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Abstract: DC microgrids are vital for integrating renewable energy sources into the grid, but they
face the threat of DC arc faults, which can lead to malfunctions and fire hazards. Therefore, ensuring
the secure and efficient operation of DC systems necessitates a comprehensive understanding of the
characteristics of DC arc faults and the implementation of a reliable arc fault detection technique.
Existing arc-fault detection methods often rely on time–frequency domain features and machine
learning algorithms. In this study, we propose an advanced detection technique that utilizes a
novel approach based on feature differences between moving intervals and advanced learning
techniques (ALTs). The proposed method employs a unique approach by utilizing a time signal
derived from power supply-side signals as a reference input. To operationalize the proposed method,
a meticulous feature extraction process is employed on each dataset. Notably, the difference between
features within distinct moving intervals is calculated, forming a set of differentials that encapsulate
critical information about the evolving arc-fault conditions. These differentials are then channeled as
inputs for advanced learning techniques, enhancing the model’s ability to discern intricate patterns
indicative of DC arc faults. The results demonstrate the effectiveness and consistency of our approach
across various scenarios, validating its potential to improve fault detection in DC systems.

Keywords: moving intervals; differential features; advanced learning techniques

1. Introduction

While DC systems offer numerous advantages over their AC counterparts, widespread
adoption has historically been hindered by the lack of robust transmission and distribution
technologies. However, recent advancements in High Voltage DC (HVDC) have paved
the way for long-distance DC power transmission [1,2]. Despite this progress, a crucial
challenge remains: DC current interruption is inherently difficult due to the absence
of natural zero crossings, potentially leading to prolonged arc durations compared to
AC systems [3,4]. These DC arc faults pose a significant safety hazard, as the sustained
high-temperature plasma discharge can trigger catastrophic electrical fires [5]. Further
complicating matters, DC arc faults come in two distinct forms: parallel and series arcs.
Parallel arcs, typically caused by short circuits due to insulation breakdowns, follow
Paschen’s law, where the minimum breakdown voltage for arc initiation depends on the gas
type, pressure, and electrode gap [5]. In contrast, series arcs arise from loose connections or
sudden disconnections between elements such as loads and power sources [6]. Fortunately,
DC arc faults are not silent or invisible. They manifest through a signature combination
of acoustic emissions, light bursts, temperature increases, distorted voltages, and high-
frequency current signals [5]. To reliably identify these events, numerous research directions
have emerged. One approach focuses on modeling the complex dynamics of DC arc
behavior. Scholars have employed diverse techniques, ranging from theoretical analysis to
data-driven fitting, to mathematically capture the characteristics of arc phenomena [7–11].
Another research paradigm delves into direct arc detection via time–frequency domain
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analysis. This method relies on extracting key features from the arc’s temporal and spectral
signatures [12,13]. However, setting appropriate thresholds for distinguishing arc faults
from normal operating conditions can be a delicate task, prone to false positives. To address
this limitation, researchers have turned to advanced signal processing techniques such
as wavelet transforms (WT) and its derivatives. Zhang et al. [14] leveraged the sum of
squared amplitudes of four-level db20 wavelet coefficients as a powerful discriminator
between normal and arc-fault states. Wang et al. [15] combined discrete WT and fast Fourier
transform (FFT) to analyze the spectrum of DC series arc currents, demonstrating discrete
WT’s superior ability to capture temporal–frequency variations, especially for brief arc
events compared to the sampling window limitations of FFT. Beyond analyzing DC-side
signals directly, some studies explore the possibility of fault detection through the AC side.
This indirect approach analyzes the impact of DC-side faults on the AC side of converter
interfaces [16,17]. For instance, [18] proposes comparing estimated and measured power to
detect faults in PV modules. Chouder and Silvestre [19–21] further refine this concept by
developing techniques to categorize various abnormal conditions, including partial-shading
errors, alongside normal operation. The process for arc detection, as outlined in [22],
consists of four key steps. Initially, the low-frequency range and high-frequency range
components are filtered out, leaving behind the middle-frequency range for subsequent
artificial intelligence (AI) analysis. Within this range, eight specific inputs are utilized
to identify and detect fault events. A pioneering fault detection approach is introduced,
drawing on the mathematical formulation of arc discharge [23]. This method extracts
feature parameters from the time domain, which remain unaffected by fault transition
resistance. Moreover, it separately extracts hybrid features from the time–frequency–phase
domain, ensuring that the fault-related features extracted possess clear physical significance.
The arc signal underwent analysis using discrete wavelet transform and multiresolution
analysis to ascertain the optimal frequency band for arc detection [24].

