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Microbial-transcriptome integrative analysis of heat stress effects on 
amino acid metabolism and lipid peroxidation in poultry jejunum

Young-Jun Seo , Chiwoong Lim , Byeonghwi Lim  and Jun-Mo Kim

Department of Animal Science and technology, chung-Ang University, Anseong, Republic of Korea

ABSTRACT
Despite the significant threat of heat stress to livestock animals, only a few studies have 
considered the potential relationship between broiler chickens and their microbiota. Therefore, 
this study examined microbial modifications, transcriptional changes and host–microbiome 
interactions using a predicted metabolome data-based approach to understand the impact 
of heat stress on poultry. After the analysis, the host functional enrichment analysis revealed 
that pathways related to lipid and protein metabolism were elevated under heat stress 
conditions. In contrast, pathways related to the cell cycle were suppressed under normal 
environmental temperatures. In line with the transcriptome analysis, the microbial analysis 
results indicate that taxonomic changes affect lipid degradation. Heat stress engendered 
statistically significant difference in the abundance of 11 microorganisms, including Bacteroides 
and Peptostreptococcacea. Together, integrative approach analysis suggests that 
microbiota-induced metabolites affect host fatty acid peroxidation metabolism, which is 
correlated with the gene families of Acyl-CoA dehydrogenase long chain (ACADL), Acyl-CoA 
Oxidase (ACOX) and Acetyl-CoA Acyltransferase (ACAA). This integrated approach provides 
novel insights into heat stress problems and identifies potential biomarkers associated with 
heat stress.

Introduction

Elevated environmental temperatures severely affect 
livestock,1,2 with poultry being extensively susceptible 
to ambient conditions.3 Heat stress is the foremost 
lethal stressor in chickens, attenuating feed intake, 
growth rates, meat productivity and quality.4–6 Previous 
studies have evidenced that heightened environmental 
conditions amplify reactive oxygen production and 
inflammation reactions,7,8 prompting intestinal impair-
ments and epithelial barrier dysfunction.6,9 Vital func-
tions in chicken intestines afflicted by heat stress 
include nutrient digestion, absorption and pathogen 
protection.10,11 Specifically, the immune and microbial 
barrier in the jejunum, the central section of the small 
intestine, plays a crucial role in maintaining gut health 
in broiler chickens.12 Thus, additional molecular and 
cellular mechanistic investigations centred on jejunal 
transcriptome profiling will provide further insight 
into gene expression changes, complex genomic heat 

stress responses and genetic heat tolerance regulation 
in chickens.13,14 Furthermore, alterations in gut micro-
organisms as a result of heat stress have recently gar-
nered attention as a significant factor in explaining 
heat stress.15,16 It has been confirmed that heat stress 
leads to a significant change in the intestinal environ-
ment, causing an imbalance in intestinal microorgan-
isms resulting in phenotypic changes in the host.17,18 
Previous studies have attempted to determine the 
effects of heat stress on jejunal tissue and microbiota 
using a single-omic approach; however, this method 
cannot establish molecular change and gene expression 
relationships in specific circumstances.19,20

The biological system of animals comprises com-
plex regulatory features and is sensitive to environ-
mental factors that influence host phenotypes and gut 
function.21 In addition to regulatory heat stress 
responses, the microbiome can fluctuate host gene 
and metabolite expressions. Thus, each component 
and its interactions must be investigated to understand 
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heat stress mechanisms.22,23 In recent observations, 
the microbiome directly affected stress-associated hor-
mones and mediators in bacterial pathogens.24 
Although previous research has elucidated the signif-
icance of microbiome through chicken microbiome 
analyses, few have compared functional changes pred-
icated on heat stress.

Microbiome and transcriptome integration 
approaches enable comprehensive insights into heat 
stress mechanisms by predicting microbiota-derived 
metabolites, unveiling how the microbiome mitigates 
or enhances heat stress conditions.25,26 These 
approaches are expected to present continuous and 
direct microfloral strategies for managing continuously 
rising environmental temperatures and various heat 
stress concerns. This study employs integrative 
approaches to analyse transcriptional and microbial 
changes in the broiler intestine in response to heat 
stress. Thus, we focused on gaining a comprehensive 
understanding of heat stress responses and identifying 
potential microbiota and genes for reducing economic 
losses by mitigating phenotypic changes.

Materials and methods

Experimental animals and sample collection

The Institutional Animal Care and Use Committee 
(IACUC; No. 2020-00022) approved this study. We 
utilized animal samples described by Kim et  al. for 
broilers in our study.27 A total of 170 male broiler 
chicks from the Ross 308 strain were acquired at 1 day 
of age from a local hatchery (Dongsan broiler hatch-
ery, situated in Cheonan-si, Korea.) Before the com-
mencement of the experiment, all these chicks were 
provided with a commercial diet to meet their energy 
and nutritional requirements. When the broiler chick-
ens reached 21 days of age, their weights were 
recorded, and 50 chickens with significantly high or 
low body weights were excluded from the study, leav-
ing us with 120 broiler chickens. These remaining 
broilers had an average body weight of 866 ± 61.9 g. 
Subsequently, the broilers were divided into two treat-
ment groups, each further allocated to six separate 
cages. This allocation was carried out using a com-
pletely randomized design.

