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Abstract: Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese
herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active
ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the
underlying therapeutic mechanisms and involved pathways using network pharmacological analysis.
Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema
of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E
and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was
used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the
SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on
the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the
levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving
AD and other inflammatory diseases and predicting the intracellular signaling pathways and target
genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and
its associated symptoms.

Keywords: Scutellaria baicalensis; Raphanus sativus; atopic dermatitis; T lymphocyte differentiation;
skin; network pharmacology

1. Introduction

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease with
severe symptoms such as pruritus, epidermal hyperplasia, edema, erythema and erythe-
matous plaque, and erythematous plaque [1,2]. Some factors, such as genetic, immune
function imbalance, and environmental factors, are known to cause AD. However, the
precise mechanism of AD has not yet been demonstrated [3,4]. Previous reports suggested
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that AD affects approximately 10–20% of the total population. Some therapeutic drugs exist
to treat its occurrence. Recently, anti-inflammatory drugs such as topical corticosteroids,
PDE-4 inhibitors, topical calcineurin inhibitors, biologics, JAK-STAT inhibitors, and anti-
histamines are the mainstay of AD treatment. The primary role of these therapeutics is to
preserve the skin barrier function. However, due to the limitations such as high relapse of
AD and side-effects of long-term corticosteroids of current drugs, new treatments still need
to be developed [5].

However, despite its common occurrence, no precise therapeutic treatment exists.
Immunologically, the activation of T lymphocytes is a major mediator in the allergic
inflammatory response. Moreover, an abnormal cytokine system reduces cell-mediated
immunity and induces immunoglobulin E, which is essential in AD pathology [6].

Diverse inflammatory cytokines such as interleukin-4 (IL-4), IL-5, and IL-13 are regu-
lated to atopic skin. Epidemiology studies showed that more inflammatory cytokines were
produced in AD patients than in non-AD individuals. Moreover, various studies indicated
that IL-4 and interferon-γ are increased in acute AD [7,8]. Ointments and oral medicines
are currently used to treat atopic dermatitis to reduce inflammation and itching [9]. Drugs,
such as steroids, antihistamines, immunosuppressants, and calcineurin inhibitors, are also
commonly used [9–11]. However, side effects, including extreme skin atrophy, adrenal sup-
pression, and susceptibility to infection, occur with the long-term use of these drugs [10,11].
Therefore, research is focused on discovering treatments for AD with reduced side effects.
Consequently, our research focuses on developing new natural compounds with reduced
side effects.

Although traditional medicines have been used for a long time, their pharmacological
activity has not been clearly identified because of their multiple targets and compounds.
However, many studies have been performed in many countries and have confirmed
the efficacy of traditional medicines. As technological advancements have progressed,
bioinformatical methods, such as network pharmacology, have been widely used to create
“ambiguous” mechanisms of conventional medicine more explicitly [12]. Network pharma-
cology uses extensive databases to systematically determine the effects and mechanisms of
traditional medicine prescriptions in treating complex diseases [13]. This method enables
broad predictions of potential mechanisms of action, corresponding component targets and
disease targets for treating disease [14].

Scutellaria baicalensis Georgi is a perennial herbaceous plant that includes the Lami-
aceae family. It re-seeds in China and Northeast Asia, including Siberia and north of
the Yangtze River [15]. The pharmacological effects of SBG protection from UV damage
in aging skin provide anti-allergic [16] and anti-inflammatory effects in AD [17]. More-
over, Raphanus sativus Linne is a Chinese medicine made from the seeds of cruciferous
or congenital plants that have been re-seeded in the Mediterranean region. RS is known
for its effects on the lungs, spleen, and gastric meridians. Its pharmacological effects
include inhibiting Staphylococcus aureus and skin fungus, lowering blood pressure, anti-
inflammatory, antioxidant, and antidiabetic effects, and inhibiting vascular smooth muscle
proliferation [18,19].