This study builds upon this rich research landscape by proposing a novel approach
for diagnosing DC series arc faults. Our method hinges on a unique concept: utilizing
a time signal derived from the power-supply side as a reference input. This strategic
reference effectively minimizes system noise influences and facilitates comparison of signal
characteristics within smaller, moving intervals. By focusing on subtle changes within
these windows, we amplify arc-specific distortions that might otherwise be masked by
broader time–frequency domain analysis. These meticulously crafted feature differentials,
encapsulating the essence of arcing signatures, are then fed into advanced learning tech-
niques (ALTs). This final stage capitalizes on the pattern recognition prowess of ALTs to
achieve superior accuracy and robustness in DC arc-fault detection. The detailed structure
of this paper delves deeper into the specifics of our configuration setup, current behavior
variations, and the interplay between ALTs and feature differentials. The authors present
scientifically rigorous conclusions encompassing diverse current scales and operational
rates, culminating in a compelling case for the significance of ALTs in DC arc-fault detection.
This exploration paves the way for exciting future developments in DC arc-fault detection
systems, ultimately contributing to enhanced safety and reliability in DC power systems.

2. Arc Failure Specifications and Characteristics

Figure 1 meticulously depicts the intricate dance of data acquisition in our study, em-
phasizing the rigor and control at the heart of our approach. To ensure scientific robustness,
we adhered to the stringent guidelines of UL1699B [25], meticulously crafting the arc-
generation circuitry. This carefully calibrated setup utilized the controlled disjointing of arc
rods as the precise trigger for arc initiation, immediately followed by the deployment of a
high-fidelity oscilloscope, the Tektronix MSO3054 (Tektronix, Beaverton, OR, USA), a high-
accuracy oscilloscope known for its reliability and precision. The decision to utilize this
particular model was based on its reputation for providing accurate measurements across a
wide range of frequencies and signal types. The Tektronix MSO3054 enabled the authors to
capture and analyze the data with confidence, ensuring the integrity of our experimental re-
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sults. Acquired waveforms were then subjected to rigorous analysis via advanced MATLAB
routines, extracting the hidden nuances of arcing behavior. The arc generation setup itself
was a symphony of essential components: a stable DC power source, a meticulously de-
signed arc generator, and carefully chosen load elements. Figure 1 prominently showcases
the N8741A DC power supply from Keysight Technologies (Santa Rosa, CA, USA) deliv-
ering precisely controlled DC voltage to the load [26]. An intricate interplay between a
high-precision step motor and the customized arc rods ensured their controlled separation,
mimicking real-world scenarios with unparalleled precision.
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For uncompromising data acquisition, authors employed an oscilloscope boasting
a stunning 250 kHz sampling frequency, capturing even the most fleeting of electrical
nuances. The sampling rate of 250 kHz was selected based on findings from recent investi-
gations into arc faults in DC networks [27–30]. While a higher sampling rate would yield
more data points per unit time, it could also increase processing time and computational
burden. Given that a key priority in arc diagnosis is prompt fault identification to swiftly
isolate errors from the network, it was imperative to strike a balance between efficiency
and execution time. Therefore, the sample rate of 250 kHz was deemed sufficiently high
to achieve this equilibrium. Further bolstering our data fidelity, the Tektronix TCP312
(Tektronix, Beaverton, OR, USA) current probe meticulously measured arc currents with
surgical accuracy. Our investigation, however, did not merely capture data, it unearthed its
meaning through comprehensive exploration. We systematically generated DC arcs under
a diverse tapestry of experimental conditions, yielding a rich tapestry of datasets. Each
parameter was meticulously chosen, ensuring a comprehensive exploration of potential arc
behavior. Our chosen source voltage of 300 V provided a realistic baseline, while current
amplitudes spanning 5 to 8 A and switching rates ranging from 5 to 20 kHz pushed the
boundaries of arc behavior. To further enrich our understanding, authors explored both
resistive (10 Ω) and inductive (10 mH) loads, revealing the nuanced impact of circuit charac-
teristics on arcing phenomena. Figure 1 also unveils the beating heart of our investigation,
the three-phase DC–AC converter modules. These inverters, the central load components,
played a crucial role in transforming DC signals into their AC counterparts. To ensure
precise control, we harnessed the power of space vector modulation (SVPWM) through-
out our research. By meticulously manipulating the state of the individual six switching
devices within the inverters, authors emulated the sinusoidal waveforms characteristic
of the AC network with remarkable fidelity [31]. This fine-grained control allowed us to
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adjust both frequency and amplitude parameters with exquisite precision, guaranteeing
robust and accurate experimental conditions. It is this meticulous orchestration of data
acquisition, arc generation, and control circuitry that truly sets our study apart, laying the
foundation for a deep and nuanced understanding of DC arc faults.

