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ABSTRACT Thyroid-associated orbitopathy is an autoimmune disease that causes changes in various
structures close to the eye. Medical images, such as three-dimensional computed tomography scans, can
be used by medical experts to diagnose thyroid-associated orbitopathy. Meanwhile, image segmentation has
been widely used in medical imaging owing to its significant impact on improving model performance by
filtering out unnecessary pixel values. In this study, a neural network specialized in processing multiple
segmented images was proposed to evaluate thyroid orbitopathy activity, focusing on the fact that multiple
segmented images can be extracted from orbital computed tomography scans. The proposed neural network
consists of multiple convolutional embedding heads, a group squeeze-and-excitation block, and a classifier
stage. Our empirical study shows that the proposed model outperforms four baseline models on a thyroid-
associated orbitopathy activity dataset obtained from a cohort of 1,068 patients at Chung-Ang University
Hospital between January 2008 and October 2019. The proposed model achieved an average area under the
receiver operating characteristic curve of 0.800, accuracy of 0.721, F1 score of 0.416, sensitivity of 0.728,
and specificity of 0.720 across 50 replicate experiments. The source code for the proposed model is available
at https://github.com/tkdgur658/MultiheadGroupSENet.

INDEX TERMS Thyroid-associated orbitopathy, computed tomography, multihead neural network.

I. INTRODUCTION
Thyroid-associated orbitopathy (TAO) is an autoimmune
disorder characterized by changes in several structures near
the eyes [1]. Specifically, TAO is characterized by orbital
inflammation, adipose tissue expansion, and an upregu-
lated synthesis of hydrophilic glycosaminoglycans [2]. TAO
activity can be evaluated using the clinical activity score,
which reflects symptoms including redness of the conjunctiva
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and swelling of the eyelid [3]. However, TAO diagnosis
based on computed tomography (CT) or magnetic resonance
imaging often requires considerable time in practice because
clinical decisions must be made after observing changes
in various TAO-related structures [4]. Consequently, neural
network (NN)-based TAO diagnostic systems have been
widely considered [5].

Meanwhile, image segmentation is an effective image
preprocessing method in machine learning-based diagnosis
because it enables subsequent learning algorithms, such
as NN, to avoid learning unessential information [6].
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FIGURE 1. Different segmentation images from an orbital CT image. In the axial view, (a) right eyeball, (b) right optic nerve, (c) right lateral rectus muscle
(LR), (d) right medial rectus muscle (MR), (e) left eyeball, (f) left optic nerve, (g) left LR, and (h) left MR are depicted. In the coronal view, (a) right superior
rectus muscle (SR), (b) right LR, (c) right optic nerve, (d) right inferior rectus muscle (IR), (e) right MR, (f) left SR, (g) left LR, (h) left optic nerve, (i) left IR,
and (j) left LR are shown. In the sagittal view, (a) eyeball, (b) upper eyelid, (c) SR, (d) optic nerve, and (e) IR are presented.

Specifically, image segmentation distinguishes the targeted
structure from other elements within a medical image [7].
Therefore, the segmentation process in medical imagery
enables NNs to concentrate on particular objects pertinent
to diagnosis, assisting the predictive model in disregarding
features of ancillary structures irrelevant to the diagnostic
process [8]. In the case of orbital CT images, a large

number of segmented images can be generated according
to the number of chosen structures around the eye [9].
Moreover, the number of CT slices of a patient and the
view direction, such as axial, coronal, and sagittal views,
can increase the total number of segmented images [10].
Figure 1 shows the different segmented images extracted
from the orbital CT image of a patient; details of the
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segmented images used in this study are described in the CT
preprocessing of the proposed method section. Since TAO
patients can be characterized by changes in multiple struc-
tures near the eye, training an NN based on these different
segmented images could be a promising approach in terms
of predictive performance [11]. However, most conventional
studies have adopted the strategy of simply cropping the
orbital area where the TAO-related structures are gathered,
which limits their diagnostic performance improvements
[12], [13], [14], [15], [16].

Our previous work [17] showed promising perfor-
mance for TAO activity prediction based on a large
number of segmented images. However, the predictive
model adopted an intermediate fusion strategy, result-
ing in low predictive performance due to unneces-
sary information interaction between different segmented
images.

