ERA, 32(4): 2514-2540.

EE DOI: 10.3934/era.2024116

AIMS Electronic Received: 31 January 2024

@ Research Archive Revised: 11 March 2024

Accepted: 22 March 2024
http://www.aimspress.com/journal/era Published: 27 March 2024

Research article

GPU-accelerated non-dominated sorting genetic algorithm III for
maximizing protein production

Donghyeon Kim and Jinsung Kim*

School of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea

* Correspondence: Email: kimjsung@cau.ac.kr; Tel: +8228205554.

Abstract: Maximizing protein expression levels poses a major challenge in bioengineering. To in-
crease protein expression levels, numerous factors, including codon bias, codon context bias, hidden
stop codons, homologous recombination, suitable guanine-cytosine ratio, and hairpin loop structure,
are crucial and quantified by six objective functions: CAI, CPB, HSC, HD, GC3, and SL. Optimiz-
ing these six objectives simultaneously constitutes a multi-objective optimization problem, aiming to
identify the favorable Pareto solutions rather than a singular optimal solution. However, achieving
satisfactory solutions requires numerous cycles and solutions, thus leading to a large number of func-
tional evaluations. While there are frameworks for multi-objective optimization problems, they often
lack efficient support for objective function computation in protein encoding. In this paper, we pro-
posed a method to design a set of coding sequences (CDSs) based on non-dominated sorting genetic
algorithm IIT (NSGA-III), accelerated using NVIDIA graphical processing units (GPUs). Experimen-
tal results indicated that our method is 15,454 times faster than the Pymoo framework and is evaluated
using 100 solutions and 100 cycles. Since our GPU implementation facilitated the use of larger solu-
tions and more cycles, we were able to design a superior set of CDSs by increasing solutions to 400
and cycles to 12,800. In addition, our NSGA-III-based method consistently surpassed the NSGA-II
approach when the number of cycles exceeded 3200 by utilizing 100 solutions. Finally, we observed
that a gradual reduction of the mutation probability as the number of cycles increased yielded better
quality results than maintaining a fixed mutation probability.

Keywords: multi-objective optimization; bioengineering; NSGA-III; protein encoding; GPU
computing; computational optimization

1. Introduction

Many real-world optimization problems in engineering and industry involve multiple objectives [1].
In multi-objective optimization problems, improving one objective often leads to the deterioration of

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024116

2515

another. This dynamic makes it impossible to find a single, optimal solution that simultaneously en-
hances all objectives [2]. As a result, finding the best trade-off solutions in multi-objective optimiza-
tion problems is crucial for decision-making [3]. However, in many applied engineering optimization
problems with multiple objectives, the cost of evaluating each objective is considerably high [4, 5].
Therefore, it is of paramount importance to address multi-objective optimization problems efficiently.

In bioengineering, encompassing the development of drugs, vaccines, and diagnostic tests, protein
production plays a pivotal role [6-11]. For example, the S-glycoprotein is vital for antiviral vaccines
against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its production in mam-
malian cells is very expensive [12]. Another example is the production of rapid diagnostic test (RDT),
which is often hampered by the high cost of producing and purifying specific proteins required for kit
assembly in large quantities [13]. Therefore, efficient protein production is of great importance. To
address this challenge, several studies [14—16] have explored methods involving the close integration
of gene copies in organisms. This strategy theoretically enables protein production proportional to the
number of inserted gene copies; however, it also poses a risk of homologous recombination owing
to the close proximity of these copies. Homologous recombination, a phenomenon occurring when
repetitive sequences are in close proximity, can consequently lead to a decrease in protein produc-
tion [17, 18]. Therefore, it is essential to consider homologous recombination when designing a set of
coding sequences (CDSs) to maximize the protein expression levels.