The thermoneutral group of broilers was reared in 
a controlled environment with a temperature of 20 °C 
and a relative humidity of 57% throughout the entire 
experimental period. In contrast, heat-stressed group 
of broilers was subjected to a cyclic heat stress cir-
cumstance, experiencing temperatures ranging from 
31 to 32 °C for 8 h a day and 27 to 28 °C for the rest 

of the time. Both groups of Broilers were provided 
with a basal diet which was carefully formulated to 
meet or surpass the nutritional requirements specified 
in the Ross 308 manual28 and 23-h lighting program 
was used in the experiment. We selected the three 
broilers that have growth performance close to average 
in each group for bioinformatic analysis. The animals 
were euthanized on Day 42; jejunal mucosa and con-
tents were collected for mRNA and 16S rRNA 
extractions. A sterile slide scraped jejunal mucosa 
from the inner intestinal tissue. All samples were col-
lected in sterilized tubes, frozen using liquid nitrogen 
and stored at −80 °C.

RNA extraction, library preparation and 
sequencing

A 1 ml TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) extracted 50 mg of six jejunal sample’s total 
RNA, which the NanoDrop (Thermo Scientific, 
Waltham, MA, USA) assessed for quality. The sam-
ples that are RNA integrity number (RIN) over the 
7 were used in further analysis. A cDNA library was 
independently generated for each sample using the 
Illumina TruSeq Stranded mRNA Sample Prep Kit 
(Illumina, Inc., San Diego, CA, USA) and 1 µg of 
total RNA. The initial step involved eliminating 
rRNA from the total RNA using the Ribo-Zero 
rRNA Removal Kit (Human/Mouse/Rat; Illumina, 
Inc.). Following this, the remaining mRNA under-
went fragmentation into small pieces through expo-
sure to divalent cations at elevated temperatures. 
The resulting cleaved RNA fragments were then 
reverse-transcribed into first-strand cDNA using 
SuperScript II reverse transcriptase (Invitrogen, Life 
Technologies) and random primers. Subsequently, 
second-strand cDNA synthesis was performed using 
DNA Polymerase I, RNase H and dUTPs. The cDNA 
fragments underwent an end-repair process, includ-
ing the addition of a single ‘A’ base, followed by the 
ligation of adapters. The resulting products were 
purified and enriched through PCR to yield the final 
cDNA library. Quantification of the libraries was 
carried out using KAPA Library Quantification kits 
for Illumina Sequencing platforms, following the 
qPCR Quantification Protocol Guide (Roche, Basel, 
Switzerland). Validation of the libraries was con-
ducted using the TapeStation D1000 ScreenTape 
System (Agilent Technologies, Santa Clara, CA, 
USA). Messenger RNA sequencing was achieved 
using an Illumina HiSeq 4000 (Illumina Inc., San 
Diego, CA, USA) sequencer with paired-end, 100 
base-pair reads.
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Differentially expressed gene profiling

Raw read data quality was assessed using FastQC,29 
and low-quality adapter sequences and reads were 
removed using Trimmomatic v.0.39 to separate clean 
reads for further analysis.30 The Gallus_gallus 
(GRCg6a, GCA_000002315.5) reference genome in the 
FASTA format was obtained from Ensemble (http://
www.ensembl.org/). Clean, paired-end reads were 
mapped against an indexed reference genome using 
HISAT2,31 a sensitive and swift alignment program 
for next-generation sequencing reads. Raw counts cor-
responding to each library’s genes were calculated 
based on exons; the Gallus_gallus v101 GTF file was 
implemented as the genomic annotation reference file 
using FeatureCounts’ R package ‘Subread’ function.32

Raw counts were normalized through the trimmed 
means of M values (TMM) method in the ‘edgeR’ 
package,33 followed by DEG profiling from normalized 
read count comparisons between the heat-stressed and 
thermoneutral groups. The false discovery rate (FDR) 
was calculated using the Benjamini–Hochberg proce-
dure. Significant DEGs were extracted by applying 
FDR < 0.05 and absolute log2 fold change (FC) ≥ 1 
thresholds; overall gene expressions were visualized 
using the ‘ggplotR’ package.