This study aims to devise a novel NN that assesses
the activity of TAO patients effectively and to analyze
important design aspects for processing multiple segmented
CT images. The proposed NN consists of multiple convo-
lutional embedding heads, a group squeeze-and-excitation
(SE) block, and a classifier stage. Each convolutional head
extracts a segmented image embedding. Then, the extracted
embeddings from different convolutional heads are assigned
importance by the group SE block. Finally, these importance-
assigned embeddings are used for TAO activity classification
in the classifier stage.

The main contributions of our TAO diagnosis study are as
follows:

1) This study introduces a multihead NN for diagnosing
TAO activity based on multiple segmented images,
demonstrating superior performance over four existing
models across five evaluation metrics in experiments
involving a cohort of 1,068 patients at Chung-Ang
University Hospital.

2) A multiple segmented-images input strategy, a less-
explored approach in the field of NN-based TAO
diagnosis, was extended by our study. Moreover,
the proposed method was compared with well-
studied crop image input strategies, including
their advantages, disadvantages, and experimental
results.

3) Future directions for NN-based TAO activity diagnosis
are presented through multiple in-depth analyses,
including a fusion strategy comparison, group SE
ablation, and attention score sorting, which suggest
designing a predictive network based on a late-fusion
strategy and improving the less-important image-
filtering approach.

The remainder of this paper is organized as follows:
Section II describes our proposed NN. Section III describes
the experimental setup and results. Section IV presents the
analysis of the training and inference results of the proposed
NN. Finally, Section V concludes the paper and discusses
future research directions.

II. RELATED WORK
In recent years, NN-based diagnostic methods have been
developed using various foundational architectures. Among
them, CNNs are themost popular because of their exceptional
capability for local feature extraction [18]. For exam-
ple, ConvNeXt, which was initially developed for natural
images, has been extended to predict the severity of lung
damage [19]. In addition, three traditional CNNs were
utilized to diagnose acute lymphoblastic leukemia, with their
extracted spatial features fed into either an extreme gradient
boosting classifier [20]. The versatility of CNNs is extended
to various diagnostic objectives, including breast cancer
diagnosis [21], facial skin condition identification [22],
and brain tumor detection [23]. The scalability of CNN is
promising with the combination of various machine learning
methods [24].
The successes of CNNs have similarly manifested in

studies related to TAO [12], [13], [14], [15], [16], [17].
For TAO activity diagnosis, MRI images of 108 patients
were included to train and validate the VGG and ResNet
variants [12]. Orbital parts in MRI images were intercepted
with fixed size, and randomly cropped again to augment
training data. MRI provides better contrast resolution than
CT; however, its use may be limited owing to the high cost
and the limited number of available samples. In the same year,
a 3D-ResNet variant was proposed to differentiate between
patients with TAO and normal subjects based on 1,435 CT
scans [13]. The cropping process was performed using a
rectangular boundary and a criterion that the output images
should contain the orbital bone and eyeball on the sagittal
axis. However, this cropping process still outputs a wide
range of less-important regions for TAO diagnosis, resulting
in low predictive performance. For assessment of severity of
TAO, multiple convolutional blocks were used for learning
information of axial, coronal, and sagittal planes [14]. The
features extracted from three different views help the model
to learn 3D information successfully; but still have difficulty
to focus on individual anatomic structures. ResNet-VGG
pipeline was used to detect enlarged extraocular muscles in
CT images [15], which can be useful in the management of
patients with TAO. Similar to previous studies, they use a
rectangular cropped area, so unnecessary features contained
within the boundary interfere with learning. Finally, two
recent studies on the diagnosis of TAO activity based on
CT images have been conducted [16], [17]. The activity
diagnostic performance of a multichannel CNN can be
improved by concurrently inputting orbital and single-
photon emission CT images [16]. However, they still input
different structures concurrently on a single cropped image;
the interaction of different anatomic structures makes it
difficult to focus on individual structures. An intermediate-
level fusion model for differently segmented CT images
was proposed to iteratively find the most important CT
cuts among a large number of preselected CT cuts [17].
This approach can effectively extract anatomy structure-
independent features based on large numbers of segmented
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TABLE 1. Summary of the literature review of NN-based TAO diagnosis.

images and the same number of different convolution blocks.
However, the intermediate fusion can make classifying of the
fully connected (FC) layer hard by not sufficiently extracting
high-level features for each structure. Table 1 summarizes the
literature review of NN-based TAO diagnosis.