The hamming distance (HD) was introduced to measure the degree of similarity between CDSs,
with higher HD values indicating greater differences in sequences [19]. In addition to homologous
recombination, several other important considerations exist when designing the CDSs for high-protein
expression levels. The codon usage bias refers to the different frequencies of codon usage in the
host organism [20]. Codons with high-usage frequencies in the host organism generally contribute to
efficient protein production [21-23]. Therefore, to maximize protein expression levels, it is crucial to
construct CDSs using codons with high-usage frequencies in the host organism. To assess the codon
usage bias of a CDS, the codon adaptation index (CAI) was introduced by [24] and has been extensively
utilized. However, considering only codon usage bias presents limitations in detecting differences in
usage frequencies among the observed codon pairs in the host organism [25]. The codon context bias
refers to the different usage frequencies of adjacent codon-codon pairs in the host organism [26-28].
To address this, the concept of codon pair bias (CPB) was introduced [29] to evaluate the codon context
bias of a CDS, thus demonstrating that the use of codon pairs with high-usage frequencies in the host
organism maximizes protein expression levels. Therefore, it is important to consider both codon usage
and context biases.

Hidden stop codons (HSCs) are stop codons within a CDS that can prematurely stop protein transla-
tion due to -1 frameshift or +1 frameshift caused by unstable ribosomal ribonucleic acids (rRNAs). If
a -1 or +1 frameshift occurs, it may result in the production of a cytotoxic or nonfunctional protein that
differs from the target protein and leads to a waste of resources [30]. However, the presence of numer-
ous hidden stop codons in a CDS can rapidly terminate mistranslation caused by incorrect ribosomal
frameshifts, thereby facilitating more efficient protein production [31,32].

The hairpin loop, also known as a stem loop, is a secondary structure formed in single-stranded
RNA when two regions oriented in opposite directions pair through complementary base pairing, thus
forming a double helix. This structure serves various biological functions, such as providing recogni-
tion sites for protein binding and playing a role in enzymatic reactions as a substrate [33]. However,

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2516

in messenger RNA (mRNA), the hairpin loop interferes with translation elongation by binding to the
A-site of the ribosome, thereby hindering the binding of transfer RNA (tRNA) [34]. In other words,
the presence of a hairpin loop within a CDS is undesirable for protein expression, as the probability of
mistranslation increases with the length of the stem in the hairpin loop [35]. Therefore, to maximize
protein expression levels, it is essential to consider the hairpin loop when designing the CDS.

Lastly, it is essential to consider the appropriate guanine-cytosine at the third position (GC3) in
the design of the CDS [36]. Excessive or insufficient GC content can lead to poor protein synthesis.
Consequently, in designing CDS for protein encoding, Gonzalez-Sanchez et al. [37] aimed to match the
GC3 content with the host organism’s GC3 ratio. Therefore, to enhance protein expression efficiency,
our method also aims to align the CDS’s GC3 content with that of the host organism.

In this study, we propose a method aimed at accelerating the optimization process for protein en-
coding based on the non-dominated sorting genetic algorithm III (NSGA-III). NSGA-III [38], an en-
hanced version of non-dominated sorting genetic algorithm II (NSGA-II) [39], is the metaheuristic al-
gorithm designed for solving many-objective (four or more) optimization problems. The performance
of NSGA-II and NSGA-III was analyzed in the domain of building performance optimization for the
dormitory building type 1 (DBP-1) and dormitory building type 2 (DBT-2) problems, encompassing 10
and 9 design variables, respectively [40]. The experimental results demonstrated that NSGA-II yields
a higher hypervolume than NSGA-III at a low number of cycles. However, with an increased number
of cycles, NSGA-III consistently exhibited a higher hypervolume than NSGA-II for both problems,
suggesting superior performance with more iterations. Additionally, for the sustainable-reconfigurable
manufacturing system (S-RMS) problem involving 100 operations and 20 reconfigurable machines,
increasing the number of cycles from 1000 to 2000 resulted in the outperformance of NSGA-III com-
pared with that of NSGA-II [41]. Furthermore, the NSGA-III method achieved a success rate of over
93.08% in the trajectory planning problem for the Kiwi fruit harvesting manipulator and outperformed
the NSGA-II method by approximately 21% [42]. However, it is not always guaranteed that NSGA-III
will be superior to NSGA-II for all problems [43].