Functional enrichment analyses

The Database for Annotation, Visualization and 
Integrated Discovery (DAVID) bioinformatics 
resources 6.8 were employed to examine the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and 
gene ontology (GO) databases for functional enrich-
ment analyses of DEGs; KEGG and GO significance 
in each stage were detected at p < 0.1, and results 
were visualized by using − log10 p and log2 fold enrich-
ment as criteria. GO enrichment analysis assessed 
biological process, cellular component and molecular 
function. REVIGO visualized these enriched GO 
terms as treemaps.34

Expression data for the gene set enrichment anal-
ysis (GSEA) were collated using TMM-normalized 
count data; all gene expression differences were ranked 
to ascertain patterns between groups. The GO data-
base processed the gene set data, parameters were set 
at their default values, and gene sets were ranked by 
calculating normalized enrichment scores (NESs). 
Cytoscape (v.3.7.2) visualized the results as a func-
tional enrichment map.35 The cut-off value was FDR 
< 0.01; the similarity cut-off was a >0.8 overlap 
coefficient.

Microbial DNA extraction, library construction 
and sequencing

Sequencing libraries were prepared following Illumina 
16S Metagenomic Sequencing Library protocols to 
amplify the V3 and V4 regions using 3 ml of jejunal 
contents in each 6 samples. The input gDNA 2 ng was 
PCR-amplified with a 5× reaction buffer, 1 mM of 
dNTP mix and 500 nM of the universal F/R PCR 
primer and Herculase II fusion DNA polymerase 
(Agilent Technologies, Santa Clara, CA). Initial PCR 
cycle conditions were 3 min at 95 °C for heat activa-
tion and 25 cycles of 30 s at 95 °C, 30 s at 55 °C and 
30 s at 72 °C, followed by a final 5-min extension at 
72 °C. The universal primer pair with Illumina adapter 
overhang sequences for the first amplification was as 
follows: V3-F: 5′-TCGTCGGCAGCGTCAGATGTG 
TATA A G A G A C A G C C TA C G G G N G G C W G C 
AG-3′, V4-R: 5′- GTCTCGTGGGCTCGGAGATGT 
G TATA A G A G A C A G G A C TA C H VG G G TAT C 
TAATCC-3′. The first PCR product was purified with 
AMPure beads (Agencourt Bioscience, Beverly, MA), 
and then 2 μl was PCR-amplified using the Nextera 
XT kit (Illumina, San Diego, CA) for final library 
construction. The second PCR cycle conditions 
matched the first, except for 10 cycles. The PCR prod-
uct was purified with AMPure beads, quantified using 
qPCR adhering to the qPCR Quantification Protocol 
Guide (KAPA Library Quantification kits for Illumina 
Sequencing platforms) and qualified using the 
TapeStation D1000 ScreenTape (Agilent Technologies, 
Waldbronn, Germany). Paired-end (2 × 300bp) 
sequencing was achieved by the MiSeq™ platform 
(Illumina, San Diego, USA).

Microbiome dataset processing and diversity 
analysis

Cutadapt v3.7 trimmed trivial 16S rRNA sequence 
adaptors for further study, and QIIME2 v2020.03 pro-
cessed all 16S rRNA gene sequences. Concerning the 
microbiome dataset, noisy and amplicon sequence 
errors were filtered (minimum length ≥ 5, quality 
score ≥ 25) while the DADA2 algorithm generated 
amplicon sequence variants (ASVs). A Naïve Bayes 
classifier (SILVA 132) trained for 16S rRNA V3–V4 
hypervariable region using the q2-feature-classifier 
plugin assigned representative sequences taxonomy. 
ASVs, resulted from DADA2, were classified against 
the trained SILVA v132 reference database. Identified 
taxa underwent differential abundance analysis with 
a linear discriminant analysis effect size (LEfSe) of 
>2.0 LDA.

http://www.ensembl.org/
http://www.ensembl.org/
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The Qiime2 core-metrics-phylogenetic and 
alpha-group-significance script estimated richness 
(observed ASVs) and Shannon Diversity Indices for 
the alpha-diversity analysis.36 Similarly, beta diversity 
was assessed via non-metric multidimensional scaling 
ordination from ASV Bray–Curtis dissimilarity in the 
Qiime2 core-metrics-phylogenetic and alpha-group-sig-
nificance script.

Microbiota functional annotation

Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2) pre-
dicted the functional gut microbiome from 16S rRNA 
genes in the Silva database gene sequences’ phyloge-
netic tree. Representative sequence data was input for 
metagenome prediction rarefied, and the ASV table 
used each sample’s 16S rRNA gene count for normal-
ization. To improve accuracy of gene prediction and 
reduce the fluctuations in microbiota, there is copy 
number normalization process after gene content pre-
diction by PICRUSt2. Composition profiles were 
annotated into the KEGG pathway database. Each 
pathway’s significance was calculated through t-tests 
and identified as significant at a p value <0.05. STAMP 
v2.1.3 visualized identified pathways.37

Host–microbiota interaction analysis

The PICRUSt2 database used KEGG Orthology (KO) 
as a query to identify microorganisms associated with 
the selected significant pathways. We compiled a pres-
ence/absence list of compounds contributing to these 
significant pathways from the KEGG pathway database 
and excluded metabolites without InChIKey from fur-
ther analysis. Hostmetabolic contribution was deter-
mined using the STITCHv5.0 database.38 STITCH 
offers a valuable resource for searching through estab-
lished as well as potential interactions between chem-
icals and proteins.38 This is made possible through 
the integration of information from diverse sources, 
such as metabolic pathways, crystal structures, binding 
experiments and drug-target relationships.38 
Interactions with high confidence scores (>0.9) and 
known functional effects were identified, and a PPI 
network analysis for each predicted metabolite set was 
conducted.