Our brief review indicates that recent NN-based TAO
studies have limitations in that the predictive models often
suffer from interference of TAO-irrelevant objects during
the training phase. One approach to tackle this issue
is to segment each anatomic structure [17]. By filtering
out TAO-irrelevant structures, the predictive model can
focus on TAO-relevant structures during training. However,
this approach has not been deeply studied yet. In this
study, we proposed a new NN architecture for processing
multiple segmented images to diagnose TAO activity more
accurately.

III. PROPOSED METHOD
A. CT PREPROCESSING
The Institutional Review Board of Chung-Ang University
Hospital approved this study (IRB No, 2312-003-19499),
and the informed consent requirement was waived due to its
retrospective design. This study was conducted in accordance
with the ethical standards outlined in the Declaration of
Helsinki. The CT scans of 1,068 TAO patients used in this

TABLE 2. Subject characteristics.

study were obtained from Chung-Ang University Hospital
between January 2008 and October 2019 [17]. Each patient
was classified as active or inactive using a seven-point
modified clinical activity score, with any scoring equal to
or more than three considered active. The number of active
and inactive are 144 (52 men, 92 women) and 924 (226 men,
698women) TAOpatients, respectively (p<0.005). Themean
active TAO patient age was 46.14 ± 13.61 years, and the
mean inactive TAO patient age was 35.43 ± 12.18 years
(p<0.001). The demographic information for the patients is
described in Table 2. Two ophthalmologists with more than
five years of experience in oculoplasty and blinded to patient
information evaluated clinical inflammatory activity by
analyzing CT images. Then, the Hounsfield Unit windowing
process for better structure identification was performed.
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FIGURE 2. CT data preprocessing. First, our CT images were normalized to values from zero to one by VOILUT function. Then, six axial slices were selected
based on the eyeball and lacrimal gland, three coronal slices were selected based on the eyeball and orbit, and two sagittal slices were selected based on
the eyeball. Finally, 78 segmented images were extracted from the selected slices and resized into the size of (224, 224).

Value of Interest Look Up Table (VOI LUT) function in
Pydicom library was used to convert the original CT pixel
values into values ranging from 0 to 1. Window Center
and the Window Width were set to 0 and 200, respectively.
Then, 11 specific CT slices were chosen, encompassing axial,
coronal, and sagittal planes for each patient. This selection
process was designed to focus on the anatomical features
most pertinent to TAO, aiming to improve the performance
of TAO activity evaluation and avoid confusion due to
unnecessary information. Specifically, the orbital CT of each
patient had 80 to 400 image slices. Among the total slices
for a patient, only a few CT slices were selected from axial,
coronal, and sagittal planes. We selected the slice with the
largest lens in the axial plane (AX1) first, then slices 3mm
above (AX2) and below (AX3) and 7mm above (AX4) and
below (AX5) AX1. For identification of the lacrimal gland,
the slice with the largest lacrimal gland was selected (AX6).
For the coronal plane, the slice with the largest eyeball was
selected first (CO1). Then, we picked slices 1/2 and 2/3 of the
distance between CO1 and the orbit exit (CO2, CO3). Finally,
for the sagittal plane, slices with the largest eyeball in both
eyes were chosen (SA-L, SA-R). Consequently, we obtained
11 CT slices for each patient: six axial, three coronal, and two
sagittal plane slices. Then, identifiable structures, including
the eyeball, the optic nerve, four rectus muscles, and the
orbital fat, were segmented from 11 CT slices. Table 3. IR,
SR, MR, and LR stand for inferior, superior, medial, and
lateral rectus muscles, respectively, and OR means optic
nerve. As a result, we acquired 78 segmentation images from

TABLE 3. Segmentation criteria. IR, SR, MR, and LR means inferior,
superior, medial, and lateral rectus muscles, respectively. OR stands for
optic nerve.