Consequently, we also conducted a comparative performance analysis of NSGA-II and NSGA-
III for our specific protein encoding problem. In our experiments, when the number of cycles ex-
ceeded 3200, NSGA-III outperformed NSGA-II in all aspects of our protein encoding problem. While
NSGA-III can improve the quality of the solutions by increasing the number of cycles and solutions, it
also presents the challenge of increased running time [44]. Our GPU-based method enables the faster
execution of a greater number of solutions and cycles. We compared the performance of the NSGA-III
method as provided by the Pymoo framework [45] with that of our GPU-based approach. Pymoo, a
Python-based framework, offers a variety of state-of-the-art single and multi-objective optimization
algorithms. The experimental results indicated that our method provided solutions of similar quality to
Pymoo, but with an average execution time that was 15,454 times faster. Additionally, leveraging our
method’s rapid execution time, we experimented by increasing the number of solutions to 400 and the
number of cycles to 12,800. The experimental results indicated that our method yielded higher quality
solutions by increasing the number of solutions and cycles, demonstrating superior hypervolume and
a smaller minimum distance to the ideal point compared to the Pymoo framework. Furthermore, we
conducted experiments to observe the effect of mutation probability on solutions by gradually reducing
the mutation probability as the number of cycles increased. As a result, reducing the mutation proba-
bility by 10% every 100 cycles (starting from 40%) outperformed the fixed 20% mutation probability

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2517

obtained using 100, 200, and 400 solutions with 12,800 cycles.
Our contributions to this research are as follows:

e Extension of the protein encoding problem to include two new optimization criteria: condon pair
bias (CPB) and hidden stop codon (HSC).

e Introduction of a novel multi-objective formulation that incorporates six conflicting objectives.

e Design and implementation of an accelerated approach using NVIDIA GPUs, based on the
NSGA-III, for solving the protein encoding problem.

e Development and comprehensive explanation of new problem-aware mutation methods.

e Comparative analysis with the Pymoo framework (employing NSGA-III) for multi-objective op-
timization and the NSGA-II approach applied to protein encoding.

e Evaluation of the proposed approach across various numbers of solutions and cycles, applied to
nine real-world protein datasets, using hypervolume and minimum distance to ideal point metrics.

The structure of this paper is as follows. Section 2 presents a review of the related literature. In
Section 3, the methodology of our approach is outlined, encompassing the mutation methods and
elucidation of the six objective functions pertinent to the protein encoding problem. Section 4 engages
in a comparative analysis of the outcomes derived from our method with those obtained using Pymoo,
in addition to contrasting our method’s application to the NSGA-II in addressing our specific problem.
Conclusions drawn from this study are outlined in Section 5. Lastly, Section 6 sets forth the prospective
directions for our future research endeavors and includes a discussion.

2. Related works

The methods proposed by Terai et al. [19], along with several others like multi-objective arti-
ficial bee colony (MOABC) [46], asynchronous parallel-multi-objective artificial bee colony (AP-
MOABC) [47], multi-objective variable neighborhood search (MOVNS) [48], multi-objective shuf-
fled frog leaping algorithm (MOSFLA) [49], many-objective mutation-based protein encoding
(MaOMPE) [35], and multi-objective butterfly optimization algorithm (MOBOA) [37], have been de-
veloped to design a collection of CDSs. The primary goal of these methods is to enhance the expression
levels of a protein that involves multiple objective functions. These studies approach the design of the
CDSs set as a multi-objective optimization problem, aiming to identify a set of trade-off solutions by
optimizing multiple objective functions simultaneously rather than seeking a single (best) solution.
While these methods aim to create a set of CDSs for efficient protein production, they employ dif-
ferent objective functions and strategies to generate new solutions and select promising solutions in a
single cycle.