Overlapped transcriptome and integration analysis 
pathways were further analysed as described by 
MacMillan et  al.39 Contributing taxa and host tran-
scriptome genes were selected and examined through 
Pathview to distinguish potent gene and protein 

modulations.40 Analysis with the Spearman correlation 
for overlapped pathways was performed on host genes 
and taxa, including pathway-contributing DEGs and 
microbiota associated with more than four KOs in 
the pathway and present in more than half of all 
samples.

Results

RNA-seq data and DEG profiling

RNA sequencing data processing results revealed that 
Normal and Heat groups averaged 34,923,354 raw 
reads and 50.82% GC; trimmed average reads were 
34,628,356 and 50.80% GC. Alignment results for the 
six samples were 70.99% unique aligned reads and 
92.87% overall alignment rate (Supplementary table 
1). All the samples were deemed suitable to advance 
to the subsequent stage of the process. Multidimensional 
scaling (MDS) analysis compared gene expression pat-
terns and identified distinct clusters in both groups 
(Fig. 1A). The DEG profiling analysis identified 429 
DEGs, including 220 up-regulated and 209 
down-regulated (Fig. 1B).

Functional annotations

GO and KEGG enrichment analyses identified ambi-
ent temperature-induced functional changes 
(Supplementary tables 2 and 3). A treemap with 
a − log10 p value box size visualized GO enrichment 
analysis results (Supplementary figure 1), substantiat-
ing that ‘Positive regulation of cell migration’ was a 
paramount GO term in the Heat group and ‘Cell divi-
sion’ was predominant in the Normal group. The 
KEGG database determined significant pathways (Fig. 
1C) corroborating GO results. Protein and lipid 
metabolite-related terms, such as ‘Tryptophan 
Metabolism’, ‘Metabolic Pathways’ and ‘Adipocytokine 
Signaling Pathway’, were prevalent in the Heat group 
by indicating the lowest p value, contrasting ‘Cell 
Cycle’ and ‘DNA Replication Pathways’ in the Normal 
group shown as the lowest p value (Supplementary 
figure 3).

GSEA

To assess which functional changes are affected by 
heat stress, we calculated enrichment score (ES) of 
each group an ES was adjusted for multiple hypothesis 
testing to confirm GSEA results which considering 
cumulative gene changes (Supplementary table 4). 
GSEA results were visualized as a cluster network 

https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
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based on significant terms by combining representa-
tive functions (Fig. 2). Each node’s colour signifies 
the NES; higher scores were expressed as thicker 
colours. Similarly, node size indicates the FDR; the 
size increases as FDR lessens. In addition, edge thick-
ness conveys coefficient degree overlap. The network 
identified lipid and protein metabolism-related terms, 
such as ‘Fatty Acid Degradation’, ‘Propanoate 
Metabolism’, ‘Butanoate Metabolism’ and ‘Tryptophan 
Metabolism’ as highly clustered NES values by indi-
cating NES > 1.0 and adjusted p value <0.005. 
Corroborating GO and KEGG database functional 
analyses, ‘DNA Replication Pathways’ and ‘Cell Cycle’ 
terms indicated lowly clustered NES values by indi-
cating NES > 1.0 and adjusted p value <0.005. Notably, 
the functional analysis results derived from DEGs and 
the results indicating the extent of gene functional 
involvement, as determined by ranking all of genes, 
exhibited high similarity between two methods. In 
addition, ‘Fatty acid degradation’ and ‘Tryptophan 

Metabolism’ have high similarity coefficient with other 
pathways in the network (Fig. 2).

Jejunal microbial classification from amplicon 
sequencing and diversity analysis

Six jejunal samples (three Normal and three Heat) 
were 16S rRNA sequenced by MiSeq platform. After 
the quality check, approximately 9,832 ASV were 
revealed following denoising and clustering. The Heat 
group expressed a relatively higher Shannon Index 
than the Normal group; however, there was no sta-
tistically significant difference (Supplementary figure 
2). Contrary to previous results, evenness decreased 
in the Heat group but indicated no statistically sig-
nificant difference (Supplementary table 1). Beta 
diversity was calculated through an unweighted 
UniFrac algorithm that considered species presence, 
absence and phylogenic branch length. Principal coor-
dinate analysis (PCoA) downscaled beta diversity 