A previous study showed that Scutellaria baicalensis and Raphanus sativus mixtures
may improve ultraviolet B-induced skin damage and wrinkles in mice models [20]. As
mentioned above, the effects of SBG and RS have been reported, yet there is no experimental
report on AD following the administration of their compound drugs. Therefore, we aimed
to improve the skin inflammation response in AD by using a complex extract containing
two medicinal materials to provide a synergistic effect.

2. Results
2.1. Protective Effects of SRE on DNCB-Induced Atopic Dermatitis on Mice Skin

To study the therapeutic effects of SRE, AD-like skin lesions were induced by DNCB
treatment in SKH-1 hairless mice, as indicated in Figure 1A. After the DNCB treatment was
applied, the AD-like model group showed severe dermatitis accompanied by erythema,
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excoriation, scarring, and erosion. However, the AD-like mice in the SRE- and Dex-treated
groups exhibited suppressed dermatitis phenotypes (Figure 1B). Moreover, as in previous
studies, increased TEWL values and decreased skin hydration levels were observed in
the AD-like model [21–23]. In this study, the SRE-treated group significantly improved
the TEWL values and skin hydration levels in the SRE high-dose treated group, and the
Dex group, the positive control, also significantly enhanced the TEWL values and skin
hydration levels in SKH-1 hairless mice (p < 0.05) (Figure 1C,D). For neutralization, spleen
size was calculated to reduce alongside body weight. The AD-like model tended to have
increased spleen weights, while the mice treated with SRE and Dex had decreased spleen
weights. However, these changes were not significant (Figure 1E). These results implicated
that SRE treatment suppressed the phenotype of AD-like skin lesions, decreased the TEWL
level, and increased skin hydration, like Dex—the positive control.
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Figure 1. Effects of SRE on atopic dermatitis-like symptoms in hairless mice. (A) Schematics of
experiment design. (B) After 30 days, images of skin lesions from the groups were taken on the
last day of treatment. (C) Value of transepidermal water loss (TEWL). (D) Level of skin hydration.
(E) Spleen weight in hairless mice (n = 7). All data are presented as mean ± SEs; * p < 0.05 compared
with the AD group, and # p < 0.05 compared with the sham group—AD: atopic dermatitis; Dex:
dexamethasone; DNCB: 2,4-dinitrochlorobenzene.

2.2. Protective Effects of SRE on DNCB-Induced Histological Changes of Atopic Dermatitis
Mice Skin

H&E was performed to reveal the epidermal hyperplasia and inflammatory cell
infiltration into the epidermal layer from the dermal skin layer in the SRE-treated AD-like
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model mice (Figure 2A). A previous study showed that the epidermal thickness of AD-like
mice was significantly increased compared to the sham group [21–23]. However, SRE
treatment significantly suppressed epidermal thickness in the AD-like models in an SRE
dose-dependent manner (p < 0.05) (Figure 2B). These findings revealed that SRE treatment
suppressed epidermal thickness and mast cell infiltration in AD-like skin lesions. Overall,
SRE treatment showed potential protective effects against skin dysfunction and abnormal
immune responses in AD skin.
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Figure 2. Effects of SRE on atopic dermatitis-like histological changes in hairless mice. (A) H&E
staining of the skin lesion; scale bar = 200 µm (B) Epidermal thickness was analyzed in H&E-stained
sections (n = 3). All data are presented as mean ± SEs; * p < 0.05 compared with the AD group, and
# p < 0.05 compared with the sham group. AD: atopic dermatitis; Dex: dexamethasone.