Figure 2 paints a revealing picture of how arc faults dramatically alter the electrical
landscape. It showcases waveforms under both normal and arcing conditions at 5 kHz
switching frequency and currents of 5 A and 8 A. Although the waveforms follow a similar
pattern before the arcing event, the moment an arc forms, the delicate electrical dance erupts
into chaos. This chaos manifests in multiple ways. Firstly, harmonic components infiltrate
the pure load current, distorting its once smooth rhythm. Imagine ripples spreading across
a still pond after a pebble is tossed in. These harmonies, like the ripples, are signatures of
the electrical turbulence caused by the arc.
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Interestingly, the level of distortion seems to be in increased conversation with the
switching frequency, suggesting a hidden relationship between these parameters. Secondly,
the current amplitude takes a slight dip upon arcing. This subtle but measurable decrease
hints at the energy being diverted to sustain the arc itself. Like a siphon stealing water from
a pool, the arc siphons off some of the current’s strength. Most striking, however, are the
pronounced spikes in amplitude during the initial phase of the arc. These bursts, like tiny
electrical explosions, are the telltale signs of the sparky drama unfolding within the circuit.
Notably, the intensity of these sparks appears to waltz with the switching frequency, hinting
at a deeper connection between frequency and spark magnitude. These dramatic deviations
in waveform behavior are more than just visual curiosities; they hold immense promise
for the holy grail of arc fault detection. Their unique dance, shaped by the interplay of
arcing and switching frequency, offers a potential treasure trove of discriminative features
that could unlock the door to accurate and reliable arc fault identification. It is now up to
researchers to decipher the language of these electrical hieroglyphs and translate them into
effective detection algorithms. The experimental current being lower than the set reference
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can be attributed to the fact that the impedance of the experimental setup, including the
cables, connectors, and components, can introduce voltage drops along the circuit path.
These voltage drops can result in a reduction in the effective voltage across the load, leading
to a lower current than expected based on the set reference. The distortion in the arc current
tends to be higher with higher current amplitudes due to several reasons. At higher current
amplitudes, the arc intensity typically increases. This means that the arc becomes more
energetic, producing higher temperatures and greater ionization of the surrounding air.
As a result, the arc’s behavior becomes more erratic, leading to larger fluctuations and
irregularities in the arc current waveform. Additionally, higher current amplitudes lead
to increased heating within the arc, resulting in variations in the arc current waveform.
Thermal effects can also induce changes in the arc’s size and shape, further contributing to
distortion in the arc current waveform.