Figure 1. RnA-seq transcriptional profiling in the chicken cecum and functional Deg analysis. (A) mDS; each point represents an 
individual sample. yellow and purple dots indicate control (normal) and treatment (heat) groups. (B) Degs volcano plot overview. 
log2 Fcs in heat-to-normal gene expression ratios and –log10 p are indicated on the x and y axes, respectively. Purple dots denote 
significantly 220 up- and 209 down-regulated Degs (FDR < 0.05, absolute log2 Fc ≥ 1). grey dots indicate non-significant Degs, 
horizontal lines mark the significance threshold (FDR < 0.05), and vertical lines establish the two Fc thresholds (absolute log2 Fc 
≥ 1). Kegg pathways of the Degs x-axis displays fold enrichment values; red coloured dots indicate low p. each plot includes 1. 
total, 2. Up-regulated and 3. Down-regulated Degs.

https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
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analysis results, then alpha and beta diversity results 
were merged and visualized (Fig. 3). PCoA down-
scaled beta diversity analysis indicates that the cluster 
of samples by each of the group.

Taxonomic classifications under high ambient 
temperature

Firmicutes were the dominant bacterial phylum in 
the Heat and Normal groups (Supplementary figure 
3); however, a lower relative abundance was observed 
in the Heat group (90.68%) compared to the Normal 
group (98.56%; Supplementary table 5 and 
Supplementary figure 3). Next, Bacteroidetes were 
the second most abundant phylum in the Heat group 
(7.06%), notably elevated compared to Normal 
groups (0.36%; Supplementary table 5 and 
Supplementary figure 3). Unlike normal ambient 
temperature conditions, Proteobacteria continuously 
intensified under heat stress (Supplementary table 5 
and Supplementary figure 3). The Heat and Normal 
group F/B ratio was also considerably curtailed in 
heat-stressed conditions.

Lactobacillus was the dominant genus-level taxa in 
Heat (69.85%) and Normal groups (77.07%; Fig. 4A). 
Heat stress abated Lactobacillus abundance compared 
to standard ambient temperatures. Clostridium sensu 
stricto 1 consistently escalated in the Heat group, 
whereas Lactococcus and Peptostreptococcaceae contin-
ually declined.

Differentially abundant taxonomic analysis

Since LEfSe emphasized statistical significance, it was 
selected to identify specific bacterial taxa enrichment 
between environmental conditions. At a 2.0 LDA 
cut-off between groups, the phylogenic dendrogram 
plots include 11 differentially abundant microorgan-
isms (Fig. 4B). Consistent with taxonomic changes in 
classification results, Peptostreptococcaceae, Bacteroides, 
Clostridioides and Lactococcus were more prevalent in 
the Heat group than in the Normal group 
(Supplementary figure 4). Comparatively, Firmicutes 
were notably depleted in heat stress conditions 
(Supplementary figure 4).

Functional microbial data analysis

A PICRUSt2 microbiome data analysis examined jeju-
num microorganisms in heat-stress conditions. Eleven 
statistically significant KEGG pathways were identified 
based on a p value <0.05 cut-off calculated by t-test 
(Fig. 5 and Supplementary table 6). Notably, lipid and 
protein metabolism-related pathways were identified 
as ‘Lipoic Acid Metabolism’, ‘Arginine and Proline 
Metabolism’, ‘Phenylalanine, Tyrosine’ and ‘Tryptophan 
Biosynthesis’ in Heat stress group. In addition, path-
ways that overlapped with transcriptome functional 
annotation analysis results included ‘Lipoic Acid 
Metabolism’, ‘Phenylalanine, Tyrosine and Tryptophan 
Biosynthesis’ and ‘Histidine Metabolism’ in Heat stress 
group. Due to these pathways were identified 

Figure 2. Kegg gSeA. cytoscape visualized functional enrichment analysis results from gSeA. nodes represent enriched Kegg 
pathways. line thickness indicates overlap coefficients (overlap levels between nodes).

https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
https://doi.org/10.1080/10495398.2024.2331179
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microbial functional changes in heat stress condition, 
these pathways were further analysed to identify 
microbiome–host interaction.

Microbiome-metabolite-transcriptome integration 
analysis

The PICRUSt2 database identified 85 microorganisms, 
which is contributing to the significant pathways, and 
the KEGG database matched 338 pathway-contributing 
metabolites to InChIKey from statistically significant 
11 pathways and clusters with 17 categories based on 
class level of HMDB database. The STITCH database 
established 22 metabolite-induced pathways by ana-
lysing contributing metabolite and target interactions 
the size of the box indicates the number of contrib-
uting factors. The fatty acid degradation pathway were 
identified as one of largest microbiome induced 
metabolite contributing pathways and overlapped with 
GSEA results in the transcriptome analysis (Fig. 6). 
Furthermore, a PPI network analysis delineated 
metabolite host contributions in fatty acid degradation 
analysis. Anticipated functional partner proteins clus-
tered with octanoyl-CoA included Acyl-CoA Oxidase 
1 (ACOX1), Acyl-CoA Oxidase 3 (ACOX3), Acetyl-CoA 
Acyltransferase 1 (ACAA1), Acetyl-CoA Acyltransferase 
1 (ACAA2), Hydroxyacyl-CoA Dehydrogenase 

Trifunctional Multienzyme Complex Subunit Alpha 
(HADHA), Hydroxyacyl-CoA Dehydrogenase 
Trifunctional Multienzyme Complex Subunit Beta 
(HADHB) and Acyl-CoA Dehydrogenase Long Chain 
(ACADL) (Fig. 7).