11 selected slices. The overall preprocessing procedure is
demonstrated in Figure 2.

B. PROPOSED MODEL
For the set of input segmented images X = {x1, x2, . . . , xN }

per patient, the proposed NN extracts the high-level spa-
tial features using the set of convolutional heads F =

{f1, f2, . . . , fN }, where N is the number of input segmented
images. For ith segmented image xi, ith convolutional head
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FIGURE 3. An overview of the proposed model. (a) and (b) represents a schematic overview of the model and a detailed diagram of the
proposed model, respectively. DSWP Conv stands for depthwise separable convolution [25].

fi extracts the corresponding high-level feature without
interfering with features extracted from other segmented
images. Thus, the output of convolutional heads can be
defined as X ′

= {x′

1, x
′

2, . . . , x
′
N |x′

i is fi(xi)}. Then, group SE
block g recalibrates each feature by modeling the correlation
between features extracted from different segmented images.
Therefore, the output of group SE block can be defined as
X ′′

= g(X ′). Finally, the final output of the proposed model
can be generated as ŷ = h(X ′′), where h is the classifier stage
function and ŷ ∈ [0, 1] is the active score. Figure 3 illustrates
the proposed model, and the details of each function (i.e., f ,
g, and h) are explained in the following paragraphs.

Each convolutional head processes the corresponding
segmented images to generate a small spatial embedding
with the following steps. First, a stem convolutional layer
processes a corresponding segmented image with 7 ×

7 kernels. All convolutional layers are succeeded by batch
normalization (BN) [26] and rectified linear unit (ReLU)
activations [27]; these details have been excluded for brevity
and clarity. Then, a 3 × 3 max pooling operation was
performed with a stride of two and padding of one. After
extracting the feature map using the stem layer, four
convolution layers and three average pooling layers processed
the feature map with multiple skip connections. Specifically,
depthwise separable convolution (DWSP Conv), consisting
of depthwise convolution, pointwise convolution [25], and
2× 2 average pooling, was repeated three times, followed by
one DWSP Conv to generate the corresponding segmented
image embedding. DSWP Conv is one of the most widely
used convolution types due to its stable performance. Skip
connections connect all the convolutional layers in each
convolutional head and perform DWSP Conv after averaging
the pooling into the input spatial size of the corresponding
DWSP Conv layer [28]. The input segmented image is also
connected to all convolutional layers in the head via average

pooling of different sizes to ensure the flow of information
from the original segmented image to subsequent layers.
Mathematically, the output of jth DWSP Conv layer for ith
image can be defined as zji = DWSPji([xi, z

0
i , . . . , z

j−1
i ]),

where [·] refers to the global average pooling operation
that reduces the elements of any input size into the
1/22 size of zj−1

i and concatenation operation, z0i is the stem
layer output of ith image, and DWSPji is the jth DSWP
Conv for ith image. Thus, the output of ith head can be
represented as x′

i = z4i = DWSP4
i ([xi, z

0
i , z

1
i , z

2
i , z

3
i ]).

Then, the proposed NN recalibrates N embeddings using an
attention block named group SE block. The group SE block,
inspired by the SE block [29], assigns explicit importance
to each embedding, thereby emphasizing the more important
segmented images while suppressing the less important ones.
After passing through the convolutional heads,N embeddings
x′

1, . . . , x
′
N are processed by the group SE block g, which

consists of group squeeze and excitation stages. The squeeze
stage comprises a group pointwise convolution layer and
a global average pooling layer. In the group pointwise
convolution layer, N pointwise convolutions are applied
between the corresponding channels generated from the same
embeddings, which aggregate the information for the channel
axis of each embedding. The spatial information of each
embedding is then squeezed through global average pooling.
In the excitation stage, a sequence consisting of FC-ReLU-FC
learns the correlation relationship between different squeezed
embeddings. Finally, the sigmoid function normalizes the N
embeddings to the N scores s1, .., sN between zero and one.
The scores are multiplied by each head output x′

1, . . . , x
′
N .