2.3. SRE Treatment Decreased the Production of Lymphocyte Cells, IgE, and IL-4 in Mice with
DNCB-Induced Atopic Dermatitis

Flow cytometry was performed in the spleens of DNCB-induced AD mice to inves-
tigate the production of T cells, using both GATA3 and CD25 as markers. GATA3+ was
expressed in Th2 cells and induced the proinflammatory cytokine IL-4 [24]. CD25+ was
expressed in Treg cells [25]. As shown in Figure 3A,B, the population of GATA3+ and
CD25+ in cells was significantly increased in the AD-like models. However, the expression
of GATA3+ and CD25+ was significantly reduced in cells from the SRE-treated group.
Moreover, the IgE and IL-4 levels in the mice serum were evaluated by ELISA. As shown
in a previous study, IgE and IL-4 were significantly increased in the AD-like model group
compared to the sham group [26]. In contrast, the SRE treatment significantly decreased
the level of IgE and IL-4 compared to the AD-like model group (Figure 3C,D). These results
showed the SRE treatment reduced lymphocyte cells, including Th2 and Treg cells in the
spleen, and suppressed immunoglobulin-like IgE and proinflammatory cytokine (IL-4)
levels in the serum.
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Figure 3. Effects of SRE on lymphocyte cells—IgE and IL-4 levels in atopic dermatitis-like hairless
mice. (A) Dot plot of representative fluorescence-activated cell sorting analysis in the spleen. (B) The
percentage of GATA3+ and CD25+. (C) Level of IgE in serum. (D) Level of IL-4 in hairless mice serum
(n = 7). All data are presented as mean ± SEs; * p < 0.05 compared with the AD group, and # p < 0.05
compared with the sham group. AD: atopic dermatitis; IgE: immunoglobulin E; IL-4: interleukin-4;
CD: cluster of differentiation; GATA: GATA binding protein 3; Dex: dexamethasone.

2.4. Active Small Molecules and SRE Target Genes

A total of 185 active small molecules were searched for in TCMSP, of which 143
and 52 small molecules of Scutellaria baicalensis and Raphanus sativus were found, respec-
tively (Supplementary Table S1). After ADME screening with OB ≥ 20% and DL ≥ 0.1,
according to TCMSP, 66 active small molecules were selected; among them, 16 small
molecules were related to 444 genes (Supplementary Table S2). The family of 16 small
molecules were flavonoids (acacetin, apigenin, baicalein, baicalin, chrysin, oroxylin A,
panicolin, and wogonin), alkaloid (coptisine), unsaturated fatty acids (erucic acid, linoleic
acid, and linolenic acid), steroids (sitogluside, sitosterol, and stigmasterol), and triter-
penoid (supraene). Eight genes (CAPS3, CYP1A1, CYP1A2, CYP1B1, CYP3A4, MAPK1,
MAPK3, and PTGS2) among the 444 were linked to the five or more active small molecules
(Supplementary Table S2).

2.5. Potential Target Genes and PPI

A total of 1567 human genes related to AD (Supplementary Table S3) were searched in
the GeneCards database, and 141 genes overlapped with the target gene searched above.
Thus, fifteen active small molecules were deemed related to this disease and investigated.
Among 141 genes, 7 were associated with five or more active small molecules: CASP3,
CYP1A1, CYP1A2, CYP3A4, MAPK1, MAPK3, and PTGS2 (Figure 4B).
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Figure 4. Target and potential genes of SRE. (A) HPLC-DAD chromatogram of the sample (254 nm)
(B) Network analysis of herbs–small molecules–genes; the green hexagon is an herb, the pink oval is
the small molecule, and the cyan rectangle is a gene. (C) Protein–protein interactions (PPIs): the core
gene is the larger size of the circle and the more orange color in SRE.

The protein–protein interaction (PPI) analysis utilized the STITCH database, which is
very frequently used [27]. Cytoscape 3.7.2 visualized the PPI network and calculated its
topological characteristics using the “network analyzer” function of this software [28,29].
High degree, closeness centrality, and betweenness centrality genes were found to be ALB,
JUN, TP53, AKT1, NFKB1, IL6, SRC, INS, TNF, and BCL2 (Figure 4C).

