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Abstract: Ag nanowire electrodes are promising substitutes for traditional indium tin oxide (ITO)
electrodes in optoelectronic applications owing to their impressive conductivity, flexibility, and trans-
parency. This review provides an overview of recent trends in Ag nanowire electrode layer formation,
including key developments, challenges, and future prospects. It addresses several challenges in
integrating Ag nanowires into practical applications, such as scalability, cost-effectiveness, substrate
compatibility, and environmental considerations. Additionally, drawing from current trends and
emerging technologies, this review explores potential avenues for improving Ag nanowire layer-
forming technologies, such as material advancements, manufacturing scalability, and adaptability
to evolving electronic device architectures. This review serves as a resource for researchers, engi-
neers, and stakeholders in nanotechnology and optoelectronics, and underscores the relationship
between advancements in patterning and the application of Ag nanowire electrodes. Through an
examination of key developments, challenges, and future prospects, this review contributes to the
collective knowledge base and encourages continued innovation in the ever-evolving realm of Ag
nanowire-based optoelectronics.
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1. Introduction

In the evolving fields of electronic engineering and optoelectronics, scientists and
engineers are constantly searching for materials that can outperform indium tin oxide
(ITO). The scarcity and cost fluctuations of indium, along with environmental concerns
related to its extraction, challenge its long-term viability. Additionally, the adaptability
of ITO to emerging technologies is limited by its brittleness, which reduces its durability,
especially on flexible substrates, and its low conductivity at lower thicknesses [1–8]. As
a result, there is increasing demand for electronic components that offer not only high
performance but also environmental sustainability. In this context, Ag nanowires have
emerged as a promising alternative owing to their excellent electrical conductivity, inherent
flexibility, and outstanding transparency [9–17], which makes them a leading choice for next-
generation electronics such as flexible displays and wearable devices [18–25]. Consequently,
extensive research has been conducted on the synthesis, characterization, and applications
of Ag nanowires (Figure 1) [26].

Layer formation technologies play a crucial role in unlocking the full potential of
Ag nanowire electrodes, especially in the context of how form and function interact. By
overcoming the technical challenges associated with Ag nanowire layer formation, the the-
oretical benefits of Ag nanowires can be translated into practical applications [5,12,27–32].
This review examines recent developments in the formation of Ag nanowire electrode lay-
ers [9,10,13,20,33–35] and highlights the associated challenges and opportunities, including
scalability, cost-efficiency, material compatibility, and environmental considerations. The
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primary aim is to provide an overview of the multifaceted challenges faced by researchers
and industry in utilizing Ag nanowires in actual devices. Furthermore, this review explores
the future potential of Ag nanowire layers and their integration into evolving electronic
designs and the opportunities they offer for improving the electrode potential of optoelec-
tronic devices. It aims to provide accessible knowledge beneficial to researchers, engineers,
industry professionals, and policymakers.
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Figure 1. Synthesis, characterization, and applications of Ag nanowires [26]. Reproduced from
Ref. [26] under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

2. Methods for Ag nanowire Layer Formation

The development of transparent conductive films on flexible polymeric substrates has
led to significant advancements in coating techniques to improve the performance and
applicability of the resulting films. Ag nanowires are increasingly recognized as candidates
for transparent conductive layers in diverse applications, such as flexible electronics and so-
lar cells, owing to their excellent electrical conductivity and optical transparency. Choosing
an appropriate coating method is crucial, as it greatly affects the characteristics of the film
and its suitability for a given application. The following sections explore different coating
methods, including their operating principles, recent advancements and challenges, and
the interaction between the coating method and the characteristics of the base material.