3. Advanced Learning Techniques and the Differentials of Moving Intervals
3.1. Advanced Learning Techniques

Support Vector Machines (SVMs) are able to uncover the elusive “optimal hyper-
plane”, a boundary that maximizes the margin between different classes, making them
indispensable tools in countless applications. SVMs achieve this by identifying the hyper-
plane that maximizes this margin, effectively drawing the most distinct and defensible
border between classes. They operate with elegance, utilizing a set of weights and biases to
define the hyperplane. These weights act like invisible scales, tipping the balance towards
one class or another depending on the data point’s features. Biases, on the other hand,
function as subtle nudges, fine tuning the position of the hyperplane to ensure the widest
possible margin [32]. Imagine data points as individuals in a city, each belonging to a
distinct group. KNN throws a data point into this mix and then throws a virtual net around
the data point, capturing the k individuals closest to the data point in terms of “distance.”
This distance can be measured like footsteps on a city grid (Euclidean distance) or like
navigating around buildings (Manhattan distance). It depends on the nature of the data
and their characteristics. Once this k-sized neighborhood is established, it becomes the
data group, data classification, based on the “votes” of those closest to data point. It is
like attending a neighborhood party and declaring your allegiance based on the majority
vibe. Choosing the optimal k value, for instance, becomes a strategic balancing act. A small
k risks overfitting, basing your identity solely on a handful of noisy neighbors. A large
k, on the other hand, can drown out your individuality, making you blend into the city’s
overall demographics. Finding the sweet spot for k requires careful consideration of your
data and the desired level of granularity [33]. Decision Trees (DTs) are like branching trees,
where each path represents a choice and each leaf whispers a prediction. The journey begins
at the root, the patriarch of the tree, where the entire dataset gathers. But this root soon
splits, driven by a quest for clarity. It analyzes all the features, like a detective interrogating
suspects, and identifies the one that best separates the data into distinct groups. This
chosen feature becomes the first rule, the first branch in the labyrinth, and like a wise judge
dividing disputing parties, the root sends each data point down its designated path based
on its feature value. Each branch, in its turn, becomes a new root, a new quest for clarity.
The process repeats, with each node splitting based on the most “informative” feature at
that level. This dance of splitting continues until the tree reaches its leaf nodes, the quiet
corners of the labyrinth where predictions finally bloom. Each leaf represents a distinct
category or a specific value, a final destination reached after navigating the intricate web
of decisions [34]. One of the most popular ensemble methods is the Random Forest (RF).
Think of it as a vast forest of decision trees, each a unique detective with its own set of
“if–then” rules. Each tree is trained on a different subset of the data, ensuring no single
viewpoint dominates. This diversity is key to the RF’s strength, as it prevents overfitting
and allows the forest to capture the intricate patterns hidden within the data. The number
of trees, known as a hyperparameter, needs careful tuning. Too few trees limit the forest’s
ability to learn complex relationships, while too many lead to computational overload
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and potentially diminishing returns. Finding the sweet spot, typically within the range
of 100 to 1000 trees, is a crucial step in optimizing the RF’s performance. Each tree casts its
vote, its prediction based on its own analysis of the data. The RF employs a democratic pro-
cess. Each vote is weighted based on the tree’s expertise, with more accurate trees having a
stronger say in the final decision. This weighted average becomes the collective wisdom
of the forest, a prediction refined through the collaboration of diverse perspectives [35].
Naive Bayes (NB) is a statistical sleuth that uses Bayes’ theorem for classification. First,
it gathers evidence. It collects information about each possible “culprit” (class) based on
prior knowledge and past experience. This initial hunch, the prior probability, gives us a
rough idea of who is most likely to be behind the crime (data point). Next, NB examines
the individual clues (features) for each suspect. It takes all the evidence, the prior hunch,
and the individual clues and combines them using Bayes’ theorem. It assigns the data
point to the class with the highest “posterior probability”, the one that emerges as the most
likely culprit after considering all the evidence. NB makes an assumption—that the clues
(features) are independent gossips, each whispering their suspicions without influencing
the others [36].

3.2. Differences of Features between Moving Intervals

This section describes the proposed approach using the differences of features between
moving intervals. In this study, the dataset, experimented at a frequency of 250 kHz,
is meticulously divided into individual segments, each with an interval of 0.8 ms, to
facilitate the subsequent featuring process. Certainly, higher sampling rates could provide
more detailed information about the current waveforms and help mitigate issues such as
aliasing, noisy data, biasing, and data errors. Adhering to the Nyquist criterion for data
sampling is essential for accurately capturing the characteristics of the current signals,
especially in dynamic systems prone to rapid changes. In our study, we utilized a sampling
frequency of 250 kHz to capture the dynamic nuances of the arc current signals. While this
frequency allowed us to effectively capture the essential features of the current waveforms
and achieve our research objectives, we acknowledge the potential benefits of higher
sampling rates, particularly in scenarios where finer details need to be captured. Within
each segment, we diligently calculate the features, such as average, median, RMS, variance,
peak-to-peak (p2p), and z-score [37,38]. These features are obtained as follows:

avg =
1
L∑L

i=1 xi (1)

med =
x(L/2) + x(( L

2 )+1)

2
if L is even and med = x(L+1)/2 if L is odd (2)

rms =

√
1
L∑L

i=1|xi|2 (3)

p2p = max(interval)− min(interval) (4)

var =
∑L

i=1 |xi|2 −
|∑L

i=1 xi|2
L

L − 1
(5)

zs =
xi − avg

standard deviation
(6)

where xi is the ith data element in each data set, and L denotes the number of sampling
elements within each sample interval. Then, the differences between features are obtained
as follows:

avg di f f erence =
∣∣avgk − avgk−n

∣∣, (7)

med di f f erence = |medk − medk−n|, (8)

rms di f f erence = |rmsk − rmsk−n|, (9)
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p2p di f f erence =
∣∣p2pk − p2pk−n

∣∣, (10)

var di f f erence = |vark − vark−n|, (11)

zs di f f erence = |zsk − zsk−n|, (12)

