
Received 28 February 2024, accepted 14 March 2024, date of publication 18 March 2024, date of current version 22 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3378606

MixER: Mixup-Based Experience Replay for
Online Class-Incremental Learning
WON-SEON LIM 1, YU ZHOU 2, (Member, IEEE), DAE-WON KIM 1, (Member, IEEE),
AND JAESUNG LEE 3
1School of Computer Science and Engineering, Chung-Ang University, Dongjak-Gu, Seoul 06974, Republic of Korea
2College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
3Department of Artificial Intelligence, Chung-Ang University, Dongjak-Gu, Seoul 06974, Republic of Korea

Corresponding authors: Dae-Won Kim (dwkim@cau.ac.kr) and Jaesung Lee (curseor@cau.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP)
Grant funded by Korean Government [Ministry of Science and ICT (MSIT)] [Artificial Intelligence Graduate School Program
(Chung-Ang University)] under Grant 2021-0-01341, in part by the National Research Foundation of Korea (NRF) Grant funded by
Korean Government (MSIT) under Grant 2023R1A2C1006745, and in part by Shenzhen Fundamental Research Program under
Grant JCYJ20220810112354002.

ABSTRACT Continual learning in the online class-incremental setting aims to learn new classes
continuously from a consistent data stream while retaining the knowledge of old classes to prevent
catastrophic forgetting. Traditional replay-based methods store and use old-class data to achieve this.
However, they often overlook the representation shift caused by the incoming data streams, which leads
to suboptimal classification accuracy. In this study, we propose a solution for mitigating representation
shifts by incorporating asymmetric mixup training into the replay method. Our approach is based on the
concept that mixup-based training enhances the stability of model predictions and gradient norms between
training samples. Our method differs from typical mixup augmentation, which is uniformly applied to
all data. Instead, it selectively targets the old data stored in the memory buffer, deliberately excluding
the classes from the newly incoming data. This approach enables the model to learn new data while
preserving the representation of the old data. Moreover, our experiments demonstrate the effectiveness
of the proposed method, which not only enhances the performance of replay-based methods but can
also be seamlessly integrated as an additional compatible module into various replay-based techniques.
Evaluation on the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets demonstrates that our approach
surpasses existing replay-based methods. It addresses the limitations of conventional replay techniques
and offers a potential solution for continual learning scenarios. Our source code is publicly available at
https://github.com/laymond1/MixER.

INDEX TERMS Continual learning, online learning, replay-based learning, mixup training.

I. INTRODUCTION
Deep learning systems have achieved superior performance
compared with humans in numerous computer vision appli-
cations [1], [2], [3]. However, unlike humans, these systems
cannot accumulate knowledge over time; thus, they must
commence training anew when learning new data. To solve
this problem, continuous learning (CL) studies have been
conducted to enable learning even when new data are
continuously input [4], [5], [6]. The main challenge in CL
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is maintaining the knowledge learned in the past when
learning new information. Early CL studies focused on
task-incremental learning scenarios in which classes to be
learned were divided by task, and learned offline [10], [11],
[12]. However, this scenario differs significantly from the real
world, where there are no distinct boundaries between tasks,
and learning occurs continuously online [13]. Therefore,
this study focuses on an online class-incremental learning
scenario where there is no division of tasks and stream data
are learned only once.

There are three main continual learning approaches:
regularization [14], [15], [16], parameter isolation [17],
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FIGURE 1. Overview of the Mixup-based experience replay (MixER). We receive a batch of stream data and sample a batch of buffer data according to a
predefined sampling strategy. After composing the data, in general experience replay, the stream and the buffer batch data are used to train the model.
However, our proposed asymmetric mixup training module only uses the buffer data and excludes classes from the stream data. This exclusion process
removes labels corresponding to the classes in the stream batch data from the buffer batch data. These data points are linearly interpolated to create
mixed-image pairs, thus facilitating the generalization of learned classes.