2.1. Spray Coating

Spray coating is a versatile and cost-effective method for depositing Ag nanowires
on both rigid and flexible substrates [14,36–38]. This technique is simple and able to cover
large areas uniformly. Recent advancements in spray coating have focused on refining
precision, particularly with regard to nanowire density and orientation. Researchers
are exploring novel approaches to optimize the spray parameters, such as the solvent
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composition and nozzle design, to enhance the homogeneity of the resultant films. In a
notable example of these achievements, Zhu et al. developed a solvent-welding technique
employing Ag nanowire spray coating (Figure 2) [36]. Ag nanowire networks combined
with poly(vinylpyrrolidone) (PVP) and camphorquinone were spray coated onto a substrate
containing ethylene glycol. By applying a current to the Ag nanowire network, the electrical
resistance was reduced by a significant 96%. The versatility of spray-coating in terms of
material selection and scalability makes it a valuable solution for wide-ranging applications,
from small-scale laboratory research to large-scale industrial manufacturing. The ability to
generate uniform and transparent conductive films through spray coating is particularly
promising for the advancement of technologies such as flexible displays, touchscreens,
and solar cells [14,36–38]. Furthermore, this method is cost-effective for the production
of transparent conductive films. Advances in the spray-coating of Ag nanowire films on
flexible polymeric substrates will facilitate the fabrication of next-generation transparent
conductive films for diverse applications.
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owire network via spray coating; (C) solvent welding and corresponding state of Ag nanowire junc-
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heating welding. Reproduced from Ref. [36] under the Creative Commons Attribution 4.0 Interna-
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Figure 2. Ag nanowire layer formation using spray coating [36]. (A) Schematic of Ag nanowire
synthesis with PVP (red lines) and camphorquinone (CQ; blue dots) capping; (B) fabrication of Ag
nanowire network via spray coating; (C) solvent welding and corresponding state of Ag nanowire
junctions; (D) solvent-based plasmonic welding; and (E) combined solvent-based plasmonic and
Joule-heating welding. Reproduced from Ref. [36] under the Creative Commons Attribution 4.0
International (CC BY 4.0) License.

2.2. Dip Coating

Dip coating involves submerging a substrate in an Ag nanowire solution [37,39–42].
This method offers excellent control over the film thickness; however, achieving uniformity
over large areas remains challenging. Therefore, recent research on dip-coating is focused
on overcoming this limitation. In a recent study, Zeng et al. used dip coating to fabricate
Ag nanowire electrodes on polyethylene terephthalate (PET) fabrics (Figure 3) [43], fol-
lowed by hot pressing to improve the adhesion of the Ag nanowires to the fabric. This
approach resulted in fabric with excellent electrical conductivity (of 464.2 S/m); strong
electromagnetic shielding (17 dB); good strain sensing performance; minimal resistance
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changes (below −15%); and outstanding Joule-heating performance (110 ◦C at a current of
0.08 A). In the work by Choi et al., aligned Ag nanowire electrodes were fabricated with
the dip-coating process [42]. They fabricated differently aligned Ag nanowire electrodes
for flexible strain sensors, which were aligned longitudinally, parallel to the alignment
direction, and the other aligned laterally, perpendicular to it (Figure 4). The sensor perfor-
mance results indicated that the strain sensor with the longitudinally aligned Ag nanowire
electrodes exhibited a gauge factor (GF) of 89.99 under 25% tensile strain, surpassing the GF
of 12.71 of that with laterally aligned Ag nanowire electrodes. Other innovations such as
advanced withdrawal techniques and modifications to the solution rheology have also been
explored to enhance the uniformity of dip-coated films. Despite the challenges in achieving
large-scale uniformity, dip coating remains a valuable tool, especially for applications and
electronic components that require precise thickness control [37,39–42].
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Figure 3. Formation of Ag nanowire (AgNW) layers using dip coating. Schematic diagram of dip-
coating and hot-pressing processes for embedding Ag nanowires into PET fabric [43]. Reproduced
from Ref. [43] under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
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Figure 4. Comparison of the degree of alignment of silver nanowires [42]: (a) SEM image of unaligned
silver nanowires; (b) SEM image of silver nanowires aligned using temperature-controlled dip coating
process; (c) SEM image of silver nanowires transferred to PDMS; (d) analysis of degree of alignment
of unaligned silver nanowires; (e) analysis of degree of alignment of silver nanowires aligned using
temperature-controlled dip coating process; and (f) analysis of degree of alignment of transferred
silver nanowires. Insets of (d–f) show the distribution of nanowires according to the angle, and the
amount of silver nanowires is expressed in color. Reproduced from Ref. [42] under the Creative
Commons Attribution 4.0 International (CC BY 4.0) License.
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2.3. Roll-to-Roll Coating