Thus, the output of group SE block can be represented as
X ′′

= g(X ′) = {x′′

1, x
′′

2, . . . , x
′′
N |x′′

i is six
′
i}. In the classifier

stage, the embeddings recalibrated using group SE block
x′′

1, x
′′

2, . . . , x
′′
N are spatially aggregated by 7 × 7 average

pooling. Then, the dropout layer, with a probability of 0.5,
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removes several nodes randomly to avoid co-adaptation of
the network during training. Finally, the FC layer classifies
the activity of the patient using a sigmoid function. Thus,
final output of the model can be represented as ŷ = h(X ′′) =

Sigmoid◦FC◦Dropout◦AvgPool(X ′′), where Sigmoid is a
sigmoid function, FC is a FC layer, andDropout is a dropout
layer, and AvgPool is a 7 × 7 average pooling layer.

IV. EXPERIMENTS
Four comparison models were used to evaluate the predictive
performance of the proposed model [13], [16], [30], [31]. The
models by Song et al. [13] and Yao et al. [16] were used
as representative models for NN-based TAO diagnosis based
on CT images. For these two models, three-dimensional
input images were used because they are developed as three-
dimensional convolution-based models. Woo et al. [31] and
Zhang et al. [30] were used as the representative model for
general image processing. These two models are widely used
in various computer vision tasks and can be easily adapted for
multiple two-dimensional image processing bymodifying the
number of input channels.

All the experiments were implemented using Python
3.6 and the PyTorch library 1.10. The training and
testing were conducted using two NVIDIA GeForce
RTX 3090 GPUs in a data-parallel environment. The weights
of each model were optimized using focal loss [32] with a
gamma value of 2.0. AdamW [33] was used as an optimizer.
The weight decay was set to 1e-4, and the learning rate
was set to 1e-3. Each model was trained for a maximum
of 30 epochs. An early stopping strategy was employed to
terminate the training if there was no improvement in the loss
value over three epochs. The batch size was set to 32. In each
experiment, the data were stratified and randomly sampled
into three sets: 60% for training, 20% for validation, and 20%
for testing. Each model was trained and tested 50 times.

The activity diagnosis can be considered as a binary
classification dealing with active and inactive classes. Thus,
the following five metrics, which are widely used in binary
classification problems, were used to evaluate the model
performance.

Accuracy (ACC): ACC quantifies the proportion of correct
predictions made by the model over all predictions made.
In activity diagnosis, ACC can evaluate how many correct
diagnoses are among total diagnoses. In binary classification,
ACC can be mathematically defined as:

ACC =
TP+ TN

TP+ TN + FP+ FN
, (1)

where TP = True Positive, TN = True Negative, FP = False
Positive, and FN = False Negative.
F1 Score (F1): F1 is the harmonic mean of precision

and recall, and provides a balanced measure between these
two characteristics. F1 is particularly effective in imbalanced
datasets because it assigns equal weights to both false
positives and false negatives. F1 can be mathematically

represented as:

F1 = 2 ·
Precision · Recall
Precision+ Recall

, (2)

where Precision = TP / (TP+FP) and Recall = TP /
(TP+FN).

Sensitivity (SEN): SEN, also known as recall or true
positive rate, measures the proportion of actual positives that
are identified correctly. SEN evaluates how many positive
cases the model detects. SEN is defined as follows:

SEN =
TP

TP+ FN
, (3)

Specificity (SPE): Also known as the true negative
rate, measures the proportion of correctly identified actual
negatives. SPE evaluates how many negative cases the model
detects. SPE is defined as:

SPE =
TN

TN + FP
, (4)

Area under the receiver operating characteristic curve
(AUC): The receiver operating characteristic (ROC) curve
plots SEN against (1 - SPE) for different threshold values.
AUC measures the entire two-dimensional area underneath
the ROC curve from (0,0) to (1,1). Thus, AUC evaluates the
predictive performance independent of the threshold.

To evaluate the experimental results statistically, a paired
t-test was performed with both 0.05 and 0.01 significance
levels. The null hypothesis states that the mean difference
between paired observations is zero. All the possible
comparison model pairs were tested. All statistical tests were
performed using SciPy 1.5.4, an open Python library.