where k is the order of the specified interval and n is the number of the dataset between
two intervals. In this study, n is selected to appropriate as a 1250 dataset. Figure 3 paints a
fascinating picture of the electrical landscape, revealing the average difference behavior
of load current signals under both normal and arcing conditions at two different current
amplitudes (5 A and 8 A). Imagine each signal as a river of data points, and the average
as a calm pool where these points converge. To find this pool of tranquility, we sum up
all the data points in the river and then divide them by their total number, essentially
smoothing out the turbulence. Interestingly, the average values reveal a consistent pattern
across both normal and arcing states. In the normal state, the river flows serenely, its
average level remaining relatively stable, like a placid lake reflecting the sky. In contrast,
the arcing state throws the river into turmoil. The average level fluctuates, as if the lake
were buffeted by sudden gust of wind, rippling its surface and hinting at the hidden drama
unfolding beneath.
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Figure 4 unveils another layer of the electrical drama, this time through the lens of
the difference of median. Imagine the data points in our river of information arranged in a
line from lowest to highest. The median acts as the silent sentinel, marking the exact point
where half the data lies above and half below. It is a robust measure of central tendency,
less susceptible to outliers than the average, making it a valuable detective in this electrical
mystery. Interestingly, the median paints a similar picture to the average, but with a twist.
In the normal state, the median stands resolute, like a lighthouse in calm seas, its value
remaining relatively stable over time. This stability whispers of predictability, of a well-
behaved electrical system functioning as it should. However, the arcing state throws the
median into disarray. It starts to dance erratically, like a ship caught in a storm, reflecting
the underlying turbulence caused by the arc. This fluctuating nature of the median in the
arcing state holds significant promise as a discriminative feature for classification. It is
like a telltale sign, a clue in the electrical fingerprint, that hints at the presence of an arc
fault. Unlike the average, which can be skewed by extreme values, the median remains
grounded, offering a more robust and reliable indicator of the central tendency.

Figure 5 unveils yet another hidden dimension of the electrical story, this time through
the lens of the Root Mean Square (RMS) difference. Imagine our data points not as a simple
line or a single point, but as a bustling crowd of individuals, each representing the signal’s
intensity at a specific moment. The RMS acts like a meticulous census taker, calculating
the average “loudness” of this crowd, not just by counting heads, but by accounting for
the volume of each individual voice. This “loudness” measure, unlike the average or
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median, is not easily swayed by a few loud outliers. It considers the contributions of all
data points, giving a more holistic picture of the crowd’s overall energy. In the normal state,
the crowd remains relatively calm, their average volume steady and predictable. It is like a
well-behaved orchestra, playing in harmony with no sudden bursts or dramatic crescendos.
But when the arc fault strikes, the crowd erupts into chaos. The RMS value spikes, reflecting
the sudden surge in signal intensity. This erratic behavior of the RMS in the arcing state
provides another valuable clue for classification, a telltale sign that something is amiss in
the electrical landscape.
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Figure 6 throws a curveball in our electrical detective story, introducing the
Peak-to-Peak (p2p) values. Unlike the previous measures, the p2p, which tracks the dis-
tance between the highest and lowest points of the signal (think mountain peak to valley
floor), does not seem to tell the same tale of clear discrimination between the normal and
arcing states. Both the calm symphony of the normal state and the chaotic turbulence of
the arcing state appear somewhat muted when viewed through the p2p lens. The peaks
and valleys, while present, do not exhibit the dramatic swings we saw in the average,
median, or RMS. This suggests that the p2p is not as sensitive to certain aspects of the signal
that might be crucial for pinpointing arc faults. The p2p is too focused on the extremes,
overlooking the subtle nuances within the signal that betray the presence of an arc. It is
like a detective fixated on the most obvious suspects, missing the clever thief hiding in
plain sight.
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(a) Load current at 5 A. (b) Load current at 8 A.

Figure 7 throws a spanner in the works of our electrical detective story. This time,
the culprit is the variance, a measure that quantifies how “spread out” a set of values is.
Unlike the average, median, or even the dramatic peaks and valleys, the variance seems to
struggle to tell the tale of two electrical states. Both the serene drizzle of the normal state
and the chaotic downpour of the arcing state appear surprisingly similar through the lens
of variance. While some spread is evident in both cases, their values overlap significantly,
blurring the lines and making variance an unreliable witness in our quest for fault detection.
Variance is too broad of a brush, capturing the overall “noisiness” of the signal but missing
the finer details that truly distinguish an arc. Figure 8 throws a wrench in our electrical
detective story. This time, the culprit is the z-score, the data’s resident statistician. Unlike
the average, median, or even the dramatic peaks and valleys of other features, the z-score
seems blind to the contrasting narratives of the normal and arcing states. Both the gentle
ebb and flow of the normal state and the turbulent storm surge of the arcing state appear
to be mere ripples in z-score’s eyes. While some variation exists, their values overlap
significantly, blurring the lines and rendering the z-score an unreliable witness in our fault
detection chase. It is like wielding a broad brush, capturing the general “buzz” of the signal
but missing the finer details, the subtle whispers that betray the presence of an arc fault.
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The average, median, and RMS values stand tall as reliable witnesses. They whisper
clues about the electrical state, with the average portraying a stable melody, the median a
steady pulse, and the RMS the overall energy of the electrical storm. These features paint
a clear picture, aiding in the discrimination between the serene normalcy and the chaotic
arcing states. However, not all features are created equal. The peak-to-peak and variance,
like detectives with different specialties, reveal their limitations. The peak-to-peak, focused
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on the dramatic peaks and valleys, misses the subtle tremors that might betray an arc fault.
It is like a detective fixated on a jewel heist, overlooking the clever pickpocket slipping
through the crowd. Additionally, the variance, the measure of the overall data spread,
becomes overwhelmed by the general “noisiness” of the signal, unable to discern the telltale
signature of an arc. Its broad brushstroke blurs the lines between calm and chaos, but this
nuanced understanding of different features is precisely what elevates our analysis. It is
not about finding a single star witness, but about building a team of diverse perspectives.
Each feature, with its strengths and weaknesses, contributes a piece of the puzzle.
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4. Diagnosis of DC Arc-Based Feature Difference of Moving Intervals and Advanced
Learning Techniques