Roll-to-roll (R2R) coating is a popular method of producing transparent conductive
films, particularly in large-scale manufacturing [39,44–47]. This method involves con-
tinuously applying an Ag nanowire solution to a flexible substrate as it moves between
rolls. The continuous nature of R2R coating makes it highly efficient for mass produc-
tion. Consequently, it is particularly promising for products that require high-volume
outputs, including flexible electronics and large-area photovoltaic cells. Furthermore, it
is compatible with existing manufacturing processes, which offers significant advantages.
Recently, Jeong et al. created a transparent conductive film made of an Ag nanowire-PVP
composite through R2R coating (Figure 5) [48]. They achieved selective calendering by
continuous R2R patterning using an embossed pattern roll, resulting in a pattern line width
of 0.1 mm and spacing of 1 mm. R2R coating also has the ability to align the Ag nanowires
by adjusting the coating conditions (Figure 6) [49]. Current research on R2R coating is
focused on further innovations such as optimizing the drying process and improving the
substrate-handling systems, which will enhance its efficiency and applicability to diverse
industrial applications [39,44–47].
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Figure 5. R2R-processed continuous patterning by selective calendering: (a) schematic illustration
of patterning via R2R manufacturing; (b) selective calendering mechanism of Ag nanowire-PVP
transparent conductive film using an embossed pattern roll; (c) pressure-sensitive paper pressed by
an embossed pattern roll; and (d) comparison of the resistance between the unpressed and pressed
part in a single-line pattern. Reproduced from Ref. [48] under the Creative Commons Attribution 4.0
International (CC BY 4.0) License.
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2.4. Spin Coating

Spin coating is a prevalent method of applying thin films to substrates at labora-
tory scale [50–53]. This method involves spinning a substrate to evenly distribute an Ag
nanowire solution over it, which offers precise control over the film thickness. However, its
scalability is somewhat limited compared to other coating techniques. Current research
on spin coating is focused on expanding its applicability by investigating new spinning
techniques, exploring alternative solvents, and optimizing spin parameters to achieve
larger-scale uniformity without compromising precision. For example, Zhang et al. pre-
pared an Ag nanowire electrode by spin coating (Figure 7) [54]. They compared four
common experimental methods, that is, Mayer rod coating, spin coating, spray coating,
and vacuum filtration, to create transparent conductive films using a single type of Ag
nanowire. Among the coating methods, spin coating was found to be well-suited for
preparing small-sized Ag nanowire films that displayed excellent bending stability. By
contrast, spray coating required precise control of the process parameters such as spray
distance and traveling speed to obtain uniform Ag nanowire coatings; vacuum filtration
required longer times to form Ag nanowire layers; and Mayer rod coating posed the risk
of scratching the substrate owing to direct rod contact. Therefore, spin coating remains a
valuable technique in research and development, especially for producing uniform films for
in-depth electrical, optical, and mechanical analyses [50–53]. In addition, Lee et al. found
that the spin coating can produce differently aligned Ag nanowire electrodes by adjusting
the spin coating conditions (Figure 8) [55].
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setup (ii) with inset polarized optical microscope images of the as-deposited Si nanowires; (b) the
forces involved in the off-center spin-coating mechanism, including Inertial (centrifugal) Force I,
due to centripetal acceleration (blue), Inertial Force II (red), due to tangential acceleration, and the
resultant force (green); (c) the sequential influence of the resultant force upon the uniaxial alignment
of the NWs that are in partial contact with the substrate surface. Reproduced from Ref. [55] under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License.

2.5. Doctor-Blade Coating

Doctor-blade coating is a precise technique for spreading Ag nanowire solutions onto
substrates using a specialized blade [56–58]. This method offers meticulous control over
the film thickness and uniformity, making it particularly promising for applications where
these characteristics are paramount. Recent developments in doctor-blade coating have
focused on improving the blade design and exploring innovative materials for the blade
itself to refine the coating process. Yoon et al. studied the effect of doctor-blading conditions
on the electrical properties of Ag nanowire electrodes (Figure 9) [59]. The blade height
and speed were the main parameters that determined the electrical properties of the Ag
nanowire electrodes. They found that a lower blade height correlated with lower electrical
resistance, and that the optimal blade speed was 20 mm/s. The ability to tailor the film
properties using this technique makes it a valuable tool in both research and industrial
settings. Consequently, doctor-blade coating is likely to see increasing use to meet the
growing demand for tailored transparent conductive films [56–58].
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Doctor-blade coating shows excellent promise for the large-scale and cost-effective
production of transparent conductive films on flexible polymeric substrates for applications
including flexible electronics, touchscreens, and solar cells. This underscores the versatility
and practicality of doctor-blade coating. Current research in this area is focused on explor-
ing alternative materials, sustainable fabrication techniques, and integration with emerging
technologies, highlighting the potential for continued innovation in doctor-blade-coated
transparent conductive films.

