
Received 8 February 2024, accepted 24 March 2024, date of publication 1 April 2024, date of current version 5 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3383318

Motion Generation and Analyzing the User’s
Arm Muscles via Leap Motion and Its
Data-Driven Representations
JONG-HYUN KIM 1, JUNG LEE2, AND YOUNGBIN KIM 3, (Member, IEEE)
1Department of Design Technology, College of Software and Convergence, Inha University, Michuhol-gu, Incheon 22212, South Korea
2Department of Computer Engineering, Hanbat National University, Yuseong-gu, Daejeon 34158, South Korea
3Graduate School of Advanced Imaging Science, Multimedia & Film, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Youngbin Kim (ybkim85@cau.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Basic Science Research
Program through NRF funded by the Ministry of Education (Contribution Rate: 60%) under Grant 2022R1F1A1063180; in part by the
Institute for Information & Communications Technology Planning & Evaluation (IITP) through Korean Government (MSIT) (Artificial
Intelligence Graduate School Program, Chung-Ang University, Contribution Rate: 10%) under Grant 2021-0-01341; in part by NRF
through Korean Government (MSIT) (Contribution Rate: 10%) under Grant NRF2022R1C1C1008534; and in part by the Ministry of
Culture, Sports and Tourism, and the Korea Creative Content Agency (Contribution Rate: 20%) under Project R2020040186.

ABSTRACT In this study, we introduce a novel framework for practicing and analyzing arm muscles in
motions, such as juggling actions, by estimating the hand motion of the user using a Leap Motion device.
The proposed method can map the movement of a ball in a virtual world to the hand motion of the user
in real time and visualize the relaxation and contraction of muscles to determine the amount of exercise
performed. Our procedure has five sections: 1) The Leap Motion device tracks the hand position of the user.
2) A behavioral pattern in which a user throws a ball is defined as an event. 3) The hand motion is mapped
to the ball based on the hand position of the user using the proposed parabola-based particle approach.
4) The quantity of muscle activity is visualized and analyzed in relation to the degree of arm bending. 5)
Finally, we propose a method that utilizes the symmetry data-driven approach to extend solvers, enabling
the efficient handling of avatar juggling motions in a virtual environment, based on user actions. Moreover,
this method enhances the results by allowing diverse control over the virtual ball’s trajectory to match the
user’s pose. Consequently, the proposed system enables real-time juggling in a virtual environment, as well
as practice and analysis of the arm muscle activity of the user. The outcomes of the analyses are expected
to be applied in various industries, including healthcare. In the solver extensions, we do not utilize all the
hand position information of the user. Instead, we base the trajectory of one hand on the data of the other
hand, synthesizing it through a data-driven approach. This results in a relatively lightweight algorithm that
generates the avatar’s juggling motion. Additionally, by leveraging the user’s pose and parabolic motion,
we can arbitrarily synthesize the trajectory of the virtual ball, facilitating the easy creation of a variety of
scenes.

INDEX TERMS Leap motion device, hand motion, arm muscles, healthcare, virtual environments, data-
driven, motion generation.

I. INTRODUCTION
The mechanical structure of the musculoskeletal system
affects how the human body moves. The human skeleton
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supports the body, and the muscles contract and relax in
response to the skeleton’s movement [1], [2], [31]. Physics-
based systems relying on the user’smuscles have been created
in several ways, including directing a person’s posture and
movement [3], [32], [33], [34]. Methods for reproducing the
natural posture and movement of the human body based
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on the mechanics of the musculoskeletal system have been
investigated continually in the field of computer graphics [4],
[5], [35]. To adapt these ideas to virtual reality (VR) and
augmented reality (AR) environments, various issues must
first be addressed: 1) The movements of the user must be
captured in real time, and stability of motion capture is just
as critical as real-time performance in this process. 2) The
ability to control the movement of an object in the virtual
environment using the user’s hand movement should be
possible. If the object’s movement in the virtual environment
differs from the user’s movement, the sensation of immersion
is unavoidably diminished. 3) Finally, it must track regions of
the body, such as thewrist, that are difficult to track using only
hand movement.