Additionally, pathway-based integration analysis 
of fatty acid degradation pathways with host DEGs 
predicted functional partner proteins and metabo-
lites from microbiota were assessed (Fig. 8A). 
Differentially expressed host genes contributed to 
the fatty acid degradation pathway’s beginning and 
end. Other predicted metabolites and functional 
partner proteins were primarily involved at the path-
way’s midpoint.

Correlation analysis evaluated 22 fatty acid  
degradation pathway-contributing genes and three 
microorganisms (Bacteroides ,  Lactobacil lus , 
Peptostreptococcaceae). Bacteroides exhibited a positive 
(r2 > 0.7) association with Acetyl-CoA Acetyltransferase 
2 (ACAT2), Acyl-CoA Synthetase Bubblegum Family 
Member 1 (ACSBG1), Enoyl-CoA Hydratase And 
3-Hydroxyacyl CoA Dehydrogenase (EHHADH), 
Acyl-CoA Dehydrogenase Long Chain (ACADL) and 
Acyl-CoA Dehydrogenase Short/Branched Chain 
(ACADSB), whereas Lactobacillus negatively correlated 
with ACAT1, ACADL, Achaete-Scute Family BHLH 
Transcription Factor 5 (ASCL5), Glutaryl-CoA 

Figure 3. PcoA using weighted UniFrac distance, including Shannon index information between samples. Blue indicates the heat 
group, and red represents the normal group. node size denotes the Shannon index.
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Dehydrogenase (GCDH) and Aldehyde Dehydrogenase 
7 Family Member A1 (ALDH7A1). Peptostreptococcaceae 
negatively correlated with ACAT2, ACSBG1, ACOX1 

and carnitine palmitoyltransferase 1 A (CPT1A) and 
positively correlated with Acyl-CoA Synthetase 
Bubblegum Family Member 2 (ACSBG2).

Figure 4. (A) taxonomy analysis results. colours indicate each taxon, and legends indicate taxa with more than 0.05 relative abun-
dance. (B) linear discriminant analysis effect size (lefSe) results of differentially abundant taxa with an lDA threshold >2.0.

Figure 5. microbial functional analysis in jejunal contents. Kegg established taxa pathways. Statistically significant pathways (p < 0.05) 
were presented by bar plot using StAmP. orange represents the normal group’s significant pathways; blue denotes the heat group’s. 
Difference in mean proportions indicates the predicted difference in contributions for each pathway between the values.



AnIMAL BIOTECHnOLOgY 9

Discussion

Functional DEGs among intestinal tissues under 
heat stress

Functional annotation analysis results of host using the 
KEGG database revealed ‘Tryptophan Metabolism’ and 
‘Glycine, Serine and Threonine Metabolism’ as significant 
pathways in the functional annotations of up-regulated 
DEGs (Fig. 1D). Consistently, the GSEA results con-
firmed that the ‘Protein Metabolism’ and ‘Fatty Acid 
Degradation Pathways’ were significant. Tryptophan, 
glycine and threonine compositional changes occur in 
broilers under heat stress for energy supply.41 Including 
tryptophan and glycine, the jejunum digests and deliv-
ers nutrients to the body.42 Our results suggest that 
changes in mRNA expression on the surface of the 
jejunum lead to distortions in the digestion and absorp-
tion of amino acids. In addition, broiler chickens reg-
ularly use adipocytokines for energy metabolism when 
exposed to heat stress. In other livestock breeds, includ-
ing other broilers, adipocytokine signalling contributes 
to stress adaptation by activating energy metabolism in 
chronic high-temperature scenarios.41,43,44

Fatty acid degradation identified in GSEA results 
includes oxidation (Fig. 2), and chronic heat stress 
during lipid peroxidation prompts cytochrome C 
reduction and the production of hydroxyl radicals.45 
Moreover, oxidative lipid degradation promotes cell 
death by producing peroxides46; the subsequent cell 
reproduction regulation inhibits nutrient digestion and 
body weight gain. Indeed, statistically significant 
decreases in growth performance such as body weight, 
bodyweight gain and feed intake were observed in 
the same experiments.27 Furthermore, strengthened 
fatty acid degradation in the jejunum, which is 
responsible for digestion and absorption, contributes 
to the adaptation process by increasing energy metab-
olism during heat stress. A similar study on other 
animals confirmed that appetites waned when elevated 
fatty acid oxidation augmented energy metabolism.47 
Therefore, the reduced appetite in broilers due to heat 
stress was likely caused by increased fatty acid decom-
position in the jejunum.