2.6. Inkjet Printing

Inkjet printing is a digital deposition method that has gained popularity for its ability
to precisely deposit Ag nanowire ink in controlled patterns on diverse substrates [60–63].
This technique enables intricate designs and patterns to be created, making it ideal for pro-
ducing electronic circuits and displays. Recent innovations in inkjet printing technologies
have focused on enhancing the printing resolution, exploring new ink formulations, and
expanding substrate compatibility. For example, Wu et al. prepared Ag nanowire flexible
transparent conductive films by inkjet printing (Figure 10) [64]. They tailored various
factors, such as the surface tension and viscosity of the ink and the contact angle between
the Ag nanowire ink droplet and PET substrate, and investigated the effect on the electrical
properties of the prepared Ag nanowire layer. The best optical and electrical properties



Inorganics 2024, 12, 65 9 of 16

were achieved when using an Ag nanowire ink with a concentration of 0.38–0.57 mg/mL
and a post-coating heat treatment at 60 ◦C for 10 min. In addition, Reenaers et al. showed
that the final performance of electrodes fabricated by ink jet printing was mainly influenced
by the post-sintering conditions (Figure 11) [65]. The adaptability of inkjet printing to
different substrates, including flexible ones, makes it a promising method for applica-
tions requiring intricate designs and patterns, including advanced electronic devices and
wearable technologies [60–63].
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of each population). (B). The layer thickness decreases linearly when increasing the sintering distance
for JS-A102A at a flashing intensity of 100% and a flash and cooling time of 2 s. (Each data point
is representing the average of 8 to 12 measurements distributed over four to six different samples.
The error bars represent the standard deviation of each population). (C). Reproduced from Ref. [65]
under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.

2.7. Electrospinning

Electrospinning is a less conventional yet innovative approach for preparing Ag
nanowire films. This technique involves generating a nanofiber web on a substrate that
captures Ag nanowires [66–70]. This method is particularly relevant for specialized ap-
plications that require the formation of nanofiber networks. Recent research in this area
has focused on enhancing the nanofiber control, optimizing the solution parameters, and
expanding the range of compatible substrates. Wang et al. deposited Ag nanowires on a
stretchable thermoplastic polyurethane (TPU) substrate to fabricate a stretchable pressure
sensor (Figure 12) [66]. The electrospun Ag nanowire layer exhibited high directionality,
which was advantageous for directional sensing. The Ag nanowire/TPU electrode pressure
sensor demonstrated excellent sensing performance, with a sensitivity of 7.24 kPa−1 within
the range of 9.0 × 10−3 to 0.98 kPa. Notably, the versatility and potential of electrospinning
for applications beyond traditional transparent conductive film applications, such as sen-
sors and advanced filtration systems, demonstrates the impact of further research in this
field [66–70].
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2.8. Gravure Printing

Gravure printing, also known as rotogravure printing, is a high-throughput technique
for transferring ink from engraved cells or depressions on a printing cylinder to a sub-
strate [71–74]. The engraved cells are filled with ink, after which excess ink is removed
from the surface, leaving ink only in the depressions. The substrate is then rolled over the
cylinder to transfer the patterned ink. This technique is particularly beneficial in the field of
printed electronics, as it offers an efficient and cost-effective method of producing conduc-
tive patterns, including electrodes, on various substrates. When applied to the deposition
of Ag nanowires, gravure printing combines the advantages of traditional intaglio printing
with the unique properties of Ag nanowires, resulting in the preparation of flexible and
transparent conductive films suitable for diverse applications [75]. Notably, gravure print-
ing allows precise control over the amount of ink transferred, ensuring uniformity of the
electrode pattern. This is particularly important for applications such as electronic devices,
because the performance is highly dependent on the consistency and reproducibility of the
deposited film [71–74].