Recently, haptic full body suits have been frequently worn
in VR to maximize immersion and visual impacts [6], [36].
However, because these devices are primarily employed
to acquire high-quality motion data for use in films and
are prohibitively expensive for common users, this study
involves the use of Leap Motion, a little gadget that precisely
tracks hand movements [7], [37]. The three issues described
previously must be overcome, as the degree of relaxation and
contraction of the arm muscles can only be assessed through
hand movements.

Choi et al. developed an interaction rule based on
recurrent behavior patterns in arm movements, such as
juggling, and offered a technique for synthesizing juggling
movements from data [8] (see Figure 1). As with our work,
this technique simulates juggling motions by studying the
user’s movements rather than using real objects. However,
because only the rotation of the arm in a fixed position is
considered, the motion is rather limited, and because it is
based on Kinect, the entire skeleton must be precisely tracked
to calculate wrist or elbow movement, creating a stability
issue.

FIGURE 1. Juggling motion in previous studies [8]. The skeleton displays
motion clips that were generated using motion capture data. The attach
and detach parts are denoted by red and blue lines, respectively.

The Hill-type muscle model, which is based on the
physics of human muscles, is utilized in a variety of fields,
including computer graphics, ergonomics, and robotics,
and it is based on non-linear contractile mechanics of

muscles [9], [10]. However, owing to the huge amount
of calculations necessary, real-time processing is difficult,
making it incompatible with interactive systems, such as
mixed reality. Because numerous physical parameters of the
Hill-type muscle model, such as pennation angle, maximum
force, and way-point, must be set individually for each
muscle movement, a sophisticated parameter tuning process
is required to get the desired outcome.

While several simulation and control approaches [11],
[35] have been developed by merging skeletal and muscular
models, it is challenging to extend them to an interactive
system that controls virtual objects in response to the
user’s movements. Lee et al. [11] suggested a musculoskele-
tal simulation technique that utilizes a polyhedral-based
volumetric structure and a line-segment controller to express
muscle action via the skeleton. Si et al. [12] offer a vol-
umetric simulation for visualization purposes, and similar
to the finite element method (FEM), the skeleton and
muscles are expressed using a line-segment controller.
Fan et al. [13] stably expressed movement of the skeleton
using the movement of volumetric primitives. Nonetheless,
control system difficulties comparable to those reported by
Si et al. [12] were discovered. Although volumetric mus-
cles [38] are extensively utilized to control face animation,
lack of joint structure in skeletal elements such as the
mandible creates issues with the quality and stability of the
output.

In this study, we use real-time analysis of hand movements
to generate juggling motions based on physics rather than
rule-based synthesis. We present a framework to visual-
ize and assess muscular relaxation and contraction using
approximated wrist movements that are easily identifiable by
users.

II. RELATED WORKS
In this section, the kinematic motion synthesis techniques
and the physically-based motion control methods related to
data-based motion prediction and physically-based motion
synthesis are reviewed. The user’s motion synthesis tech-
niques used in robotics or character animation are also
discussed.

A. KINEMATIC LOCOMOTION CONTROL
A graph-based method is an approach commonly used in
the early stages of data-driven motion synthesis [14], [39],
[40]. In this method, transition motion between example
motion clips is allowed only at preselected transition points
according to the motion specifications of the user. This
method is easily used in a static environment. However, it is
inappropriate in the synthesis of highly responsive online
motions such as those in a constantly changing environment
because of the characteristics of the algorithm. Although
a learning-based approach for real-time motion synthesis
has been proposed recently [15], [16], [17], [18], [41], the
extension of the algorithm to process external objects, such
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as moving a ball in an online manner, has not been clearly
described, and the algorithm extension seemed complicated.
In this paper, a physically-based method, using a technique
to measure the user’s hand motion [42] and physics to match
the ball’s motion, is proposed. The proposed method, unlike
the learning-based approach, allows us to synthesize smooth
motions, such as juggling without heavy preprocessing,
and realize motion transitions, such as catching the ball or
throwing the ball harder.