Figure 9 depicts the proposed framework for accurate arc fault diagnosis, employing
a data-driven approach. The initial stage involves high-frequency sampling of continuous
current data at 250 kHz. This captured data stream is subsequently segmented into sub-
datasets of 200 data points each, corresponding to a time interval of 0.8 milliseconds. This
segmentation facilitates efficient feature extraction and computational tractability. Within
each segment, time–domain features are extracted, capturing relevant characteristics of
the electrical signal. Crucially, the differences between these features across consecutive
segments are calculated, amplifying subtle variations and potentially revealing the presence
of arc faults. There are two data ranges of faulted data being tested; the first range is the
range of difference between arc and normal states (from 2 s to 3 s). The second range is
the difference between arcing states (from 3 s to 4 s). These data ranges will be denoted as
R1 (from 2 s to 3 s) and R2 (from 3 s to 4 s). These processed features, enriched with the
temporal dynamics of the data, are then fed into advanced learning models. This provides
the models with a comprehensive representation of the electrical state, enabling them to
learn complex patterns and accurately classify arc faults.

Notably, the framework incorporates both training and testing phases, ensuring the
models’ generalizability across diverse operational scenarios and data conditions. Main-
taining a balanced data distribution throughout both phases is paramount, with a 1:1 ratio
of normal and arcing state data ensuring unbiased training and promoting fair evaluation.
This balanced data diet is crucial for the models’ ability to effectively discriminate between
normal and arcing conditions with high accuracy. The primary metric employed to assess
the performance of the advanced learning models in this context is accuracy. This metric
quantifies the models’ ability to correctly identify and classify the electrical state, serving as
a fundamental benchmark for performance evaluation. The accuracy metric is calculated as
the ratio of correctly classified datasets to the total number of analyzed datasets. Figure 10
illuminates a compelling debate surrounding the efficacy of various features in diagnos-
ing arc faults within a three-phase inverter. It investigates the interplay between current
amplitude (5 A and 8 A), switching frequency, and the subsequent accuracy achieved
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by difference features between moving intervals and the SVM algorithm. The analysis
conducted in Section 3 regarding the visibility of feature differences finds validation in
Figure 10. The average, median, and RMS values emerge as the frontrunners in terms of
accuracy with R1. They operate like seasoned investigators, adept at uncovering subtle
clues within the data that betray the presence of an arc fault. However, the plot thickens
with the introduction of switching frequency. As it increases, the accuracy of the average,
median, and RMS values begins to decline. These features seem overwhelmed by the
rapid fluctuations, their focus blurred by the amplified noise. P2P and variance, often less
recognized investigative tools, exhibit an inverse relationship, with their accuracy climbing
alongside the switching frequency. They shift their focus, honing in on the extreme and
rapid changes, finding their own rhythm in the data’s turbulent dance.
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Figure 9. The proposed diagnosis scheme of DC arc failure using feature differences between moving
intervals and ALTs.