Ag nanowire ink for gravure printing is prepared by dispersing Ag nanowires in
a solution along with suitable binders and solvents. The viscosity, surface tension, and
other rheological properties of the ink must be optimized to achieve good transfer and
pattern formation during printing. In addition, the use of stabilizing agents in the ink is
essential to prevent nanowire agglomeration and maintain a stable dispersion for uniform
printing. Li et al. fabricated Ag nanowire layers on glass substrates through gravure
printing (Figure 13) [76]. They used an organic–inorganic nanohybrid ink prepared by
incorporating an alkoxysilane-functionalized amphiphilic polymer precursor into a SiO2–
TiO2 hybrid network (denoted as AGPTi) [76]. The gravure-printed Ag nanowire layers
had uniform line widths of 490 ± 15 and 470 ± 12 µm, as well as excellent mechanical
stability after 1000 bending cycles. Postprinting treatments such as thermal annealing
or chemical treatments are often employed to enhance the conductivity and adhesion
of Ag nanowire electrodes [71–74]. These treatments remove any residual binders and
improve the interconnections between the nanowires, ultimately optimizing the electrical
performance of the printed electrodes.
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The transparency and conductivity of Ag nanowires make them well suited for use
in optoelectronic devices, and the scalability of gravure printing is ideal for large-scale
production [71–74]. Gravure printing is also versatile in terms of substrate compatibility,
enabling the deposition of Ag nanowire electrodes on a wide range of materials, including
flexible and transparent substrates. Consequently, the gravure printing of Ag nanowire
electrodes is a promising technique for producing conductive patterns, including electrodes,
on various substrates. Current research in this area is focused on maintaining ink stability,
optimizing printing parameters, and ensuring the long-term stability of printed patterns.
Future directions may involve the exploration of novel ink formulations, advances in print-
ing cylinder technologies, and the development of in-line monitoring systems to enhance
the precision and reproducibility of the printing process [71–74]. The ongoing exploration
and refinement of Ag nanowire gravure printing in the field of printed electronics will
contribute to the advancement of technologies that rely on high-performance, cost-effective,
and scalable conductive patterns.

3. Additional Considerations for Ag Nanowire Layer Formation

There are several additional considerations for Ag nanowire layer formation. First,
the choice of flexible polymeric substrate, like PET [77,78] or polyethylene naphthalate
(PEN) [79,80], significantly impacts the mechanical, thermal, and adhesion properties of
the prepared film. Recent advancements in coating techniques offer the possibility of
tailoring these properties for specific applications, such as achieving mechanical flexibility
for applications involving bending or stretching. Second, postcoating treatments such as
drying and annealing are highly effective for enhancing the electrical conductivity and
mechanical performance of a prepared film [14,15,20,30,31]. Researchers are continuously
optimizing these treatments to improve film characteristics, including the morphology
and Ag nanowire orientation. Advanced characterization techniques, including electrical
conductivity measurements; optical transmittance analyses; and structural evaluations
using scanning electron microscopy and atomic force microscopy, provide crucial insights
for refining and optimizing post-fabrication processes [4,74,75,81]. Finally, the scalability of
coating methods significantly influences their suitability for different applications [1,82–86].
R2R coating offers excellent scalability for mass production, whereas inkjet printing and
spray coating offer advantages in terms of speed and efficiency.

Ag nanowire-coated films have diverse applications in flexible electronics, touch-
screens, and solar cells. The exceptional properties of Ag nanowire-coated films, including
transparency, flexibility, and conductivity, position them as essential components in the
rapidly evolving field of flexible and transparent electronics.

Researchers are also actively exploring alternative materials and sustainable fabrica-
tion techniques, aiming to integrate these innovations with emerging technologies. This
pursuit is driven by challenges including cost-effectiveness, scalability, and achieving
uniformity over large areas. The complex interplay between coating methods, substrate
choices, post-treatment processes, and characterization techniques should be more closely
explored in future research to unlock new applications and breakthroughs in the field of
transparent conductive films on flexible polymeric substrates.

4. Summary

Ag nanowire electrodes present a compelling alternative to traditional ITO electrodes
for optoelectronic applications owing to their remarkable conductivity, flexibility, and
transparency. This review explores recent trends in Ag nanowire electrode coating tech-
nologies. There are diverse coating methods for depositing Ag nanowires on flexible
polymeric substrates, each with unique advantages for specific applications and production
scales, as well as distinct challenges. Future research on these techniques will result in
greater precision, uniformity, and substrate compatibility. The evolution of the field of
Ag nanowire electrodes hinges on the development of these coating methods to meet the
rapidly changing needs of diverse and advancing technologies.
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