classifier is written as
follows:

Pk,C = Pk−4,C +
4

kmax
, Pk,C ∈ (0, 0.3). (12)

As in Eq. 11 and Eq. 12, the diffusion intensities of the
discriminator and the classifier are updated every 4 iterations.
The maximum timestep Tk ∈ {Tk,D,Tk,C } is now adjusted
by computed Pk ∈ {Pk,D,Pk,C } for both parameterized
networks Nθ ∈ {D,C}:

Tk,Nθ = Tk−4,Nθ + Tmax,Nθ · Pk,Nθ ≤ Tmax,Nθ . (13)

Algorithm 1 presents the dual-diffusion noise intensity
adjustment, a central feature of the DuDGAN.

D. OVERALL TRAINING WITH DIFFUSION
The outline of the training procedure of DuDGAN is
displayed in Fig. 2. To enhance quality and prevent collapse
in class-conditional image generation, we propose a new
form of overall loss functions. Three different networks, the
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FIGURE 2. DuDGAN training procedure. The procedure has two components: (1) losses used during generator training, which
include the discriminator’s prediction score and a contrastive loss in a high-dimensional feature space with original class labels,
and (2) independent training of the classifier, including both a contrastive loss and cross-entropy for classification loss. Input
images undergo a separate Gaussian-mixture noise injection process, causing information loss, which is accounted for by a
predefined parameter for high-quality generative results.

Algorithm 1 Dual-Diffusion Noise Intensity Adjustment
1: for All iterations; k = 1 to kmax do ▷ Training over total

iterations
2: if k mod 4 = 0 then
3: Pk,D← Pk−4,D + sign(rd − D∗) · const
4: Pk,C ← Pk−4,C + 4

kmax
5: if Pk,D ≥ Pmax,D then
6: Pk,D← Pmax,D
7: end if
8: if Pk,C ≥ Pmax,C then
9: Pk,C ← Pmax,C

10: end if
11: end if
12: return Pk,D, Pk,C
13: Calculate Tk,D and Tk,C
14: Training D and C by Tk,D and Tk,C
15: end for ▷ Training ends
16: return Best checkpoint

generator, the discriminator, and the classifier, are jointly
trained with loss functions to achieve their objectives. First,
during the classifier’s training with real images, Lrealcont and
Lrealcls are calculated from the two-level outputs, fhigh and
fcls, respectively. Lrealcont represents the supervised contrastive
loss [33] derived from the high-dimensional latent space,

while Lrealcls denotes the simple classification error between
the predicted and given labels.

Aiming to produce photorealistic and diverse images
within class-wise distribution, the generator receives addi-
tional information from the classifier for the generated
images. Thus, similar to the classifier, the generator’s loss
function consists of the contrastive loss of generated images,
which guides the generator to produce high-fidelity images,
while the original loss LgenG remains.
Finally, the discriminator does not receive any informative

gradient from the classifier, so the loss function remains
the same as in the baseline model [32], which is the non-
saturating GAN loss. Summarizing this section, the following
loss functions constitute the full training objective:

LC = λC · Lrealcont
(
fhigh , cr

)
+ (1− λC ) · Lrealcls , (14)

LG = λG · L
gen
G + (1− λG) · Lgencont

(
fhigh , cf

)
, (15)

LD = LNSD , (16)

where λC and λG are hyperparameters to modulate the train-
ing of the classifier and generator, respectively. We experi-
mentally set the value of both parameters to 0.95.

IV. EXPERIMENTS
A. DATASET
For class-conditional image generation with GANs, the
dataset for training must contain label information. In this
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FIGURE 3. Generated images for qualitative result on AFHQ, Food-101, CIFAR-10, and BAAT datasets. Images within the same row belong to the same
class. The resolutions of the generated images are 128 × 128 for AFHQ, Food-101, and BAAT, and 32 × 32 for CIFAR-10.

regard, we train and evaluate DuDGAN using four different
datasets, each with a different domain and properties.
The preprocessing steps and specifics for each dataset are
described below:
• AFHQ (512 × 512) [5]: AFHQ is a dataset originally
consisting of three different categories: dogs, cats,
and wild animals. To demonstrate the effectiveness of
DuDGAN method across various domains, we use a
recreated version of the dataset [10], which increases
the number of classes from 3 to 7. In such a setting,
the number of images in each class is imbalanced. For
instance, the number of images in ‘cat’ class is 4739;
the largest, while the number of images in ‘fox’ class is
433; the smallest.