B. PHYSICS-BASED MOTION CONTROL
The physics-based motion control has been intensively
studied for several years in the computer graphics field; in
addition to waking motion [19], [20], [21], [22], [43], [44],
[45], [46], non-walking motions, such as martial arts kicks,
crawling, jumping, and dancing, were also addressed [23],
[24], [25], [26], [27], [30]. The dynamic equations for
whole-body motion control have problems of discontinuities
due to changes in contact points with the environment.
Liu et al. solved this problem using a control graph
representing rapid changes of contact in an example motion
clip [25]. Han et al., using the soft contact method, solved the
problem due to the discontinuous motion problem [24]. They
focused on reference motion tracking and did not take the
interaction between characters and moving external objects
into consideration.

C. USER’S MOTION-BASED INTERACTION CONTROL
In robotics, some authors attempted to have a humanoid robot
play with a ball [28], [47], [48], [49], [50]. The football
motions were limited to kicks while standing or walking
owing to their complex physical mechanisms.

Various techniques for synthesizing soccer motion have
also been proposed in the field of character animation. Jain
and Liu proposed a method of editing interactive motion,
the interaction between human and football ball [51]. This
method automatically generates the trajectory of the ball
based on simple rigid body mechanics by considering the
contact with body parts. The timing and site of contact
between the ball and body parts were manually determined
by the user. This method focused on the human motion and
ball trajectory, did not consider whole-body dynamics, and
expressed only the motion (e.g., one with strong stretching)
observed in a fast-moving ball. Choi et al. proposed a
data-driven method to generate 2D juggling motions, such
as hand juggling, soccer juggling, and in-place basketball
dribbling after analyzing kinematic information such as
end-effector velocity [8], [29]. Ding et al. proposed a
low-dimensional linear feedback strategy that effectively
retrieves the control policy to generate a simple motion of
kicking a soccer ball while fixing the hip [52]. Peng et al.
proposed a framework that learns a control policy for walking
motion by providing a soccer-specific reward function
to induce a character to dribble the ball to the desired
destination [21].

FIGURE 2. Leap Motion controller can be used to create a virtual touch
surface in the air.

III. PROPOSED FRAMEWORK
A. GETTING HAND POSITION FROM LEAP MOTION
DEVICE
In this study, the position of the hand is tracked using a
Leap Motion device. We used a depth camera based on the
working principle similar to that of the Kinect, produced by
Microsoft, but has a sensitivity 200 times higher; thus it can
detect movements of up to 1

100 millimeters. Leap Motion has
been used in various fields owing to its intuitive interface in
that it recognizes motion in the area close to the monitor,
while Kinect recognizes motion from a position a little farther
from the front for a full-body scan of the monitor.

In this study, the hand position of the user is determined
using the Leap Motion (see Figure 2) mentioned above.
To calculate the juggling motion from this information, the
ball is moved in the direction of the vector in which the hand
moves when the magnitude of the change in hand motion is
greater than the predetermined level (see Listing 1).

LISTING 1. Getting hand coordinates in Leap Motion device.

For the codes above, handXBasis, handYBasis, and
handZBasis represent the coordinates when moving along
the X ,Y ,Z axes, respectively, and handOrigin represents the
origin position of the hand. The X -axis indicates a positive
number when moving to the right and a negative number
moving to the left, and this is true in other axes.

Figure 3 shows the ball movement resulting from an
external force, in this case, both hands. By default, collision
processing was not applied between the ball and the hand,
and it was designed for the ball to be attached to the hand
when near it. As shown in Figure 3, on the application of an
upward force as if bouncing hands, the ball moves upward
accordingly. In this process, the faster movement of the hand
caused stronger force, leading to faster movement of the ball
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FIGURE 3. Ball movement in response to hand movement (black arrow:
ball trajectories by external force).

(see Equation 1).

F =
(
m
dv
dt

)
Fh = (ma)Fh (1)

where, m is weight, v is velocity, a is acceleration.

B. PARABOLIC BALL MOVEMENT USING INVERSE
DYNAMIC APPROACH
The forward dynamics approach described in the previous
section is a method of calculating the movement of the ball
using an external force (see Figure 4). The application of this
method to juggling motion needs information on the exact
magnitude of external force required to move the ball from
one hand to the other. Even a slight difference between them
can cause the ball to fall to a location other than the hand,
leading to failure in generating juggling motion.