The performance at the 8 A current amplitude presents a particularly intriguing
scenario. Here, the accuracy curves for all features converge, with P2P and variance
even reaching parity with the average, median, and RMS for R1. Figure 11 explores how
different features perform in diagnosing arc faults in a three-phase inverter. It tests them at
two current levels (5 and 8 amps) and three switching speeds. For R1, the average, median,
and RMS values are the top performers at low speeds, like skilled detectives finding clues in
smooth data. But as the switching increases in speed, their accuracy drops, like struggling
to keep up with a chaotic crime scene. P2P and variance, often overlooked tools, shine at
higher speeds, focusing on sudden changes and data extremes, like detectives chasing a
fast-moving suspect. At 8 amps, all features perform similarly, showing the technique’s
adaptability. This detective story reveals that different features work best in different
situations, and the technique adjusts to ensure accurate diagnoses regardless. Comparing
R1 and R1, R1 shows higher accuracy for all features. Figure 12 throws open the case file
on arc faults in a three-phase inverter, with the KNN algorithm as our trusty forensic tool.
Different features in R1, like the average, median, and RMS, act as seasoned investigators,
analyzing data clues to identify the culprit. However, the plot thickens with the rising tide
of switching frequency. The rapid electrical fluctuations overwhelm our usual suspects,
their focus blurred like detectives in a high-speed chase. P2P and variance, often the
overlooked duo, step into the spotlight. They are like hawks circling a carcass, thriving
on the data’s extremes and sharp changes. Their unique skills actually benefit from the
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chaos, and their accuracy soars with faster switching. The 8 A current amplitude introduces
another twist. Here, all features find their rhythm, with P2P and variance even matching
the established trio.
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Figure 13 throws shade on the reliability of different tools for spotting arc faults in
a three-phase inverter. It tests them at two current levels and three switching speeds,
using NB as the detective agency. For R1, the average, median, and RMS are the early
stars, like experienced cops good at picking out subtle clues. However, as the switching
increases in speed, their accuracy tanks, overwhelmed by the data’s wild swings. P2P
and variance, the underdogs, thrive in the chaos, focusing on sudden changes and data
extremes, like detectives chasing a fast-moving suspect. For R2, all the features return
mediocre performances. At 8 amps, a similar trend as 5 A is observed for both R1 and
R2. This shows the outperformance of R1 compared with R2 across various operating
conditions. Figure 14 tackles the mystery of arc faults in a three-phase inverter. It is
like a detective thriller, where different features, our sleuths, try to solve the case using
clues hidden in the data. The criminal’s tactics change with two variables: the electrical
flow (5 or 8 amps) and how fast the system switches (frequency). The usual suspects
in R1, the average, median, and RMS, are brilliant at low speeds, picking out subtle
patterns in the data. However, as the switching becomes faster, the case becomes tricky.
They stumble, overwhelmed by the rapid changes, like detectives in a high-speed chase.
P2P and variance are often overlooked; they are like hawk-eyed investigators, thriving
on the data’s chaos. They zero in on the extremes and swift changes, their accuracy
even rising with higher speeds. It is like they’re dancing to the data’s wild rhythm,
while the others struggle to keep up. For R2, the accuracies of all features are lower
than that of R1 across various current amplitudes and switching frequencies. Figure 15,
through its comparative analysis of different features, offers invaluable insights for the
future refinement and optimization of DC arc-fault detection. It serves as a guide for
developing more effective strategies to apprehend DC arc faults, paving the way for
enhanced electrical safety measures and reduced risks of catastrophic events. The results
displayed in Figures 10–15 were derived from experiments conducted with an AC load
configuration encompassing both resistive and inductive elements. The experimental setup
was crafted to mirror real-world scenarios, where electrical systems often comprise a diverse
array of loads representing a mix of resistive and inductive components. While the primary
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objective of this study revolves around introducing our methodology and showcasing its
effectiveness in detecting arc faults under conditions reflective of real-world load diversity,
the authors fully acknowledge the significance of exploring how different load types may
influence detection performance. Recognizing the complexity of electrical systems and the
potential variations in load characteristics across different applications, the author aims to
conduct in-depth analyses to delve into the impact of load composition on the performance
of the proposed detection approach. By examining results obtained under varying load
conditions, the authors aspire to uncover nuanced insights into the interplay between
load types and detection algorithm performance. Ultimately, the aim is to advance the
understanding of how different load compositions may impact the efficacy and reliability
of arc fault detection algorithms, thus contributing to the development of more robust
and adaptive diagnostic techniques for electrical systems. The proposed approach relies
on analyzing the difference between moving intervals to detect arc faults in DC circuits.
When noise influences the current, it induces fluctuations in both normal and arcing states.
However, the fluctuations in the arcing state are typically more pronounced than those in
the normal state. As a result, when comparing the difference between the moving intervals,
the proposed approach can effectively distinguish between normal operation and arc faults.
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This is because the significant fluctuations observed during arc faults lead to larger
differences between consecutive intervals compared to the relatively smaller differences
observed during normal operation. By leveraging this characteristic, the proposed approach