Table 4 lists the experimental results. The proposed model
outperformed all comparison models in terms of the average
of all evaluation metrics. Moreover, statistical tests for the
AUC, ACC, F1, and SEN rejected the null hypothesis,
indicating the superiority of the proposedmodel. Specifically,
in terms of AUC, the proposed model achieved an average
value of 0.800, surpassing that of the nearest competitor
by more than 0.050. In terms of ACC, the proposed model
exhibited an average score of 0.721 with a standard deviation
of 0.045, which is superior to that of the second-best model
by approximately 0.024. Similarly, the proposed model led in
terms of F1, achieving an average of 0.416, with a standard
deviation of 0.046. This was approximately 0.037 higher
than that of the second-best model. The proposed model
also exhibited the highest average SEN of 0.728, which was
significantly higher than those of the other models. Finally,
the SPE of the proposed model was 0.720. Although the score
does not exceed that of the second-best model by a large
margin, it suggests that our model is superior in terms of
identifying true negatives.

V. DISCUSSIONS AND FUTURE SCOPE
This study differs from previous NN-based TAO diagnostic
studies [12], [13], [14], [15], [16], [17]. Previous studies pre-
dominantly used region-of-interest (RoI) cropping datasets as
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TABLE 4. Experimental results. The mean of the corresponding evaluation metric is represented in each cell with its standard deviation. The value in
parentheses indicates the average ranking of the corresponding model. If the best scoring model for each metric rejects the null hypothesis in a t-test
with all other comparison models, the asterisk (*) emphasizes the performance. ** and * indicate statistical significance at the 0.01 and 0.05 levels,
respectively.

FIGURE 4. t-test dot plot of the main experiments in terms of AUC. Blue and red lines mean the proposed model wins and losses, respectively. The
proposed model won 190 times among 200 experiments, rejecting four null hypotheses at a significance level of 0.01.

the major input type in NN-based TAO diagnosis [12], [13],
[14], [15], [16]. RoI cropping typically involves selecting
a rectangular area encompassing relevant medical image
structures. Thus, previous works usually crop to cover orbit
or a larger area. However, predictive model can suffer from
loss of the information of more detailed-level structures by
rough cropping and convolution in early steps. In contrast,
this study used a large number of segmented images as inputs
to the NN, similar to [17] rather than the RoI cropping
dataset. Our strategy can extract high-level features for
each structure within the orbit through the corresponding
convolution head. Then, structure-level importance can be
assigned by the Group SE block. Assigning importance to
the features makes the classification performed by the last
FC layer easier. As shown in Figures 4 and 5, the proposed
method consistently outperforms Song et al. and Yao et al.,
which are the cropping-based methods. In Figure 4, the blue
and red lines represent the performance difference between
the proposed and the compared models. The blue line means
that the proposed model shows better performance in that

iteration. The red line means that the comparative model
performs better than the proposed model at that iteration.
As shown in Figure 4, the proposed model wins 190 times
out of 200 experiments. The t-test rejects the null hypotheses
all four times. In addition, Figure 5 shows the performance
difference between the proposed model and each comparable
model. The x-axis represents the performance difference
of each iteration, and the y-axis represents the number of
experiments. Compared to Song et al., the proposed method
won in most iterations, achieving 0.058 mean difference.
Compared toWoo et al., the proposed model won by a margin
of more than 0.1 in all iterations.

In our previous work [17], a large number of segmented
images were used, similar to this study. The main difference
is that a late-fusion NN architecture was proposed in this
study to aggregate multiple segmented image information at
a higher level, in contrast to the intermediate-fusion approach
of [17]. The proposed model compresses each segmented
image to (7, 7, 8) dimensions and then performs information
fusion. This strategy improves the extraction of unique fea-
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FIGURE 5. t-test histogram plot of the main experiments in terms of AUC. The x-axis represents the difference between the AUC of the proposed
model and the comparison model for each experiment, and the y-axis shows the number of experiments. The curves were generated based on the
data using kernel density estimation to smooth the distributions of the experimental results.