FIGURE 4. Calculated motion of ball with forward dynamics by external
force.

Since the juggling motion follows a parabolic trajectory,
we propose a mapping function that maps the movement of
the ball inversely based on the hand position. To formulate
this mathematically, we assume that the parabolic motion
is performed on a 2D plane. Assuming that the ball moves
on a plane and that gravity, g, is applied in the direction
perpendicular to the X axis, the motion equation of motion
in the form of Euler integral is as follows (see Equation 2).

vz = vz0 (2a)

vy = vy0 − g1t (2b)

x = x0 + vz01t (2c)

FIGURE 5. Parabolic motion graph.

y = y0 + vy01t −
1
2
g1t2 (2d)

where, {x, y} is location,
{
vx , vy

}
is velocity, 1t is time-step,

and
{
vy0, vz0

}
is initial velocity.

Since parabolic motion shows the same trajectory as a
projectile and is affected by speed and gravity at the initial
stage, the above equation could be converted into simple
harmonic motion, and the converted equation is as follows
(see Equation 3).

vz0 = v0cosθ01t (3a)

vy0 = v0sinθ01t −
1
2
g1t2 (3b)

1t =
2v0sinθ

g
(3c)

where, 1t is the time the ball stays in the air. To obtain the
maximum horizontal movement distance, 1t was substituted
into Equation 3a, and the velocity was obtained using d as
shown below (see Equation 4).

d =
v20sin2θ

g
(4a)

d · g = v20sin2θ (4b)

v20 =
d · g
sin2θ

(4c)

The distance traveled per unit time was obtained by
assuming that the distance from the position of the hand
is fixed, establishing the parabolic equation and calculating
inversely the velocity. This was used in calculating the dis-
tance traveled per unit time along the trajectory. Equation 5a
and Equation 5b show the velocity of the ball calculated using
the distance, Equation 5c and Equation 5d are the positions
calculated by integrating the velocities of the horizontal
and vertical components over 1t . Figure 5 shows a chart
expressing this movement as a chart.

vx = v0cosθ (5a)

vy = v0sinθ − g1t (5b)

x = v01cosθ (5c)

y = v01sinθ −
1
2
g1t2 (5d)
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FIGURE 6. The problem of the ball stuck in hand (black arrow : direction
of external force).

Though the trajectory of the ball calculated using the
equations mentioned above is a parabolic one, the shape is
unnatural since no acceleration was applied. The acceleration
calculated based on the change in hand position was added
to the parabolic-based motion as an external force (see
Equation 6).

Fa = ma (6a)

a =
dv
dt
=

d
dt
dp
dt
=
d2p
dt2

(6b)

The ball was set to be projected in the direction calculated
using the orientation of the hand. In this case, there may be
a problematic situation where the position of the flying ball
is in contact with the hand. The ball is stuck to the hand;
thus, flying is interrupted (see Figure 6). To address this issue,
when throwing the ball, the event where the ball sticks to the
hand for an extended time is disabled. The delay time is set
to 31t in this case.
Since both hands and two balls are used in juggling, the

distances between the hands and the balls were calculated
so that a hand catches the ball whose distance is shorter
than the predetermined one. In addition, it was set to follow
the parabolic trajectory mentioned above in juggling motion.
While calculating the direction and magnitude of the force
of the thrown ball, the distance between the two hands,
acceleration of the hand, and slope were applied to make the
ball fall accurately onto the position of the opposite hand (see
Figure 7).

FIGURE 7. Two-handed juggling motion (black arrow: ball trajectories by
external force).

If the right hand suddenly moves after the ball, thrown by
the left hand, moves in a parabolic trajectory, the ball may not
reach the right hand. If the right hand moves toward the ball,
the ball is stuck to the right hand, allowing the user to interact
continuously.