2.6. Pathway Analysis Related to Atopic Dermatitis

The signaling pathways and functions of genes were analyzed using the DAVID and
KEGG database with the p-value (p < 0.05) correction algorithm [30]. A total of 19 pathways
were related to AD disease: TNF signaling pathway, apoptosis, IL-17 signaling pathway,
VEGF signaling pathway, Toll-like receptor signaling pathway, HIF-1 signaling pathway,
T cell receptor signaling pathway, PI3K–Akt signaling pathway, Ras signaling pathway,
inflammatory bowel disease, chemokine signaling pathway, MAPK signaling pathway,
NF-κB signaling pathway, Th17 signaling pathway, FoxO signaling pathway, NOD-like
receptor signaling pathway, Th1 and Th2 cell differentiation, apoptosis-multi species, and
inflammatory mediator regulation of TRP channels.

Among these 19 pathways, the KEGG categories accounting for 79% were signal
transduction (42%) and immune system (37%) (Figure 5A). Based on the p-value, the
top five pathways were the TNF signaling pathway, apoptosis, IL-17 signaling pathway,
VEG signaling pathway, and Toll-like receptor signaling pathway (Figure 5B). A total of
75 potential target genes were involved in the aforementioned 19 pathways. Among these
75 genes, there were a total of 9 associated with more than 10 pathways: AKT1, IKBKB, JUN,
MAP2K1, MAPK1, MAPK3, MAPK8, NFKB1, and RELA (Figure 5C). In this experiment,
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the highest related pathway to AD was Th1 and Th2 cell differentiation, which involved
12 genes.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 7 of 15 
 

 

The signaling pathways and functions of genes were analyzed using the DAVID and 
KEGG database with the p-value (p < 0.05) correction algorithm [30]. A total of 19 
pathways were related to AD disease: TNF signaling pathway, apoptosis, IL-17 signaling 
pathway, VEGF signaling pathway, Toll-like receptor signaling pathway, HIF-1 signaling 
pathway, T cell receptor signaling pathway, PI3K–Akt signaling pathway, Ras signaling 
pathway, inflammatory bowel disease, chemokine signaling pathway, MAPK signaling 
pathway, NF-κB signaling pathway, Th17 signaling pathway, FoxO signaling pathway, 
NOD-like receptor signaling pathway, Th1 and Th2 cell differentiation, apoptosis-multi 
species, and inflammatory mediator regulation of TRP channels. 

Among these 19 pathways, the KEGG categories accounting for 79% were signal 
transduction (42%) and immune system (37%) (Figure 5A). Based on the p-value, the top 
five pathways were the TNF signaling pathway, apoptosis, IL-17 signaling pathway, VEG 
signaling pathway, and Toll-like receptor signaling pathway (Figure 5B). A total of 75 
potential target genes were involved in the aforementioned 19 pathways. Among these 75 
genes, there were a total of 9 associated with more than 10 pathways: AKT1, IKBKB, JUN, 
MAP2K1, MAPK1, MAPK3, MAPK8, NFKB1, and RELA (Figure 5C). In this experiment, 
the highest related pathway to AD was Th1 and Th2 cell differentiation, which involved 
12 genes. 

 
Figure 5. Pathway analysis of SRE: (A) KEGG classification of pathways. (B) Rank according to the 
p-value. (C) Pathways (triangle orange color) and their corresponding genes (rectangle cyan color) 
for SRE. 

Figure 5. Pathway analysis of SRE: (A) KEGG classification of pathways. (B) Rank according to the
p-value. (C) Pathways (triangle orange color) and their corresponding genes (rectangle cyan color)
for SRE.

3. Discussion

In this study, we investigated the protective effect of SRE by regulating lymphocytes
through DNCB-induced AD-like skin lesions in SKH-1 hairless mice. The DNCB-induced
model is commonly used to mimic human AD [31]. Following the previous studies,
repeated exposure to DNCB causes chronic inflammation accompanied by the infiltration
of lymphocytes and mast cells, such as human AD symptoms [32,33]. Our results showed
that SRE treatment improved DNCB-induced AD-like skin lesions in SKH-1 hairless mice.