• Food-101 (128× 128) [34]: Food-101 contains 101 dif-
ferent categories of food, where each class consists of
1k different images. We use a portion of the dataset
consisting of 20 labels, without reducing class-wise
data size. Additionally, due to the variability of the
size of images, we preprocess each training image to a
resolution of 128× 128.

• CIFAR-10 (32 × 32) [35]: CIFAR-10 is divided into
10 different classes, each containing 50k training images
and 10k test images.

• BAAT (128 × 128) [36]: ‘Best Artworks for All
Time’ (BAAT) dataset includes various artistic paintings

by 50 different artists. Due to the unconventional
characteristic of art paintings, the dataset has a relatively
high intra-class variation compared to other datasets.
Similar to AFHQ, class-wise images in BAAT are
also imblanced. For example, the number of image in
‘Vincent Van Gogh’ is 877, while the number of images
in ‘Claude Monet’ is 73. Additionally, for specific
artists, painting style varies, as some of the paintings are
portraits, and some are landscape paintings. This char-
acteristic critically hinders the quality of the generated
samples due to the extremely large intra-class variation
in the small dataset.

B. EXPERIMENT DETAILS
To evaluate DuDGAN and compare it with other models,
we employ Fréchet inception distance (FID) [42] and kernel
inception distance (KID) [43] to measure the generation
quality and assess whether the generation adheres to the
distribution of the training data. Additionally, we utilize
the Precision and Recall score [44] to gauge the fidelity
and diversity of the generated samples. To compare com-
prehensively, we additionally adopt F1 score [45]; the
harmonic mean of Precision and Recall, which demonstrate
overall robustness over the distribution. As for computational
equipment, we utilized 1 or 2 NVIDIA GeForce 3090 RTX
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TABLE 1. Quantitative result on AFHQ, Food-101, CIFAR-10 and BAAT datasets. In the table, bold indicates best result and underline indicates second best
result.

(with 24GB or 48GB memory) or 1 NVIDIA RTX A6000
(with 48GB memory) GPU for all experiments.

To demonstrate that DuDGAN exhibits strength in fast
convergence, all models are trained until the discriminator
processes 10,000k images, a 60% smaller than those used
in experiments with comparative models. Furthermore,
especially for the classifier, we adopt AdamW optimizer [46]
instead of Adam optimizer [47] to prevent class-induced
overfitting. The default setting of each model with 64 batch
sizes was adopted for fair comparison. We used the ‘cifar’
configuration setting for the CIFAR-10 dataset [35], and the
‘paper256’ configuration setting for the remaining datasets,
as specified in [22]. Furthermore, we employed diffusion-
based noise intensity by leveraging the priority sampling
scheme [32] in all experiments.
Additionally, under the computation equipment,

DuDGAN’s training time only increased by 12% compared
to Diffusion-GAN, due to additional parameters of classifier
network, while consistently achieving superior performance
and training stability.

For fair comparison, the main experiment is built upon
comparison with three different baseline methods, which
are based on StyleGAN2-ADA [23]: 1) class-conditional
training of StyleGAN2-ADA (CStyleGAN2-ADA), 2) class-
conditional training of Diffusion-StyleGAN2 (CDiffusion-
GAN) [32], and 3) default setting of Transitional-CGAN [28].
Note that, while CDiffusion-GAN is one of the baselines, the
model is first introduced in this study, as a class-conditional
version of Diffusion-GAN.