FIGURE 6. Bar plot for fusion strategy comparison. Early-fusion [30], intermediate-fusion [17], and late-fusion (proposed) were compared in terms of
AUC, ACC, F1, SEN, and SPE. The late-fusion approach achieved the best performance in all metrics. In particular, the late-fusion model outperforms
the second-best model by approximately 0.088 in AUC and 0.186 in SEN, respectively.

tures of each TAO-related structure. Figure 6 shows that late
fusion is more promising than early or intermediate fusion.
For all five metrics, late fusion consistently outperformed the
other two methods. Specifically, the potential for late fusion
is evident in SEN, which outperforms the other methods by

approximately 0.180. In terms of the experimental settings
in Figure 6, Zhang et al. [30] used an early fusion model,
and Lee et al. [17] used an intermediate fusion model. The
experimental results for Figure 6 were calculated from ten
repetitions of the same settings as in the main experiments.
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FIGURE 7. Bar plot and dot plot for group SE ablation. A comparative experiment was conducted by removing the group SE block from the proposed
model. The bar plot shows that the overall predictive performances were improved by adding the group SE block in terms of the five evaluation
metrics. In the dot plot, blue and red lines mean the group SE block wins and loses in terms of AUC, respectively. The dot plot demonstrates that the
case of adding the group SE block won in eight among ten experiments with p-value of 0.025.

As demonstrated in Figures 1 and 2, this study uses a large
number of segmented images explained in the CT prepro-
cessing section. All structures included in the 78 segmented
images were mentioned for their relevance to TAO in the
existing literature [34], [35], [36]. In particular, volumetric
changes in extraocular muscles are more characteristic than
other orbit structures in CT images of TAO patients [37]. The
proposed method considers the relative importance of each
structure based on the group SE block. The attention scores
for each structure can be calculated based on the group SE
block of the proposed model. Table 5 lists the top 15 average
attention scores with standard deviations generated from the
group SE block of the proposed model for 50 tests in the
main experiments. Although 32 were extraocular muscles
among a total of 78 segmented images, the top 15 were
all ranked by extraocular muscles. Moreover, 20 of the top
23 segmented images were extraocular muscles. Although
TAO patients often experience eyeball pain, the segmented
images of eyeballs were positioned at the low ranks. Among
the total 14 eyeball images, the highest rank is 57. The fact
that the TAO primarily affects the soft tissues surrounding the
eye, such as the extraocular muscles and orbital fat, leading to
changes that are more significant and diagnostic than changes
in the eyeball itself is consistent with the attention scores [36].
The performance of the proposed model is slightly improved
by the group SE block, as shown in Figure 7. The proposed
can be used in clinical settings described in [38]. The output
of the model can be provided to medical experts along with
the attention score, which can provide reference data for
inexperienced medical experts.

Despite the promising outcomes of this study, it had
several limitations. The proposed method requires a sub-
stantial number of segmented images, is labor-intensive,
and requires significant expertise. On the other hand, the
cropping strategy is relatively simple as it only requires

TABLE 5. Top 15 scores among the 78 attention scores generated from
the group SE block. IR, SR, MR, and LR means inferior, superior, medial,
and lateral rectus muscles, respectively.

finding RoI and annotating it as a rectangle [16]. Thus,
collaboration with recently developed segmentation models
can help advance our approach. A recent work [10] on orbital
tissue segmentation in CT images reported average Dice
coefficients of 90%. In terms of NN architecture, existing
NN-based diagnostics have been integrated with useful
architectures, such as vision transformers [39] or graph-
NNs [40]. Future research could consider new NN design and
optimization approaches for global dependencies or graph
structures [41], [42].While the group SE block yielded a little
performance improvement, a previous TAO diagnosis study
has demonstrated more pronounced performance boosting by
filtering out less important images [17]. Therefore, filtering
out network nodes may be a promising approach. Finally,
considering the fusion of information from variousmodalities
may improve predictive performance. For example, TAO
symptoms of the eye may be well identified on a facial
photograph [43].
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VI. CONCLUSION
TAO is an autoimmune disease that leads to alterations in the
structures close to eyes of the patient. This study leveraged
the potential of image segmentation in medical imaging,
emphasizing its ability to refine diagnostic performance.
This paper introduces a new NN adept at processing a
large number of segmented images to assess TAO activity.
The proposed model incorporated multiple convolutional
embedding heads, a group SE block, and a classifier stage.
The proposed model exhibited the best performance across
five evaluation metrics compared to the four comparative
models. Consequently, the Discussion section presents future
research directions related to data preprocessing and model
architecture.
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