[18], [19], and replay-based learning methods [22], [23],
[24], [25]. Among them, replay-based learning methods
are simple and effective and have been widely used in
online class-incremental learning studies. The replay method
stores previously learned data samples in a memory buffer
and utilizes them for training when new data samples are
generated. However, this method is limited because it focuses
solely on storing data samples and does not consider the
previous representation shift in the model parameters caused
by the large gradients of the new class data, as discussed
in [26]. This limitation leads to a decrease in the classification
performance.

In this study, we propose a method to mitigate the repre-
sentation shift by applying asymmetric mixup augmentation
to the replay method. This method is based on the con-
cept that mixup-based training stabilizes model predictions
and gradient norms between training samples [29], [30].
Specifically, we enhance the robustness of the model against
representation shifts by asymmetrically applying mixup aug-
mentation. Our method does not apply mixup augmentation
to the incoming class data. Rather, it is applied to the old
data in a memory buffer that does not belong to the classes of
the incoming data. In this manner, the model learns new data
while maintaining the old data representation. An overview of
the proposed method is provided in FIGURE 1. Furthermore,
experiments demonstrate that the proposed method improves
the performance of replay-based methods and can be
applied to various replay-based methods as an additional
compatible module. The proposed method was evaluated
on the CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets,
and the results showed that it outperformed existing replay-
based methods. The contributions of this study are as
follows:

• To preserve the representation of the previously learned
knowledge, we propose a method that applies an asym-
metric mixup training module to the replay method.

• The proposed module can be applied to various
replay-based methods as an additional compatible
module.

• Extensive experiments on benchmark datasets of online
class-incremental learning scenarios demonstrate that
the proposed method outperforms existing replay-based
methods.

II. RELATED WORK
Continual learning aims to design a model that can progres-
sively acquire and build upon knowledge over time to adapt to
continuously generated new data. In this context, the primary
challenge in continual learning is preventing models from
experiencing catastrophic forgetting (CF). Continual learning
methods can be classified into three major categories based
on the techniques employed.

The first category includes regularization-based methods
that aim to mitigate CF by imposing constraints on the
update of network parameters. For example, methods such
as the EWC [14] introduce the fisher information-based
regularization terms into the loss function to penalize
the update of critical model parameters. Others, such as
LwF [15], used their predictions of the old model to distill
learned knowledge to mitigate prediction drift in old tasks.
Recent work has shown that weight regularization techniques
primarily used in continuous learning, such as EWC [14],
SI [38], and MAS [11], are all related to the same theoretical
quantity [16].

Next, parameter isolation methods aim to expand the
neural network and mask certain parameters to prevent
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TABLE 1. ER baseline methods for comparison.

TABLE 2. Sample retrial methods of memory buffer.

forgetting. There are two main approaches within this
category: the fixed architecture approach optimizes a binary
mask to select specific parameters for each task [18],
[20]. This approach ensures that previously learned tasks
remain unchanged to avoid catastrophic forgetting. In this
context, NISPA [19] proposed an architecture using a
fixed-density sparse neural network with a stable path
to preserve old knowledge and plastic paths that rewire
connections to adapt to new tasks. The dynamic architecture
approach, on the other hand, introduces novel parameters
for new tasks while keeping the old parameters unchanged
[21], [39].

The last category includes replay-based methods that
utilize a memory buffer to store data from previous tasks,
which can reduce CF. These methods retrieve samples from
the memory buffer and combine them with the incoming data
for model updates. Various strategies exist in this category,
including experience replay (ER) [22], maximally interfered
retrieval (MIR) [28], adversarial Shapley value experience
replay (ASER) [23], gradient coreset replay (GCR) [24], and
experience packing and replay (EPR) [25]. However, these
methods primarily focus on data storage and may not fully
consider the impact of new data, potentially leading to a
decrease in classification performance.