can accurately detect arc faults by identifying intervals where the difference exceeds a
certain threshold. This analysis demonstrates the robustness of the proposed approach
in effectively detecting arc faults in DC circuits, even in the presence of noise-induced
fluctuations in the current signal.
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Indeed, in more complex DC grids, noise on the DC part can arise from various sources,
potentially leading to disturbances in the current signal. While the method described in
the paper primarily focuses on detecting arc faults induced by the DC/AC inverter, it is
important to acknowledge the potential presence of noise in the DC part from other sources.
The assumption of relatively low noise in the DC part simplifies the analysis and facilitates
the detection of arc faults primarily caused by the DC/AC inverter. However, in real-world
scenarios where noise levels may be higher, additional measures may be necessary to
account for and mitigate the effects of noise on the accuracy of arc-fault detection. Future
research could explore methods to adapt the proposed approach to handle higher levels
of noise in the DC part, ensuring robustness and reliability in detecting arc faults in more
complex DC grids. In practical applications, it is not uncommon to encounter inverters
with switching frequencies exceeding 20 kHz, highlighting the need to address the po-
tential limitations of the proposed method in such scenarios. While the current method
primarily focuses on analyzing signals generated by inverters with relatively low switching
frequencies compared to the sampling frequency, it is imperative to recognize the impacts
of higher switching frequencies on the dynamics of the current signal. Inverter systems
with higher switching frequencies may exhibit distinct signal characteristics and behavior,
necessitating additional considerations to ensure the effectiveness of the proposed detection
method. To address this concern, future research endeavors will delve deeper into the
implications of higher switching frequencies on the performance of the proposed method.
This exploration will involve analyses to understand how the signal dynamics vary across
different switching frequency ranges. Additionally, the authors will investigate potential
modifications or adaptations to the existing detection framework to accommodate a broader
spectrum of inverter configurations, including those with higher switching frequencies.
These modifications may include refining feature extraction techniques, optimizing algo-
rithm parameters, or developing specialized signal processing algorithms tailored to handle
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the unique challenges posed by high-frequency switching. While the current study focuses
on proposing theoretical frameworks and methodologies for arc-fault detection, the authors
acknowledge the necessity of experimental validation to assess the practical effectiveness
of these approaches in real-world scenarios. However, it is important to emphasize that
experimental validation is a critical component that will be executed in future work. Given
the complexity and scope of the experimental setup required for rigorous validation, it
was deemed prudent to prioritize the development and presentation of robust theoretical
frameworks and methodologies in this initial study. These experiments will involve the
implementation of the proposed methods in real-world settings, utilizing appropriate
hardware setups and data acquisition systems. By conducting experiments under varying
conditions and scenarios, the authors aim to evaluate the performance of the approaches in
realistic environments and assess their efficacy in accurately detecting arc faults. Indeed,
each PWM technique introduces unique variations in the signal characteristics, particu-
larly in response to the occurrence of an arc fault. These variations stem from the specific
modulation strategies and switching patterns employed by each PWM technique. For
instance, AZPWM, SPWM, and SVPWM each exhibit distinct voltage and current wave-
forms, harmonics, and switching patterns. When an arc fault occurs, these characteristics
may undergo further alterations, such as amplitude fluctuations, frequency shifts, and
waveform distortions, depending on the PWM technique implemented. In future work, the
authors plan to investigate how these unique variations in signal characteristics, induced
by different PWM techniques, can be leveraged in conjunction with our proposed approach
for arc detection. By systematically analyzing the response of each PWM technique to
arc faults, the authors aim to identify specific features or patterns that are indicative of
fault conditions. These features can then be incorporated into our detection algorithm to
enhance its robustness and effectiveness across diverse PWM implementations.
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5. Conclusions

This pioneering research introduces a novel strategy for addressing the intricate chal-
lenge of DC arc-fault detection, leveraging the synergistic capabilities of feature differences
between moving intervals and ALTs. Notably, the results highlight the consistent superi-
ority of DT and RF as premier ALTs. These models demonstrate unwavering diagnostic
excellence across varying input data scenarios, current amplitudes, and switching frequen-
cies, consistently achieving the highest diagnosis rates. The comparison between different
features serves as a focal point for understanding the overarching success of this research.
It vividly illustrates the superior performance of ALTs employing diverse input features in
the demanding field of DC arc fault detection. Specifically, the average, median, and RMS
features emerge as standout performers, outclassing p2p and variance features. This collec-
tive success validates the considerable potential of the proposed approach to significantly
elevate safety and reliability in electrical systems. Beyond the confines of the laboratory, the
real-world implications of this research are substantial, particularly in critical applications
like industrial settings and data centers. The groundwork laid by this study contributes
to the development of more robust, precise, and dependable arc fault detection systems.
These advancements represent promising strides toward enhancing safety and reliability in
a diverse range of critical electrical systems, marking a significant step forward in the field.
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