Alternatively, the KEGG pathway analysis and 
GSEA using down-regulated DEGs revealed involve-
ment of cell cycle and DNA replication pathways 

Figure 6. Sankey diagram of linked microbial phylum, metabolic response, inferred metabolite and host target interactions. each 
taxon was represented by phylum and connected through metabolic reaction. metabolic reactions were grouped into Kegg path-
way categories. metabolites were grouped by class in Pubchem. Predicted metabolite pathways are shown in the last column.
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(Figs. 1E and 2). Jejunal tissues produce heightened 
shock proteins when exposed to high ambient tem-
peratures.48 Denatured and aggregated proteins dam-
age intestinal cells and mucosa,49–51 diminishing feed 
intake, feed efficiency and nutrient transporters that 
aid luminal bacteria invasion.52 Moreover, heat stress 
leads to apoptosis of intestinal epithelial cells as a 
result of elevated reactive oxygen species.53 Our anal-
ysis of differentially expressed genes (DEGs) shows 
up-regulation of functional pathways related to fatty 
acid oxidation, suggesting that cell cycle disruption, 
DNA replication and fatty acid degradation may 
impede the recovery of damaged jejunal tissue.

Taxonomic modification under ambient 
temperature modification

According to the taxonomic analysis of microorganism 
classification, the Firmicutes phylum and Lactobacillus 
genus were dominant in both groups, but they were 
markedly higher in the Heat group (Fig. 4).54,55 Our 
findings support previous reports that Firmicutes and 
Lactobacillus are the predominant species in the 

jejunal microbiota of swine.56 Notably, previous studies 
have suggested that a low abundance of Lactobacillus 
increases intestinal permeability and disrupts obesity 
metabolism, which aligns with the observations in 
our study. Thus, the Firmicutes/Bacteroidetes (F/B) 
ratio correlated with host–microbiota imbalance  
and obesity degree, significantly prevalent in the 
heat-stressed group.57

The Heat group exhibited remarkably abundant 
Peptostreptococcaceae and Bacteroides, while the 
Normal group showed a strikingly high abundance of 
Firmicutes and the Lactobacillus genus (Fig. 4). 
Elevated levels of the Bacteroides genus in the intes-
tines led to intestinal dysbiosis, which dominated the 
degradation efficacy in the gut and altered fatty acid 
metabolism.58 Previous studies have observed that 
dysbiosis, characterized by low Lactobacillus levels of 
Lactobacillus, can lead to increased intestinal perme-
ability and contribute to metabolic dysfunction asso-
ciated with obesity, which is consistent with our 
findings.59

A microorganism’s metabolism produces short-chain 
fatty acid (SCFA) and branched-chain fatty acid as 

Figure 7. microbiota impacts ‘fatty acid degradation pathway’ metabolites and gene network. network nodes represent proteins; 
each node signifies all proteins produced by a single, protein-coding gene locus. edges indicate protein–protein associations; 
stronger associations are illustrated with thicker lines. Protein–protein interactions are shown in grey, chemical–protein interactions 
in green and chemical interactions in red.
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final fat and protein metabolites.60,61 Our findings 
suggest that environmental changes alter the compo-
sition of the microbiome, leading to an increase in 
SCFA production under heat stress as a result of 
increased protein and fat metabolisms (Fig. 5). SCFAs 
participate in host fat metabolism and increase lipid 
peroxidation by moulding an environment that exposes 
intestinal epithelial cells to lipid peroxide products.62 
In addition, our transcriptome analysis revealed that 
apoptosis, proliferation and growth cessation disrupt 
the cell cycle when exposed to products undergoing 
lipid peroxidation.63

Moreover, lipid peroxidation products loosen 
tight junctions in intestinal epithelial tissue.64 The 
current study identified a term related to the syn-
thesis of L-tryptophan induced by heat stress. 
Metabolic products of bacterial L-tryptophan directly 
influence the host’s immune system65 and activate 
epithelial barrier functions by enhancing tight 

junctions in pig intestinal epithelial cells.66 Our 
transcriptome analysis revealed a significant increase 
in tryptophan metabolism, suggesting that intestinal 
epithelial cells activate tryptophan in response to 
heat stress damage.

This study also ascertained that heat stress fluctu-
ated microbial flora in pigs. These results indicate 
that the microbiome compositions showed increased 
abundance of the Firmicutes phylum and Lactobacillus 
genus in both groups, with this dominance being 
more pronounced in the heat-stressed group. However, 
the groups showed no statistically significant differ-
ences in alpha-diversity index. Heightened levels of 
Peptostreptococcaceae and Bacteroides in the Heat 
group altered fatty acid metabolism. Similarly, 
increased heat stress led to higher production of 
SCFAs, which in turn was linked to increased protein 
and fat metabolisms, leading to lipid peroxidation and 
intestinal epithelial cell disruption.