Treatment with SRE, an herbal mixture of SRG and RS, suppressed the clinical symp-
toms, phenotypes, and histopathological changes associated with the AD-like model, such
as erythema, edema, erosion, skin hydration, epidermal thickness, and infiltration of mast
cell in DNCB-treated SKH-1 hairless mice (Figures 1–3). However, our study showed that
the spleen size did not significantly change, unlike in previous reports [34]. This result
in the spleen size is expected to be due to the short induction period of the AD-like skin
lesions with DNCB treatment. Nevertheless, the tendency for the spleen size to change
appeared to increase in the AD-like group, whereas SRE treatment decreased the spleen
size in the DNCB-treated AD-like model (Figure 1E). In addition, we also observed that



Pharmaceuticals 2024, 17, 269 8 of 14

SRE treatment regulated the Th1/Th2 immune response and remarkably decreased serum
Ig E and IL-4 levels in SKH-1 hairless mice (Figure 3). GATA3 is known to be precisely
expressed in Th2 cells and differentiate into Th2 cells. This expression of GATA3 in Th2 cells
mediates cytokines, such as IL-4, IL-5, and IL-13, which cause allergic inflammation, such
as AD [35]. Moreover, the expression of CD25+ was established in Treg cells, suppressing
the proliferative function of autologous effector T cells (Teffs) in AD. Following a previous
report, the attenuated ability of Teffs to induce proliferation exacerbated AD in humans [36].
Thus, our study observed the suppressed differentiation of Th2 and Threg cells by SRE
treatment, which aggravated AD phenotypes in the DNCB-induced AD-like SKH-1 skin
hairless model. These results indicated a potential therapeutic effect of SRE to alleviate
human AD through its ability to balance between Th1/Th2 cells.

To identify the mechanisms of SRE, we performed HPLC (Figure 4). The 15 compo-
nents were classified into eight flavonoids (acacetin, apigenin, baicalein, baicalin, chrysin,
wogonin, oroxylin A, and panicolin), two fatty acids (linoleic acid and linolenic acid),
three steroids (sitosterol, stigmasterol, and sitoglucoside), one terpenoid (supraene), and
one alkaloid (coptisine). Subsequently, as a result of the network analysis, seven small
molecules, which were linoleic acid, apigenin, baicalein, linolenic acid, wogonin, baicalin,
and chrysin, had high values for both degree, closeness centrality, and betweenness cen-
trality. Baicalin and baicalein were active small molecules of Scutellaria baicalensis with a
flavonoid structure. In previous reports, baicalin improved skin lesions by controlling the
Th1/Th2 balance, improved skin barrier function, regulated intestinal bacterial imbalance,
and suppressed inflammation by inhibiting the activation of the NF-κB and JAK/STAT
pathways [37]. Baicalein could modulate the balance between Th1 and Th2 cells by inhibit-
ing the production of IL-4, IL-6, and TNF-α and inducing the expression of IFN-γ [38].
Raphanus Sativus contains sinapic acid, a small molecular compound. Sinapic acid upreg-
ulates immunosuppression in RAW264.7 and oxazolone-induced AD-like model [39,40].
In addition, sinapic acid is known to modulate the Th1/Th2 cell differentiation [41] and
alleviate the symptoms by suppressing the Th2 cell in allergic asthma. The SRE effect in
AD could be improved by these immunosuppressive effects of sinapic acid [42].