Mixup augmentation has gained attention because of its
potential to enhance model robustness and generalization.
Mixup training, introduced by Zhang et al. [29], involves
blending pairs of training samples and their corresponding
labels to create new training examples. This technique
encourages the model to make predictions that are lin-
ear interpolations of the original data, thereby providing
smoother decision boundaries and reducing overfitting.
Additionally, various augmentation methods are being
employed, including the linear interpolation approach [33],
[34], CutMix [31], SaliencyMix [32], and Co-Mixup [35].
These methods involve mixing patch images, utilizing a
saliency map to mix informative patches, and optimizing

the construction of mixup data to maximize individual data
saliency and promote diversity among them. Mixup has been
shown to be effective in improving the model performance
and enhancing the generalization of CNNs [30], [40].
Moreover, Thulasidasan et al. [30] showed that Deep Neural
Networks (DNNs) trained using a mixup exhibited reduced
susceptibility to overly confident predictions when presented
with out-of-distribution and random noise data, resulting
in improved calibration. Thus, the integration of Mixup as
both a regularizer and a strategic augmentation technique,
as discussed in [36] and [37], demonstrates its effectiveness
not only in improving accuracy and robustness to out-of-
distribution data but also in simplifying the complexity
involved in delineating optimal decision boundaries for
improved model generalization.

In this study, we leverage the principles of mixup
training to address the challenge of a representation shift in
continual learning scenarios. Our approach applies mixup
augmentation in an asymmetric manner to stabilize the
predictions of the model and gradient norms while learning
new data. This method offers a promising solution to mitigate
the limitations of traditional replay-based learning methods,
as discussed in [26].

III. PROPOSED METHOD
This study was motivated by the need to overcome the
limitations of existing replay-based learning methods, which
focus on data sample storage and overlook the representation
shift inmodel parameters caused by the gradients of new class
data. We propose an asymmetric mixup training approach
to mitigate representation shifts. This enhances model sta-
bility and improves performance in online class-incremental
learning scenarios. An overview of MixER is presented in
FIGURE 1. In Section III-B we explain the general ER
algorithm. Subsequently, in Section III-C, we discuss the
details of our proposed method, namely, the asymmetric
mixup module.
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Algorithm 1 General Experience Replay
1: Input: Dataset D, Model Parameters θ , Learning rate η

2: Initialize Memory BufferM, Parameters θ

3: while Data stream has not ended do
4: Receive Xn ∼ Dt
5: Sample XM ∼M ▷ Retrieve sample according to

the sampling strategy
6: L = LER(Xn ∪ XM)
7: θ ← SGD(∇L, θ, η) ▷ Parameters gradient update
8: RESERVOIRUPDATE(M,Xn)
9: end while

A. PROBLEM DEFINITION
For continual learning, we focused on an online class-
incremental continual learning scenario in which a model
must continuously learn new classes from an online data
stream. This data stream, denoted byD = {D1,D2, . . . ,DN },
comprises samples X and their corresponding labels Y ,
where N represents the total number of tasks. There is
no intersection among the classes across different tasks,
implying that the sets Di and Dj are separate when i ̸= j.
During the training phase, the data stream is processed
sequentially, and the data of each task Dt are used to train the
network for one epoch in task t . The objective of the model is
to accurately predict all observed classes, which is the union
of all classes observed up to the current task. Additionally,
data distribution can change over time without explicit task
notifications, making it challenging to adapt to evolving data
patterns.

B. GENERAL EXPERIENCE REPLAY
Recent studies [41], [42], [43] have demonstrated that meth-
ods utilizing a memory buffer outperform regularization-
based approaches in online continual learning scenarios.
Therefore, we employed the replay method, which is
commonly used as a standard baseline. The general ER
method, as depicted in Algorithm 1, consists of a memory
buffer and a model. After initializing the memory buffer and
model parameters, replay training is conducted by receiving
the streaming data. Replay learning involves extracting data
from the memory buffer based on a sampling strategy and
training it alongside the streaming batch data. Therefore,
the loss function used for replay learning is LER(Xn ∪ XM ).
Parameter gradient updates are performed using this loss
function, and the memory buffer is updated through reservoir
sampling. This process is iterated at each step until the
streaming data are exhausted.