C. QUALITATIVE RESULT
As demonstrated in Table 1, DuDGAN surpasses the compar-
ison models with respect to FID on the AFHQ and CIFAR-10
datasets, indicating superior generation quality. In particular,
on the CIFAR-10 dataset, DuDGAN outperforms all other
models, including the main baseline, CDiffusion-GAN,
across all datasets. The result implies adopting basic diffusion
process in class-conditional GAN training is not a effective
approach. Notably, in the case of the AFHQ dataset, FID is
reduced by 4.0%. Furthermore, DuDGAN attains the highest
Recall score on the CIFAR-10 dataset, signifying enhanced
diversity in the generated samples. Although DuDGAN
exhibits a marginally lower Precision and Recall score on
the AFHQ dataset, it remains competitive with the top-

FIGURE 4. Analysis of ‘Caprese Salad’ label generation on the Food-101
dataset. The figure presents the images generated using
(a) Transitional-CGAN and (b) novel DuDGAN model. Although
Transitional-CGAN outperforms DuDGAN for FID and KID on Food-101
dataset, we observe that DuDGAN outperforms Transitional-CGAN for
generation quality in terms of human perception.

FIGURE 5. FID on the Food-101 dataset post 4,000k image exposure to
the discriminator. This depicts the FID after the discriminator has been
exposed to 4,000k images, marking the end of the transition division in
Transitional-CGAN. DuDGAN consistently maintains training stability
throughout the training procedure and exhibits the best FID, compared to
other models.

performing model. In the case of BAAT dataset, DuDGAN
achieves best results compared with other models.

Additionally, we observe that while Transitional-CGAN
seems to produce high-quality images for the Food-101
dataset, due to comparatively lower values of FID and KID.
However, it fails to learn accurate class-wise distribution,
leading to degenerate qualitative results. The reason is that
the unique traning scheme of Transitional-CGAN which
unconditionally trained first and the metrics used bias the
total distribution, neglecting the sub-distribution segregated
by class labels, as shown in Fig. 4.
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FIGURE 6. Inter-Class interpolation on AFHQ dataset. This figure shows the smooth transition of DuDGAN between different classes
on the AFHQ dataset.

TABLE 2. Outcomes of prolonged training iterations. This table details
the results following further iterations, until the discriminator has
processed 25,000 images.

D. QUANTITATIVE RESULT
In addition to the quantitative results, we examine the visual
quality of the generated images by DuDGAN. As shown
in Fig. 3, the generated samples exhibit photo-realistic
characteristics, demonstrating the efficacy of DuDGAN.
The images possess fine details, accurate colors, and clear
textures, which contribute to their overall photo-realistic
appearance. These results further validate the superiority of
DuDGAN in generating high-quality, diverse, and visually
appealing images within class-wise distributions.

E. EXTENDING THE TRAINING ITERATIONS
While DuDGAN manifests robustness in low-iteration
training, we further the experimentation by comparing
results over extended iterations until the discriminator is

TABLE 3. Ablation study: Classifier loss formulations.

exposed to 25,000k images (Table. 2, Fig. 5) [23], [28],
[32]. The experiment show that FID of CDiffusion-GAN
continuously diverge and Transitional-CGAN’s FID oscilates
after unconditional training stage. This is probably because
mode collapse occurs after a certain number of iterations
during the class-conditioning process due to an imbal-
ance in learning between the discriminator and generator.
Moreover, CStyleGAN2-ADA’s convergence speed is slower
than DuDGAN. This experiment underscores DuDGAN’s
ability to provide consistent, high-quality results even over
prolonged training, a testament to the model’s endurance and
adaptability.

F. INTER-CLASS INTERPOLATION
Perhaps one of the most captivating demonstrations of
DuDGAN’s abilities is depicted in Fig. 6, where we observe
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TABLE 4. Ablation study: Examination of generator’s loss formulation.

TABLE 5. Ablation study: Variation in λG.

TABLE 6. Ablation study: Variation in λC .

TABLE 7. Ablation study: Variation in diffusion process.

the seamless class interpolation on the AFHQ dataset. Fig. 6
underscores DuDGAN’s deftness in synthesizing smooth
transitions between different classes, reinforcing the model’s
robustness in dealing with bounded label information.
It bears testament to the ingenious design choices behind
DuDGAN and the profound impact they have on the model’s
performance.

V. ABLATION STUDY
In the ablation study, we conduct three distinct experiments
by modifying the formulation of the classifier’s loss function,
adjusting the hyperparameter λ in both the generator and the
classifier, and changing diffusion procedure for the noise-
aware networks; the discriminator and the classifier. The
experiments in this section are based on the class-conditional
training of the CIFAR-10 dataset. Note that since GANs
have a multi-network training scheme, an imbalance in the

losses directly leads to training instability and mode collapse
problems, resulting in an explosion in metrics, as in some
cases in Tables 3, 4, and 5.