Wogonin induces HO1 expression, and HO1 and/or CO suppress TARC expression in
human HaCaT cells induced by tick antigens [43]. Chrysin plays a role in reducing mast cell
infiltration and serum histamine levels and suppresses AD by inhibiting the inflammatory
response of Th1, Th2, and Th17 cells in the ear [44]. Apigenin significantly reduced
inflammatory and allergic response factors in RAW264.7 and RBL cells, thereby alleviating
skin disease [45]. Polyenoic acids, such as linoleic and linolenic acid, are components that
are mainly contained in plant seeds [46]. Linoleic acid inhibited IL-6, IL-1β, TNF-α, and
iNOS in a dose-dependent manner, showing a potentially protective effect against AD-like
lesioned skin caused by an inflammatory response [47]. An appropriate ratio of linoleic
acid and linolenic acid significantly suppressed T cell proliferation and invasion and the
production of Th1, Th2, and Th17 cytokines in mice skin and serum [48]. In mouse models,
sitosterol and stigmasterol decreased inflammatory cell infiltration and ear edema [49].
Moreover, sitosterol inhibited NF-κB and suppressed the expression of CAM-1 and ICAM-1
stimulated by TNF-α [50]. The suparen, squalene, is a highly unsaturated hydrocarbon
from the triterpenoid family and is used as an antioxidant and moisturizer for seborrheic
dermatitis and AD [51].

KEGG pathway analysis associated Th1 and Th2 cell differentiation with 19 pathways.
Among them, the TNF signaling pathway, apoptosis, IL-17 signaling pathway, VEG sig-
naling pathway, and Toll-like receptor signaling pathway were closely correlated with the
pathogenesis of atopic skin dermatitis [52–55].

In the network analysis, there were ten core genes, which were ALB, JUN, TP53, AKT1,
NFKB1, IL6, SRC, INS, TNF, and BCL2, which are genes with a high degree of closeness
centrality and betweenness centrality genes. The genes important to AD disease are Th1
and Th2 cell differentiation [56–60].
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As a result of pathway analysis, the most critical pathway was Th1/Th2 cell differen-
tiation, which was consistent with the efficacy of key small molecules. Additionally, the
genes involved in this pathway were FOS, JUN, RELA, IKBKB, IL13, IL5, MAPK1, MAPK3,
MAPK8, NOTCH1, NFKB1, and STAT1.

This study confirms the protective effects of SRE in a DNCB-induced AD mouse model
by attenuating skin damage. In addition, using a network pharmacological approach to
predict the protective effects of SRE, we investigated the anti-inflammatory effects of SRE
on various factors that cause AD. The results suggest that SRE has potential as a treatment
for AD. Moreover, it will contribute to the validation of herbal medicine for treating
inflammation and skin dermatitis. However, experimental verification is still needed, as
informatics is primarily theoretical. Therefore, the mechanism underlying the effects of
SRE on skin damage and the signaling pathways regulated by its active constituents should
be elucidated in future studies.

4. Materials and Methods
4.1. Preparation of the Extract

Scutellaria baicalensis and Raphanus sativus extracts were prepared in a previous study [20].
Dried medicinal materials Scutellaria baicalensis and Raphanus sativus were purchased from
Kwangmyung-Dang (Ulsan, Republic of Korea) and used as research samples, and all
voucher specimens (2015SC and 2015 SR) were stored in the herb bank of the Korea
Institute of Oriental Medicine. The dried herbs of Scutellaria baicalensis and Raphanus sativus
were combined, extracted using a process known as water under reflux, and filtered to
provide a sample ready for examination. An herbal product in powder was obtained by
evaporating the filtrate, and this product was utilized for experimental verification.

4.2. Preparation of the Animals

Five-week-old female SKH-1 hairless mice were used in this experiment after a week
of animal laboratory adaptation, purchased from Dooyeol-Biotech, Inc. (Seoul, Republic
of Korea). Experimental animals could freely consume sterile distilled water and solid
feed. A total of 4–5 animals were housed in a cage with an environment of 150–300 Lux
at 22 ± 2 ◦C, 55 ± 15% humidity, for 12 h light–dark cycles. All experimental protocols
pertained to Chonnam University’s Institutional Animal Care and Use Committee (CNU
IACUC-YB-2022-50).