C. ASYMMETRIC MIXUP MODULE
The motivation for the asymmetric mixup module is to
stabilize the model’s representation and to generalize the
learned knowledge. Standard mixup training generates a
mixed sample x̃i,j using a linear combination of samples xi
and xj; thus, the model representation fθ (x̃i,j) is defined as

follows:

fθ (x̃i,j) = fθ (λ · xi + (1− λ) · xj) (1)

where λ ∼ Beta(α, α) and α ∈ (0,∞) are the
hyperparameters of the mixup training. In general, this can
be summarized as follows: fθ (X̃ )

In our approach, we asymmetrically apply mixup training
to the samples within the memory buffer during the training
paradigm of the replay method.

LAsymMix (XM) = L(X̃M,Cold) (2)

= −

∑
x̃∈X̃old
M

log
exp (wTc(x̃)fθ (x̃))∑
c∈Call

exp (wTc fθ (x̃))
(3)

where Cold represents the set of old classes, X̃old
M denotes the

set of memory buffer data corresponding to the old classes,
wc represents the weight vector associated with the class c
in the model’s classification layer, and c(x) and c(̃x) denote
the label of x and the mixed class label of the mixed sample
x̃, respectively. Since this equation applies operations such as
softmax exclusively to the data of old classes, our asymmetric
mixup module can generalize the model’s prediction within
the weight domain of the old classes. The entire process of
using mixup training is applied to the general experience
replay method, which is added as an additional component
to the optimization term LER. Thus, the loss function used
for training is LER(Xn∪XM)+γLAsymMix (XM), where γ is the
hyperparameter of mixup training. The model parameters are
updated using this loss function, and the remaining processes
are performed in the samemanner as in the general experience
replay method.

IV. EXPERIMENTAL RESULTS
We conducted experiments to validate the performance of
the proposed mixed augmentation-based module, and for this
purpose, we compared the performance results based on the
existing replay-based methods.

A. BENCHMARK DATASETS
We conducted experiments using the Sequential CIFAR-10
[44], Sequential CIFAR-100 [44], and Sequential Tiny-
ImageNet [45] datasets, which are representative datasets
reconfigured for online continual learning scenarios. The
Sequential CIFAR-10 dataset is divided into 5 tasks,
each involving the learning of 2 classes. The Sequential
CIFAR-100 dataset is divided into 10 tasks, with each task
involving the learning of 10 classes. Both datasets have
an image resolution of 32 × 32 pixels, and out of a total
of 60,000 samples, 50,000 are used for training, while
the remaining 10,000 samples are used for testing. The
Sequential Tiny-ImageNet dataset is divided into 10 tasks,
with each task involving the learning of 10 classes. The
dataset has an image resolution of 64 × 64 pixels. Our of a
total of 55,000 samples, 50,000 are used for training, whereas
the remaining 5,000 samples are used for testing.
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FIGURE 2. Comparison of average accuracy between the ER baselines and the proposed method across CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets.

B. EXPERIMENTAL SETTINGS
The experiments were conducted under the following condi-
tions: The CPU used is an Intel(R) Core i9-10900X processor,
and the GPU is an NVIDIA GeForce RTX 3090 with
24GB of memory. The backbone neural network used to
train the algorithm is ResNet18 [1] with a learning rate of
0.01, and training is conducted using the stochastic gradient
descent (SGD) optimizer. Both the learning rate and the
SGD optimizer were selected through grid search from the
search spaces of {0.1, 0.01, 0.001} for learning rates and
{SGD, Adam [7], Adagrad [8], RMSProp [9]} for optimizers,
respectively. Details of the optimizer settings are described in
Appendix. The hyperparameters α and γ of our method are
set using grid searches at {0.1, 0.5, 1, 5} and {0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, respectively. Specifically,
α are set to 5 for CIFAR-10, 0.5 for CIFAR-100, and 0.5 for
Tiny-ImageNet, whereas γ are set to 1. Each algorithm are
configured to learn data with a batch size of 10 online, and
the batch size of the data extracted from the memory buffer
are set to 10, following the guidelines in [23] and [28].