C. RELAXATION AND CONTRACTION OF MUSCLES
USING ARM BENDING
This section discusses a method to model a virtual wrist
shape to calculate the arm momentum using user hand
motion. Since the Leap Motion device provides only
information on the position of the hand, it has limitations
in analyzing arm movement or muscle mass. To overcome
this problem, we modeled an imaginary wrist. Additionally,
we approximated the momentum of the muscle using the
bending between the wrist joints during juggling.

We modeled the arm using the movement of the hand
by dividing it into two sub-arm structures, the upper arm
(Brachium) and the forearm (Antebrachium) (see Figure 8).
After obtaining a vector from the position of the third finger
to the position of palm (see black arrow in Figure 8), the
vector was scaled to calculate s2. s1 was calculated by rotating
the head of s2 by a user-specified angle. These procedures
were performed for both hands to model sub-arm structures.
The final main body was made into a hexahedron shape,
and the virtually modeled arms were placed at the center
of the main body. The method described above models the
skeleton using the positions captured by Leap Motion. The
site connected to the main body (see the blue sphere in
Figure 8) was fixed, and the movement of s1 and s2 varied
depending on the position of the hand. The rotation angle in
the process of changing from s2 to s1 was set to 120◦. This
angle was allowed to be adjusted by the user, and 120◦ is a
value obtained from normal juggling motion.

Figure 8 shows a posture, which was set as the default
posture in this study since it is an initial and ready posture
in actual juggling.

FIGURE 8. Main body and arm skeleton (blue sphere: fixed position).

This study considered the fact that the actual relaxation
and contraction of the muscle is affected by bending (see
Figure 9), and the bending information is calculated as
follows (see Equation 7 ). In this study, this information is
used after being normalized as 0∼1.

sb = cos−1
(

s1 · −s2
∥s1∥ ∥−s2∥

)
(7)

To calculate the muscle momentum using the wrist joint,
the muscles frequently used due to bending of the wrist, not
the entire muscle of the arm were segmented into patches
before analysis (see Figure 10).

Muscle contraction and relaxation during juggling exercise
are largely divided into two movements. Since the juggling
motion of throwing the ball has only two situations, bending
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FIGURE 9. Bending force caused by folding of skeleton.

FIGURE 10. Segmentation of the patch from the arm model.

and stretching, this study considers only these two situations.
The situation for calculating the bend is as follows:

1) arm bending: when sb is 0∼0.5 (see Figure 11a)
• contracting muscle: a color close to blue
• relaxing muscle: a color close to red

2) arm stretching: when sb is 0.5∼0.9 (see Figure 11b)
• contracting muscle: a color close to blue
• relaxing muscle: a color close to red

FIGURE 11. Muscle contraction and relaxation calculated by bending of
the joint.

Considering that, in juggling movement, the muscle
contracts when the arm is raised, and it relaxes when the
arm is lowered, we can observe the muscle contraction
and relaxation during the juggling movement in real-time.
Muscle contraction occurs when the arm is stretched to
throw the ball upward in the juggling movement, and in this
process, the value of sb is 0∼0.5 (see Figure 11a). Muscle
relaxation occurs when the arm is lowered while turning
it after throwing the ball in the juggling movement (see

FIGURE 12. Chart depicting changes in vertical velocity, with red, green,
and blue representing the Y-axis variations for the wrist, palm, and
middle finger, respectively.).

Figure 11b). We visualized the determined contraction and
relaxation of muscles by converting them into color.

IV. SOLVER EXTENSIONS
In this section, we discuss extending the algorithm to not
only generate avatar motions but also various forms of ball
trajectories in a data-driven manner, leveraging the Leap
Motion device and user poses. We utilize the previously
mentioned Leap Motion device to capture the user’s motion
data and acquire juggling actions. During this process, the
movements of the user’s right hand are captured and saved
in a CSV file. The similarity between the stored data and the
input data is computed to select the most similar motion clip.
Since only the data of the right hand is used, the data-driven
method is employed to virtually generate symmetrical data
for the left hand. Subsequently, based on the data of both the
right and left hands, a ball moving in the virtual environment
is generated, and a juggling animation synchronized with the
avatar’s movement is synthesized.