4.3. Treatment of Mice

For induced AD, the back of each mouse was stimulated by 200 µL of a 1.5% 1-chloro-
2,4-dini-trobenzene (DNCB, acetone:olive oil = 3:1, Sigma-Aldrich, St. Louis, MO, USA)
solution two times and 200 µL of 0.4% DNCB solution, which were both applied evenly to
the same area every two days until the end of the experiment, to ensure that AD persisted.
To evaluate the protective effect of SBG with the RS herbal mixture (SRE) in AD, SRE
was orally administered every day for 1 month. Pretreatment was performed two weeks
prior to AD induction, and SRE was administered for two weeks during AD induction.
A total of 5 mg/mL of dexamethasone (Dex, Sigma-Aldrich) was administered as the
positive control. Figure 1A shows the schematics of the experimental design. There were
six groups, with seven mice in each group: (1) PBS stimulated + PBS treatment group,
(2) PBS stimulated + SRE treatment group (400 mg/kg), (3) DNCB stimulated + PBS treat-
ment group, (4) DNCB stimulated + Dex 5 mg/mL, (5) DNCB stimulated + SRE treatment
group (200 mg/kg), and (6) DNCB stimulated + SRE treatment group (400 mg/kg).

4.4. Transepidermal Water Loss Assessment

After the sample treatment, the amount of transepidermal water loss (TEWL) from
the epidermis, which changes in AD, was measured using a measuring instrument on the
mouse back. The measurement was conducted at a constant room temperature of 24–25 ◦C
and humidity of 50–60%.



Pharmaceuticals 2024, 17, 269 10 of 14

4.5. Histological Analysis

The skin of the sacrificed mice was fixed in a 10% neutral buffered formalin solution
(NBF). After fixing, the skin tissue in each experimental group was added to 10% NBF.
Dehydration processing was performed, and paraffin blocks were made for sectioning. All
tissue slides were sectioned into 3 µm thicknesses. Hematoxylin and eosin (H&E) staining
was performed for the histopathological analysis.

4.6. Flow Cytometry

After the sacrifice, the spleen was dissected, and the cells were collected. Spleen cells
were stained using fluorochrome-conjugated antibodies to analyze the T helper 2 (Th2)
and T regulatory (Treg) cell activation and populations. For T cell analysis, anti-GATA3
(PE, eBioscience, San Diego, CA, USA, 12-9966-42) and anti-CD25 (APC-Cy7, BioLegend,
San Diego, CA, USA, 102026) antibodies were used to stain the cells. A cytoFLEX Flow
Cytometer (BeckmanCoulter, Brea, CA, USA) and FlowJo version 10.6 (TreeStar, Ashland,
OR, USA) were used to evaluate T cell activation. All flow cytometry procedures were
performed as previously described [61].

4.7. Enzyme-Linked Immunosorbent Assay (ELISA)

IgE and IL-4 levels were measured using an enzyme-linked immunosorbent assay
(ELISA) kit (mouse IgE Quantikine ELISA Kit and mouse IL-4 Quantikine ELISA Kit; R&D
Systems, Minneapolis, MN, USA). All procedures were performed accurately, according to
the manufacturer’s instructions.

4.8. HPLC

A total of 100.00 mg of extract was dissolved in methanol to achieve a concentration of
50 mg/mL. Subsequently, the solution was filtered through a 0.2 µm PVDF membrane filter
before the HPLC analysis. All standard compounds were dissolved in methanol. The HPLC
system utilized for this analysis comprised the Agilent 1260 Infinity II Quat Pump from
CA, USA, integrated with a DAD WR detector. The flow rate and injection volume were
10 mL/min and 1.0 µL, respectively. The monitored wavelength range for PDA detection
was 200 to 420 nm, with 254 nm being the detection wavelength of the specifically targeted
peaks. The mobile phase comprised 0.1% aqueous TFA (A) and acetonitrile (B). The specific
conditions are outlined in the following Table 1.

Table 1. Information of HPLC time reports.