In our evaluation, we focus on replay-based methods that
operate effectively by using simple techniques in an online
continual learning scenario. To ensure a fair comparison
among these replay-based methodologies, we standardize
memory buffer management using reservoir sampling [46] as
the memory update strategy and random sampling [22] as the
sample retrieval strategy. Following this approach, we estab-
lish the following representative experience replay (ER)
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FIGURE 3. Comparison of average forgetting between the ER baselines and the proposed method across different datasets, including
CIFAR-10, CIFAR-100, and Tiny-ImageNet.

methodologies, as specified in Table 1, to serve as the baseline
methods for applying the proposed modules. In addition,
we establish the representative sample retrieval methodolo-
gies specified in Table 2 to validate our approach across the
various retrieval methods.

To assess the performance of each algorithm, we employ
two key performance metrics that are widely used in the
field of continual learning: average accuracy and average
forgetting [47]. The average accuracy measures the overall
performance across completed tasks in a continual learning
scenario, whereas the average forgetting quantifies the extent
to which the algorithm has forgotten information about

previously completed tasks. The average accuracy can be
defined as follows:

Average Accuracy(AT) =
1
T

T∑
j=1

aT ,j,

And the average forgetting can be defined as follows:

Average Forgetting(FT) =
1

T − 1

T−1∑
j=1

fT ,j (4)

where fi,j = max
l∈1,...,i−1

al,j−ai,j
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TABLE 3. Experimental results of Average Accuracy (↑ is better) on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, with M denoting the memory buffer
size. All results are reported in the form of mean ± standard deviation for ten runs. ↑ indicates that the proposed module has a statistically significant
improvement over the baseline method, as determined by a paired t-test with a p-value < 0.05.

TABLE 4. Experimental results of Average Forgetting (↓ is better) on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, with M denoting the memory
buffer size. All results are reported in the form of mean ± standard deviation for ten runs. ↓ indicates that the proposed module has a statistically
significant decline over the baseline method, as determined by a paired t-test with a p-value < 0.05.

where i represents the number of tasks used for training, j
represents the number of tasks used for testing, ai,j denotes
the accuracy achieved on task j after training up to task i,
and fi,j represents the decrease in the accuracy of task j after
training up to task i.

C. COMPARISON RESULTS
FIGURE 2 and 3 display the results comparing the average
accuracy and forgetting between ER baseline and proposed
methods in an online class-incremental scenario with sequen-
tially increasing classes for the CIFAR-10, CIFAR-100,
and Tiny-ImageNet datasets. In FIGURE 2, our method
demonstrates more remarkable performance improvement
in CIFAR-100 and Tiny-ImageNet compared to CIFAR-10.
Furthermore, the baseline methods exhibit performance

decreases as the new classes are gradually learned, whereas
the results of applying ourmethod demonstrate a significantly
smoother decline in performance. This indicates that our
method functions effectively in an online class-incremental
learning scenario and is more effective in long-sequential
tasks than short-sequential tasks. This is because early
learned representations are more easily forgotten in long-
sequential tasks, but our method better leverages previous
representations. In particular, in FIGURE 2b (CIFAR-100)
and 2c (Tiny-ImageNet), DER++ performed lower than ER,
whereas after our method was applied, it performed higher
than ER in CIFAR-100 and similar in Tiny-ImageNet.