2.1. Method proposed by Terai et al. and MOABC

Terai et al. proposed a method utilizing NSGA-II for designing a set of CDSs, optimizing three
objective functions: CAI, HD, and the length of repeated or common substrings (LRCS). This method
initializes N solutions, which then serve as the N original solutions for the first cycle; it then conducts
successive cycles to find effective solutions. Following the initialization of N solutions, the method
processes crossover, mutation, and selection steps in each cycle. Both the crossover and mutation
steps generate N new solutions from the initial N. Subsequently, the selection step identifies the N

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2518

best solutions from a pool of 2N solutions, utilizing non-dominated sorting and crowding distance
sorting. These selected N solutions subsequently become the original solutions for the ensuing cy-
cle. Moreover, the MOABC method, employing the same objective functions as those proposed by
Terai et al. [19], is based on the artificial bee colony (ABC) algorithm [50] for protein encoding. This
method also initializes N solutions, then progresses through cycles consisting of the employed bees
step, onlooker bees step, and scout bees step. In both the employed bees step and the onlooker bees
step, each step generates N new solutions. The new N solutions generated in the employed bees step
are compared with the original N solutions, and the superior ones replace the originals. However, in
the onlooker bees step, the newly generated N solutions are added to the existing pool, thus resulting
in 2N solutions in total. During the scout bees step, solutions that fail to yield promising results from
the 2N pool are replaced with solutions that are randomly generated and mutated. Following the scout
bees step, non-dominated sorting and crowding distance sorting are applied to the 2N solutions to se-
lect N superior solutions for the subsequent cycle. MOABC requires the generation of new solutions
per cycle that are more than two times those generated according to the method of Terai et al. [19].
Although MOABC demonstrated superior hypervolume and minimum distance to the ideal point com-
pared with the method proposed by Terai et al. [19] within the same objective space and number of
cycles, it necessitated more than two times the number of objective function computations per cycle.
This increased computation is due to the need to evaluate objective functions for the newly generated
solutions. Subsequent research by the same authors introduced AP-MOABC, an extension of MOABC
with an OpenMP-based master-worker parallelization model, which effectively reduced the running
time. In MOABC, the number of solutions replaced during the scout bees step varies depending on
how many times each solution fails to generate a satisfactory solution. Consequently, some solutions
may experience delays, thus leading to an imbalance in workload distribution within the GPU’s thread
block. Furthermore, as the replaced solution requires mutations proportional to the current cycle count,
this imbalance exacerbates with an increase in cycles, rendering MOABC less suitable for GPU imple-
mentation.

2.2. MOVNS and MOSFLA

Both MOVNS and MOSFLA also employ CAI, HD, and LRCS objective functions. MOVNS is
based on the variable neighborhood search algorithm [51,52], whereas MOSFLA utilizes the shuffled
frog leaping algorithms [53]. MOVNS employs the number of fitness evaluations as its termination
condition, instead of relying on the number of cycles. When a new solution is generated, the evaluation
count increases owing to the calculation of its objective function values. If this count reaches the
maximum number of evaluations, MOVNS terminates. In this method, a new solution is created by
mutating an original solution. If the newly generated solution dominates the original premutation
solution, the latter is saved, and the new solution becomes the original solution for the next generation
step. However, if the repeated generation of new solutions from an original solution fails to yield
a dominating new solution over several iterations, the best among the saved solutions is selected as
the new original solution. Once a solution has been utilized as an original solution for generating new
solutions, it cannot be reused. When all saved solutions have been used in this manner, a new solution is
randomly generated. Finally, when the maximum fitness evaluation is reached, the saved solutions are
presented as the results. This method does not explore multiple new solutions concurrently because
it generates a new solution one at a time. Given that exploring only one solution per step is highly

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2519

inefficient for GPUs, MOVNS is not suitable for parallel execution.