A. MOTION DATA GENERATION
This section elaborates on the methodology for capturing the
user’s handmotion and generatingmotion data. Users interact
with the Leap Motion device to derive data by moving their
right hand. During this interaction, the positional coordinates
of the user’s right wrist, palm, and middle finger are recorded
in a CSV file. Subsequently, the stored positional data
is utilized to calculate the vertical velocity, serving as a
benchmark for when the avatar throws or catches the ball.
The change in vertical velocity is graphically represented,
with red indicating the wrist, green the palm, and blue the
middle finger (see Figure 12). Based on the vertical velocity,
frames where the velocity is negative are identified as the
catching frames of the ball, while those with positive velocity
are recognized as the throwing frames.

B. CALCULATING SIMILARITY
Before calculating the similarity between the input motion
and the pre-stored motion data, the frames where the
maximum speed occurs during catching and throwing are
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FIGURE 13. Diagram illustrating the structure of the frame at maximum
speed.

determined. Subsequently, two sub-intervals are classified: 1)
from the first frame to themaximum speed frame, and 2) from
the maximum speed frame to the last frame (see Figure 13).
This division results in a total of four sections. Within these
sections, similarity is computed utilizing the motion vector
and the travel time.

The calculation of similarity is based on the previous
methodology [8]. The first term computes the similarity
concerning the motion and travel time, while the second term
indicates the similarity related to rotation (see Equation 8).

D = w1DM
(
Mi,Mj

)
+ w2DT

(
Mi,Mj

)
(8)

The notations used in the above equation are detailed in the
following section, categorized by the type of similarity.

1) MOTION VECTOR AND TRAVEL TIME SIMILARITY
In this section, we describe the methodology for calculating
the similarity between the vectors and travel times of the
input motion data. The similarity is determined by utilizing
the differences between the motion data inputs across each
interval. Subsequently, a weighted product is computed
across the four intervals to calculate the first term, DM (refer
to Equation 9). This process is repeated for each of the right
hand’s wrist, palm, and middle finger data.

DM
(
Mi,Mj

)
= wv

4∑
i=1

∥∥vi − v′i∥∥+ wd 4∑
i=1

∣∣di − d ′i ∣∣ (9)

Here, wv represents the weight for the motion vector, and
wd represents the weight for the travel time. Additionally, vi
and v′i respectively denote the i-th motion vector of the input
motion and the motion clip. Similarly, di and d ′i represent
the i-th travel time of the input motion and the motion clip,
respectively. The values for vi and di are calculated as follows:
vi← pi+1 − pi, di← di+1 − di.

2) ROTATION SIMILARITY
In this section, we also delve into the methodology for
calculating the rotational similarity of poses, irrespective
of the position and direction of the input motion data.
This involves comparing the rotational similarity between
the input motion data to identify the smallest value (see
Equation 10).

DT
(
Mi,Mj

)
= minθ,x0,z0

∑
k

wk
∥∥pi,k − Tθ,x0,z0pj,k

∥∥ (10)

θ = arctan

∑
i wi

(
xiz′ − x ′zi

)
−

(
x̄iz̄′ − x̄ ′z̄i

)∑
i wi (xix

′ − z′zi)−
(
x̄ix̄ ′ − z̄′z̄i

)
(11)

FIGURE 14. Visualization showcasing the integration of rotational motion
into the ball’s parabolic trajectory.

Here, θ denotes the angular equation, and x0 and z0 are
calculated as follows: x0 ←

(
x̄ − x̄ ′cosθ − z̄′sinθ

)
, z0 ←(

z̄− x̄ ′cosθ − z̄′sinθ
)
. Tθ,x0,z0pj,k represents a linear transfor-

mation that rotates by θ around the Y -axis and then translates
by (x0, z0). Furthermore, pi,k and pj,k correspond to the points
generated from the i-th frame of the input motion data and
the j-th frame, respectively. The weight wk totals to 1, having
its largest value in Mi and Mj, and diminishing as it moves
away from neighboring frames. Here, x̄ =

∑
i wixk , and

other terms with bars follow a similar notation. Our approach
aims to identify the smallest rotation difference calculated by
the above equation. This process is reiterated for each of the
wrist, palm, and middle finger data.