FIGURE 3 shows the average forgetting performance
when all stream data learning is completed. For all the
benchmark datasets, our method effectively reduced the
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number of forgetting baseline methods. In FIGURE 3a
(CIFAR-10), after the application of our method, the
forgetting performances of the ER and DER decreased by
approximately 60% compared with the baselines, and the for-
getting performance of DER++ decreased by approximately
43%. In addition, as shown in FIGURE 3b (CIFAR-100)
and 3c (Tiny-ImageNet), our method reduced forgetting
by approximately 36%, 22%, and 30% for ER, DER, and
DER++, respectively. This shows that our method reduces
the shift in previously learned knowledge compared with the
baseline ER methods.

D. EFFECTS OF MEMORY BUFFER SIZE AND SAMPLING
STRATEGY
To validate the performance of the proposed module from
the perspective of the memory buffer size, we conducted
additional experiments. In this experiment, we vary the
memory buffer size, which is crucial in replay methods,
to assess the performance of the proposed module under
different memory buffer size conditions. TABLE 3 and 4
present the comparative results between baseline replay
methods and the proposed module when applied with various
memory buffer sizes. We conducted ten experimental runs
and averaged the results. Furthermore, to analyze the results
of applying the proposed module to baseline replay methods
clearly, we conducted pairwise t-tests at a significance level
of 95%.

As shown in Table 3, the proposed method demonstrates
an improvement in the average accuracy across all memory
buffer sizes. For CIFAR-10, the performance improvement of
the proposed method was more noticeable when the memory
buffer size was smaller. When the memory buffer size was
0.2 K, our method showed performance improvements of
13%, 20%, and 6% for ER, DER, and DER++, respectively.
When it is 1 K, it exhibits performance improvements of 3%
and 1% for ER and DER++, respectively, and 30% for DER.
In CIFAR-100 and Tiny-ImageNet, increasing the memory
buffer size for DER and DER++ did not result in significant
performance improvements compared with ER. Specifically,
when increasing the memory buffer size from 0.5 K to 2K
and from 1K to 5K for DER++ in CIFAR-100 and Tiny-
ImageNet, the performance improvements were 20 % and -3
%, respectively. However, with our method, DER++ showed
a significant performance improvement of 39% on CIFAR-
100 and a notable performance improvement of 15 % on
Tiny-ImageNet.

We also analyzed the average forgetting performance of
each algorithm for varying memory buffer sizes. As indicated
in Table 4, the proposedmethod effectively reduces forgetting
across all memory buffer sizes and benchmark datasets. For
example, for CIFAR-10, forgetting decreases, on average,
by over 43%, whereas in CIFAR-100, the reduction is 25%,
and in Tiny-ImageNet, it exceeds 22%. In CIFAR-10, unlike
in the accuracy analysis, forgetting tended to decrease as the
memory buffer size increased. When the memory buffer size
increased from 0.2 K to 1 K, the forgetting performance of

ER, DER, and DER++ applied with our method decreased
by 64%, 29%, and 42%, respectively. In contrast, in CIFAR-
100 and Tiny-ImageNet, methods other than ER did not show
significant changes in the forgetting performance based on
the memory buffer size.

To analyze the effect of the sampling strategy on
the performance of the proposed module, we conducted
experiments using different sampling strategies. Specifi-
cally, we compared the performance of our method when
applied to random, maximal interference retrieval (MIR),
and adversarial Shapley value experience replay (ASER)
retrieval sampling. Figure 4 and 5 show the average
accuracy and forgetting performance of each algorithm under
different sampling strategies. As shown in Figure 4, our
method leads to performance improvements over the baseline
methods across all sampling strategies. Overall, the random
sampling method performed the best in Figure 4a (CIFAR-
10) and 4c (Tiny-ImageNet), with improvements of 7%
and 14%, respectively. MIR sampling exhibited the most
substantial performance improvement when our method was
applied, despite having the lowest baseline performance
among all the benchmark datasets. In Figure 4b (CIFAR-
100), MIR sampling shows an increase of 13%, whereas in
Figure 4c (Tiny-ImageNet) it shows a 14% improvement.
In contrast, ASER demonstrated the smallest performance
gains, increasing by 5% on CIFAR-10 and by approximately
10% on both CIFAR-100 and Tiny-ImageNet. Similarly,
Figure 5 shows that forgetting decreases compared with
the baseline methods when our method is applied across
all sampling strategies. MIR sampling, as observed in
Figure 5b (CIFAR-10) and 5c (Tiny-ImageNet), reduces
forgetting to a level similar to that of the other sampling
strategies, even when the baseline method exhibited the
highest forgetting across all datasets. This demonstrates
the synergistic effectiveness of the proposed method when
combined with the MIR sampling strategy. Furthermore,
we demonstrate the overall effectiveness of ourmethod across
various sampling strategies, illustrating its compatibility with
and adaptability to the ER method.