Figure 8. ‘Fatty acid degradation pathway’ and associated gene and taxon correlations. (A) Red and blue rectangles represent 
up- and down-regulated genes. each coloured edge indicates metabolite-induced host genes related to the fatty acid degradation 
pathway. octaconyl-coA was identified as a microbiota-induced protein. (B) correlation plot between genes and taxa related to 
fatty acid degradation. the figure portrays 29 genes from this pathway and three microorganisms that passed the thresholds. * 
indicates p < 0.05 and r2 > 0.7.
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Functional host and microbiota interactions

We noted that microbiota adapted to environmental 
heat stress conditions by accelerating energy metab-
olism (Fig. 6).67 Pathways related to metabolite iden-
tification indicated that the microorganism’s 
metabolism produced an excessive amount of metab-
olites for host energy production. In addition, the 
host contributing pathways identified from the pre-
dicted metabolites were confirmed to be primarily 
protein, proline and fat metabolism, including arginine 
and fatty acid degradation. Furthermore, the degra-
dation products of fatty acids were found to SCFA, 
which influences host lipid peroxidation and cell cycle 
disruption.68 These results propose that microbiota 
and host transcriptomes utilize the host’s metabolites 
as a mediator in the fatty acid degradation process.

Clustered protein and metabolite PPI networks 
involved in fatty acid degradation include ACOX1, 
ACOX2, ACOX3, ACAA1, ACAA2, HADHA, HADHB, 
CROT and octanoyl-CoA (Fig. 7). By utilizing pro-
teins, metabolites and DEGs obtained from transcrip-
tome analyses, we confirmed that the transcripts 
involved in fatty acid degradation are present in both 
the initial and final stages. Additionally, 
microorganism-derived metabolites and proteins were 
found to contribute to the repetitive degradation pro-
cess. These findings not only confirm the involvement 
of the transcript in the degradation process but also 
suggest that modifications by microorganisms influ-
ence energy metabolism, particularly affecting host 
fatty acid degradation.

Bacteroides, Lactobacillus and Peptostreptococcaceae 
were prevalent microorganisms involved in these inter-
actions and exhibited differential abundance. Correlation 
analysis between corresponding microorganisms and 
genes involved in fatty acid degradation identified 
ACAT2, ACSBG1, ACAT1, EHHADAH and ACADL as 
highly related to three microbiota (Fig. 8). These genes 
encode proteins that specifically influence the stabili-
zation induced by lipids, particularly associated with 
mitigating lipotoxicity through lipid-induced stabiliza-
tion.69,70 When considered alongside changes in the 
microbial community, these alterations corresponded 
to an increase in Bacteroides and a decrease in 
Lactobacillus and Peptostreptococcaceae during heat 
stress. This led to modifications in key genes, including 
those in the ACAT gene family, which affect competitive 
fat oxidation in broiler chickens. The ACADL gene has 
a significant function in the fatty acid degradation path-
way and is highly correlated with significant taxa. It 
catalyses the initial stage of mitochondrial fatty acid 
oxidation and has adverse effects on muscle and fat 

synthesis.71,72 The findings from previous study are con-
sistent with a verified decrease in cell cycle and DNA 
replication, as indicated by RNA sequencing results. 
Thus, changes in the expression level of the ACADL 
gene, associated with the increase in Bacteroides and 
the decrease in Lactobacillus and Peptostreptococcaceae, 
not only affect the fatty acid degradation and oxidation 
but are also closely linked to cell regeneration and 
division within the host’s jejunum. Consequently, our 
results suggest that ACADL serves as a key gene and 
a potential biomarker for damage caused by heat stress. 
Additionally, Bacteroides positively correlated with 
ACADSB, which encodes the short/branched-chain 
acyl-CoA dehydrogenase that catalyses the dehydroge-
nation of acyl-CoA derivatives in fatty acid metabo-
lisms.73 Since Bacteroides contribute to lipid metabolism 
and decrease the circulation of lipid peroxidation prod-
ucts, we hypothesize that elevated ACADSB gene and 
Bacteroides concentrations contribute to lipid degrada-
tion by up-regulating expression levels of other genes.

This study unveiled interactions between microor-
ganisms and hosts mediated by metabolites to the 
lipid peroxidation under heat stress. We provided 
candidate biomarkers in microbiota and genes under 
heat stress conditions including Bacteroides, 
Lactobacillus, Peptostreptococcaceae, ACADL, ACAT 
gene family and ACOX gene family which are related 
with fatty acid degradation pathway. Our findings 
contribute to a more comprehensive understanding of 
the physiological and molecular mechanisms under-
lying broiler adaptations to heat stress conditions, 
aiding heat-stress countermeasure developments in 
poultry industry. However, additional metabolomic 
analysis, which considers quantitative data on metab-
olites produced by microorganisms is necessary for a 
more comprehensive understanding.
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