To generate the motion of a player handling virtual objects,
the selected motion clips are concatenated based on the
method described previously. The connection of motion clips
involves blending the second combining section of the first
motion clip with the first combining section of the second
motion clip (see Equation 12).

α (t) = 2t3 − 3t2 + 1 (0 < t < 1) (12)

Here, t represents the normalized time in the blending section.

C. SYNTHESIZING VIRTUAL OBJECTS WITH DATA-DRIVEN
Since we only stores the data of the right hand, real-time
synthesis of the left hand’s movement is necessary to apply
a two-handed juggling animation. As the left hand rotates
opposite to the right hand during juggling actions, the motion
data is read in reverse using Unity3D’s StreamReader and
synthesized with a time difference to render a natural juggling
motion. Moreover, as the left hand represents synthesized
data, its speed is dependent on the speed of the right hand’s
data. Before and after the user throws the ball, the avatar holds
the ball, making the ball move along with the avatar. This
process easily determines which hand the ball is in through
state variables.

In addition to the avatar, the trajectory of the virtual ball
is implemented using the method described in Section III.
Furthermore, this process allowsmapping not just simple jug-
gling trajectories but also various motions of the virtual ball.
We have efficiently controlled the monotonous trajectory of
the ball by adding rotational motion to the trajectory of the
ball as proposed earlier (see Figure 14). The rotational motion
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demonstrated in the results is calculated using the following
equation (see Equation 13).

pos.y = ν.y+ cos(θ)r (13a)

pos.z = ν.z+ sin(θ)r (13b)

θ+ = χ1t (13c)

Here, θ represents the rotation angle of the ball, ν denotes the
position of the ball calculated through parabolic motion, and
χ is the rotation speed. This approach is applied when the
ball is not positioned at the hand position, thereby preventing
unstable simulation states during the process of the user
catching and throwing the ball.

V. IMPLEMENTATION
This study was implemented in the following environment:
Intel i7-7700k 4.20 GHz CPU 32 GB RAM, NVIDIA
GeForce GTX 1080 Ti graphics card. Unity3D and Leap
Motion device were used for IDE and hand tracking device,
respectively. Although the performance of the proposed
method is sufficient to be utilized as a real-time application,
if the resolution required for the 3D arm model to visualize
muscle relaxation and contraction is too high, the overall
performance may deteriorate. We applied mesh simplifica-
tion; this process is not related to the algorithm optimization
proposed herein; therefore, the selection of 3D model for
muscle relaxation and contraction visualization is entirely
dependent on the user. The only human participants in this
study were the authors, and the participants gave informed
verbal consent for their participation.

VI. RESULTS
We analyzed the arm movement of users obtained from the
position of the hand using Leap Motion. The simulation of
virtual ball juggling was based on arm movement. Some
movements were tested to verify the validity of the proposed
method.

A. SIMULATION RESULTS
Figure 15 shows juggling motion resulting from the proposed
method, indicating that the ball is moving stably in a parabolic
trajectory according to the user’s wrist movement. The shape
of the virtual wrist was expressed excellently similar to that in
the real footage (see inset image in Figure15). Since the Leap
Motion device provides only the position of the hand, it is not
possible to clearly determine the bending or movement of the
wrist. By contrast, the proposed method calculated the degree
of bending with high accuracy; based on it, the relaxation and
contraction of the muscle were determined.

Figure 16 presents a visualization of muscle changes
according to various postures of the left hand. Frame
47 shows the moment when the arm muscles are bent
relatively inward by putting the hand close to the chest,
expressing the movement of the arm similar to that in the
real world. (A) shows the triceps muscle, an outer muscle,
and expresses excellently the typical relaxation form in the

FIGURE 15. Two-handed juggling in a virtual environment with our
method (inset image : user motion).

bent arm, and (B), representing the biceps, shows a relatively
strong contraction. This result is the same as the change
in muscle occurring in arm bending. In Frame 89, arm
bending is weaker than in Frame 47 by moving the hand
forward. Though (A) and (B) expressed muscle contraction
and relaxation as in previous Frames, respectively, the degree
of bending was weaker as shown clearly by the change in
color. Frame 121 shows a relaxed muscle resulting from
stretching the arm upward of the left hand, and Frame 47 and
89 show the opposite situation: (A) shows a change in the
contracted muscle, and (B) shows a relatively relaxed muscle.
These results are expressed in the same way as when bending
or stretching an arm, and it is a result showing that the
proposed method captures muscle changes using only the
position of the hand.