E. EFFECT OF THE CLASS IMBALANCE
To verify the effectiveness of our method in the context
of class imbalance, reflecting the more complex scenarios
encountered in the real world, we reconfigured CIFAR-
100 and Tiny-ImageNet into their imbalanced versions.
We adopted a long-tailed imbalance setting [48], character-
ized by an exponential decay in sample sizes across different
classes. This approach clearly distinguishes minority and
majority classes, which is particularly useful for mirroring
complex real-world situations.

Figure 6 demonstrates that the overall performance is lower
compared to the class-balanced setting in Figure 2 due to
the increased difficulty of the problem. We observed that our
method encountered difficulties in learning the classes in the
second and third tasks, as shown in both Figures 6a and 6b.
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FIGURE 4. Comparison of average accuracy with different retrieval sampling methods across benchmark datasets, including CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

This suggests that the initial extreme class distribution in the
early tasks could cause performance degradation when our
asymmetric training module focuses on a minority of past
classes. Nevertheless, as classes are incrementally added and
learned, our method gradually mitigates this issue, eventually
outperforming the baseline method from the fourth and fifth
tasks. Furthermore, the performance degradation observed
due to the class distribution in these initial stages represents
a limitation of our method and merits further investigation as
potential future work.

We also compare the average forgetting performance on
the imbalanced CIFAR-100 and Tiny-ImageNet datasets,

as shown in Figure 7. After applying ourmethod, we observed
an average reduction in forgetting of 30% for CIFAR-100
and 33% for Tiny-ImageNet. These results are comparable
to those reported in Table 4 when employing a buffer of
identical size with balanced datasets. Therefore, our method
demonstrates its ability to preserve learned knowledge in both
class balance and class imbalance settings with respect to
forgetting.

F. ABLATION STUDY
We conducted a comparative analysis of various mixup
training and augmentation strategies to demonstrate the
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FIGURE 5. Comparison of average forgetting with different retrieval sampling methods across benchmark datasets, including CIFAR-10,
CIFAR-100, and Tiny-ImageNet.

effectiveness of the proposed asymmetric mixup training
method and the mixup augmentation technique employed.
As illustrated in Table 5, our method, when applying
asymmetric mixup training, exhibited superior performance
compared to the other mixup training methods. The analysis
of the forgetting performance reveals a significant reduction
when we employ asymmetric mixup training, surpassing
other methods. This suggests that our method not only
significantly improves accuracy performance compared to
other methods, but also substantially reduces the occurrence
of forgetting. This is attributed to our method’s emphasis on
preserving previously learned representations by exclusively

utilizing data from old classes (XM,Cold), as described
in Eq. (2). In contrast, mixup training with streaming
batch data (Xn), which focuses on newly incoming stream
data, underperforms compared to the baseline ER method.
Furthermore, methods that include a portion of the classes
from the streaming data exhibit lower performance relative
to our method. Additionally, unlike other methods, our
approach selectively updates only the old class data, resulting
in more efficient utilization of computational resources
during training. Consequently, when there are no old
class data in the sampled data, the same computational
resources as in the baseline ER method are employed, with
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FIGURE 6. Comparison of average accuracy between the ER baselines and the proposed method across imbalanced CIFAR-100, and
Tiny-ImageNet datasets.