A. TWO-LEVEL OUTPUT OF THE CLASSIFIER
DuDGAN’s classifier generates a two-level loss, computed
as the label-dimensioned logits and contrastive loss, with
the aim of providing informative guidance to the generator.
To verify the effectiveness of this formulation in generating
high-quality and diverse images, we evaluate two different
loss formulations. As demonstrated in Table. 3, our two-level
loss significantly contributes to the training process, resulting
in superior performance across various metrics.

B. LOSS FORMULATION OF THE GENERATOR
Table. 4 illustrates an important element of the exploration
into the generator’s loss formulation as it pertains to
DuDGAN. We experimented with two different weights
for the classification loss (0.3 and 0.5). The numerical
results indicate that there is a marked decrease in the FID,
KID, Precision, and Recall scores when the weight of the
classification loss is increased from 0.3 to 0.5.

Despite these improvements, the scenario wherein we
utilize only the contrastive loss (i.e., the absence of the
classification loss) in the generator’s loss formulation exhibits
the best overall performance. This configuration led to the
lowest FID and KID values (3.73 and 0.0009, respectively),
and the highest Precision and Recall scores (0.64 and 0.58,
respectively). This outcome underscores the effectiveness of
our novel approach, demonstrating that by employing only
the contrastive loss, we have managed to avoid the potential
pitfalls associated with early-stage divergence from incorrect
class prediction, a common issue prevalent in other models.

C. HYPERPARAMETER SETTING
As described in Eq. 14 and Eq. 15, the primary role of the
predefined hyperparameter λ is to balance the influence of
each network, namely the classifier and the generator, during
the training process. Following a similar approach, we assess
the metrics while varying λ to investigate the optimal balance
in the network. In Table. 5 and Table. 6, the metrics are
computed with different λ values in the target network,
while other parameters remain constant. DuDGAN proposes
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a suitable setting for both λG and λC at 0.95, as evidenced by
the best values across all pairings in Table. 5 and Table. 6.

D. DIFFUSION PROCEDURE
We perform additional experiments involving three distinct
diffusion mechanisms, in addition to a baseline model
trained without any noising steps. As evidenced in Table 7,
DuDGAN’s dual-diffusion network outperforms competing
methods across various metrics. This superior performance
is attributable to the dual-diffusion mechanism’s ability to
effectively utilize class information and enhance generation
quality, thereby facilitating network equilibrium during the
training phase.

VI. CONCLUSION
In this paper, we propose novel approaches to the class-
conditional GAN training procedure via dual-diffusion,
which entails diffusion-based noise injection using Gaussian-
mixture noise. Throughout the training process, the dis-
criminator and the classifier are trained with gradually
noisy images, mitigating overfitting within the networks.
DuDGAN’s independent classifier generates a two-level loss
comprising the label-supervised contrastive loss and the
classification loss, which guides the generator by providing
informative feedback.With the assistance of both the discrim-
inator and the classifier, the generator successfully produces
high-quality and diverse images corresponding to specific
labels. Moreover, DuDGAN facilitates iteration-efficient
training, as demonstrated by rapid convergence within
a limited number of iterations. Consequently, DuDGAN
achieves superior results in both quantitative and qualitative
evaluations, outperforming state-of-the-art class-conditional
GAN models.

Despite DuDGAN’s novel approach to class-conditional
GAN training, there are inherent limitations and avenues
for improvement. While DuDGAN excels in dataset-agnostic
training, it struggles with classes containing fewer than
50 images, compromising the quality of generated condi-
tional samples.

We propose separate noising schedules for the discrim-
inator and classifier, which operate independently. This
independence can complicate optimization. A unified noising
schedule, incorporating feedback from both components,
could enhance both generation quality and training efficiency.

The current framework offers potential extensions to other
tasks, such as diffusion-based 3D scene generation and
GAN inversion, which involve multi-network training. These
extensions are subjects for future investigation.
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