FIGURE 16. Visualization of muscle contraction and relaxation of left arm
with our method (red : contraction, blue : relaxation, ‡ : color of (A), † :
color of (B)).

Figure 17 shows the change of biceps, an inner muscle
of the upper arm, with time. The contraction and relaxation
of muscles according to bending are expressed as a chart
where the values increased and decreased for relaxation and
contraction, respectively. In Frame 31, the contraction of the
biceps due to inward bending of the arm is clearly shown
in the chart (see (A) in Figure 17). Frame 56 shows the
stretching motion of arm, a relaxed muscle compared to (A)
(see (B) in Figure 17). The gradual change of Frame from
(A) to (B) represents a shift from contraction to relaxation,
as clearly shown in the chart (see (c) in Figure 17).

Frame 93 shows an arm stretching forward where the
muscle is more relaxed compared to (C) because the arm is
suddenly stretched from the bent state (see (D) in Figure 17).
Frame 121 shows the contraction resulting from a bent arm
again, and Frame 156 shows further contraction, which was
clearly shown in the chart (see (F) in Figure 17).
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FIGURE 17. Graph showing muscle changes of left arm over time.

FIGURE 18. Avatar motion and ball trajectory precisely controlled via the
data-driven method.

FIGURE 19. Experiment scene with an increased arm spacing,
maintaining the configuration as depicted in Figure 18.

B. DATA-DRIVEN RESULTS
In this section, we discuss the results generated through solver
extensions. For representing natural joint movements of the
avatar, Inverse Kinematics (IK) was applied to the avatar
within this study.

Figure 18 showcases the results of the avatar’s motion
and the virtual ball’s trajectory controlled via the data-driven
method as part of solver extensions. The method we propose
not only generates real-time parabolic motion of the ball
but also ensures synchronization with the avatar’s motion.
Notably, by utilizing the data from just one hand, it enables
synchronization of movements for both hands and the virtual
ball, proving beneficial for real-time content applications.

Figure 19 presents the results from a scene with a wider
arm spacing. Our method stably synthesizes avatar motion
even in scenes with wide spacing, ensuring consistent control
over the trajectory of the virtual ball. Conversely, Figure 20

FIGURE 20. Experiment scene featuring a reduced arm spacing,
consistent with the configuration presented in Figure 18.

FIGURE 21. Experiment scene demonstrating varying heights of the ball,
retaining the configuration as exhibited in Figure 21.

depicts the outcomes from a scene with narrower arm
spacing, demonstrating stable results in real-time simulation
as well.

Figure 21 illustrates the results from varying the height of
the virtual ball. The proposed method delivers natural, real-
time animation results by synchronizing the synthesized hand
position above the ball, irrespective of the ball’s height in
the scene, using the data-driven method. During this process,
200 pieces of data were utilized for the data-driven method.

VII. CONCLUSION AND FUTURE WORK
We modeled a virtual ball moving in a juggling trajectory
in real time using the position information of the hand
obtained through the Leap Motion device. We added virtual
arms and joints based on the rotation vector and position of
the hand and showed which muscle the user was using at
given instants by visualizing the relaxation and contraction
of the arm muscles through joint bending. Moreover, our
method extends solvers through the symmetry data-driven
approach, enabling efficient processing of the avatar’s
juggling motion in a virtual environment in response to user
actions. Additionally, it enhances results by allowing diverse
control over the virtual ball’s trajectory to alignwith the user’s
pose.

Our algorithm is designed for individualized juggling
motion and does not account for multi-players. Future plans
include extending this algorithm to control multiple paths by
multiple users and facilitating interaction between players.
Additionally, since the data-driven method relies on data
stored in the database, synthesizing data from a side camera
rather than the front may lead to inaccuracies. Tomitigate this
issue, we plan to harness neural networks in the future.
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