Time (min)
Solvent

A (%) B (%)

0 90 10
5 90 10
20 75 25
30 60 40
35 30 70
37 0 100
42 0 100
45 90 10
55 90 10

4.9. Network Pharmacology Analysis
4.9.1. Active Small Molecules Screening and Target Genes

A public database, Traditional Chinese Medicine Systems Pharmacology (TCMSP;
https://tcmsp-e.com/browse.php?qc=herbs, version 2.3, accessed on 10 May 2022), was
used to search for active small molecules in the seeds of Raphanus sativus Linné and
roots of Scutellaria baicalensis. Common information on small molecules was confirmed
using ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 10 May 2022), ChemSpider

https://tcmsp-e.com/browse.php?qc=herbs
https://www.ebi.ac.uk/chembl/
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(https://www.chemspider.com/, accessed on 10 May 2022), National Institute of Standards
and Technology (NIST; https://www.nist.gov/, accessed on 10 May 2022), and PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 May 2022). All small molecules
were selected using the in silico integrative ADME model, which was screened by the
index of Oral bioavailability (OB) ≥ 20% and drug-likeness (DL) ≥ 0.1, according to the
TCMSP website.

Target genes linked to active small molecules in Raphanus sativus and Scutellaria
baicalensis were searched for using the Search Tool in the Interactions of Chemicals and
Proteins (STITCH) database (http://stitch.embl.de/, ver. 5.0, accessed on 12 May 2022)
with ‘Homo sapiens’ selected as the organism [62]. Gene information was verified in the
UniProt database (https://www.uniprot.org/, accessed on 12 May 2022), and active small
molecule–protein interactions with an interaction score ≥ 0.400 (as medium confidence)
were selected [63].

4.9.2. Potential Target Genes and Protein–Protein Interaction (PPI)

As potential target genes, only genes overlapping with the aforementioned target
genes and atopic dermatitis-related genes were searched for in the GeneCards: The Human
Gene Database (https://www.genecards.org/, version 5.9, accessed on 13 May 2022) with
‘Homo sapiens’ and with a similarity search value ≥ 0.700 (high confidence score according
to STITCH database) [64]. The protein–protein interaction (PPI) network was searched to
identify the STITCH database (medium confidence score ≥ 0.400), and topology, including
degree, closeness, and betweenness centrality of PPI, was calculated by Cytoscape version
3.7.2 (https://cytoscape.org/, accessed on 13 May 2022) [65].

4.9.3. Signaling Pathway Analysis

Signaling pathways were analyzed using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID; https://david.ncifcrf.gov/, version 6.8, accessed on 13
May 2022) and KEGG: Kyoto Encyclopedia of Genes and Genomes (https://www.genome.
jp/kegg/, accessed on 13 May 2022) with p > 0.05. The network was visualized using
Cytoscape version 3.7.2 (Cytoscape, Boston, MA, USA) [66].

4.10. Statistical Analysis

GraphPad Prism (version 9.3.1, GraphPad Software, San Diego, CA, USA) was used
for statistical analysis. One-way ANOVA followed by Tukey’s post hoc test was used to
determine the statistical significance of the data. Data are expressed as mean ± SEs. For all
analyses, a p-value of less than 0.05 was considered statistically significant.

5. Conclusions

This study shows that by regulating lymphocytes, the SRE application significantly
suppressed DNCB-induced AD-like symptoms such as edema, inflammatory infiltration,
skin barrier damage, and serum IgE levels. In addition, our network pharmacology
analysis suggested the potential available pathway of SRE. Our study demonstrated SRE’s
therapeutic effect on AD-like skin diseases in a mouse model. In further studies, it will
be worthwhile to explore the mechanism of SRE by suggesting net-work pharmacology
analysis, which could be a potential complementary candidate for AD patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17030269/s1, Table S1: List of small molecules information in-
cluded in herbs of TCMSP database. Table S2: Values of small molecules and genes using the
STITCH database (score ≥ 0.400). Table S3: Atopic dermatitis disease of human genes using
GeneCards database.

Author Contributions: Conceptualization, J.S.K. and S.C.; methodology, T.K. and S.L.; software,
A.Y.L. and J.W.H.; validation, J.L., C.M. and Y.-S.S.; investigation, H.-H.N. and K.-Y.J.; resources, S.C.;
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