FIGURE 7. Comparison of average forgetting between the ER baselines and the proposed method across different datasets, including
imbalanced CIFAR-100, and Tiny-ImageNet.

maximum utilization occurring when all sampled data fall
under the old class. As indicated in Table 5, our method
is appropriate for online learning with lower levels of
GFLOPs.

Table 6 displays the performance results of each augmenta-
tion implemented in the proposed module on the CIFAR-10
dataset. The results indicate that LinearMix, which directly
blends input images, is more effective than ManifoldMix,
which integrates features within the manifold domain despite
employing linear interpolation methods. Additionally, the

LinearMix method demonstrated superior average accuracy
and forgetting performance compared to patch image mixup
methods such as CutMix and SaliencyMix. In particular,
the LinearMix method exhibited an average of 3% to 5%
lower forgetting than other methods. We believe this is
because the LinearMix method, by employing a linear
combination of input images, results in less information loss
of the original image compared to techniques that involve
cutting the input image to combine patches. Therefore, the
LinearMix method, in combination with our asymmetric
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TABLE 5. Experimental results of Average Accuracy and Forgetting on CIFAR-10 with different mixup training methods.

TABLE 6. Experimental results of Average Accuracy and Forgetting on CIFAR-10 with different mixup augmentation methods.

FIGURE 8. Comparison of the performance between the baseline Experience Replay (ER) and the proposed method on the CIFAR-10 dataset under the
online class incremental scenario. The coefficient gamma improves the performance, which indicates that our method is successfully adaptable to
experience replay methods.

training approach, enhances the ability to preserve previously
learned knowledge.

FIGURE 6 illustrates how performance changes when the
proposed asymmetric mixup loss term is applied to the base-
line ERmethodwith varying values of the coefficient gamma.
As shown in FIGURE 6, our method leads to performance
improvements as the gamma coefficient increases when
applied to ER across benchmark datasets. Specifically, with
a gamma value of 0.1, the performance improved by 12%,
6%, and 5% for CIFAR-10, CIFAR-100, and Tiny-ImageNet,
respectively, compared with ER. When gamma was set to
1.0, the performance improvements were 16%, 11%, and 18%

for CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively,
compared with ER. As gamma increases from 0.1 to 1.0,
the performance improvements were 4%, 5%, and 12% for
CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.
This demonstrates that the proposed asymmetric mixup loss
term enhances the performance as gamma increases when
applied to the ER.

V. CONCLUSION
In this study, we introduce a novel and effective module for
online class-incremental continual learning that considers the
stability of the model’s representation and the generalization
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TABLE 7. Average Accuracy (↑ is better) on CIFAR-10 with different
optimizers and learning rates. All results are reported in the form of
mean ± standard deviation for ten runs.

of the learned data in the online data stream. Specifically,
we adopted an asymmetric mixup training approach for
the streaming and memory data. This asymmetric training
approach strengthens the model’s resilience to shifts in the
representation of new classes and enhances the generalization
of the acquired knowledge. Furthermore, the proposed
module can be readily adapted to existing replay-based
methods. Extensive experiments conducted on widely used
benchmark datasets in online continual learning validated the
effectiveness of our approach.

APPENDIX
OPTIMIZER SETTINGS
For clarity regarding the optimizer and learning rate choice
in our experiments, we present the results in Table 7. After
evaluating four optimizers at progressively reduced learning
rates of 0.1, 0.01, and 0.001, we observed that the SGD
optimizer delivered superior performance at both 0.1 and
0.01 learning rates. In contrast, the Adam optimizer was
more effective at a learning rate 0.001. Considering the
comprehensive results of the experiments, the SGD optimizer
was selected for its consistent, robust performance across
various tests. Specifically, an SGD with a learning rate of
0.01, which showcased the highest performance, was chosen.
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