In MOSFLA, the N original solutions are divided into m memeplexes, and then each memeplex
generates the N/m new solutions. Each memeplex may require up to three generations of solutions to
produce a single new solution. This iterative process occurs because if the generated solution cannot
dominate the worst solution in the memeplex, MOSFLA attempts to generate another solution. Ini-
tially, a new solution is generated based on the best solution within the memeplex. If this new solution,
derived from the memeplex’s best solution, does not dominate the memeplex’s worst solution, another
solution is generated based on the global best solution from the N original solutions. If this attempt
also fails to dominate the worst solution, a solution is randomly generated.

Furthermore, each time a new solution is generated within a memeplex, non-dominated sorting and
crowding distance sorting are conducted to update the memeplex’s local best and worst solutions. After
all memeplexes have generated their respective new N/m solutions, the entire set of 2N solutions un-
dergoes non-dominated sorting and crowding distance sorting to select the N best solutions. Although
MOSFLA divides solutions into memeplexes, which theoretically could be processed in parallel, the
need to update the local best and worst solutions within each memeplex after every solution generation
means that only one solution is generated at a time within each memeplex. This limitation impedes the
effective utilization of computing resources when using GPUs.

These two methods applied a novel strategy to enhance the HD objective function when generating
a new solution from the original solution. Contrary to the method proposed by Terai et al. [19], and
contrary to MOABC and AP-MOABC, which randomly mutate codons of a pair of CDSs with the
minimum HD values, both MOVNS and MOSFLA permit codon changes only if they can potentially
improve the HD objective function value. Furthermore, their experimental results indicated that this
new approach, used to improve the HD objective function, could also simultaneously optimize the
LRCS objective function.

2.3. MaOMPE and MOBOA

MaOMPE, based on NSGA-III, aims to optimize four objective functions: CAI, HD, gua-
nine—cytosine (GC) content, and stem length (SL). Although MaOMPE also applies the NSGA-III,
similiar to our method, it does not consider the HSC and CPB objective functions. MaOMPE employed
the Das-Dennis method [54] for setting reference points owing to its ability to generate well-distributed
points on the hyperplane. MOBOA utilized the CAI, HD, and GC3 (GC content at the third nucleotide)
objective functions, employing the butterfly optimization algorithm [55]. This method also generates
N new solutions from the N original solutions and then selects the N best solutions. In the process
of performing cycles, this method introduced the TabooList and the BestList. The BestList retained
the top six solutions from the N original solutions, while the TabooList held solutions that were to be
excluded from the BestList. To generate the i-th new solution, MOBOA can randomly select a solution
from the BestList or use the i-th solution of N original solutions. If a new solution, generated using a
solution from the BestList, is dominated by its counterpart in the BestList, the latter solution is moved
to the TabooList. The vacant slot of BestList is then filled with the next best solution from the N orig-
inal solutions. If all N original solutions end up in the TabooList, meaning that no solutions can be
included in the BestList, the TabooList is reset. After generating N new solutions, non-dominated sort-
ing and crowding distance sorting were performed to select the N best solutions from the total of 2N
solutions. Scanning the accumulated TabooList each time the BestList is updated creates overhead,

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2520

and this method is constrained to generate only one solution at a time owing to the potential updating
of the BestList. Consequently, these constraints inhibit the parallel generation of solutions and prevent
efficient utilization of thread blocks when running MOBOA on GPUs.

Similar to MOVNS and MOSFLA, these two methods devised approaches to generate solutions
with guaranteed improvements in the target objective functions. Therefore, when employing mutation
methods to enhance specific objective functions, these methods ensured the generation of solutions
with improved values for those targeted objectives.

3. Problem definition

The selected N solutions are used
as the new original solutions

4 \| N\ ¥ N\
v | [Rank 0 [y | Rank 0 | No—
N7 Initial Origi.nal L, Origi.nal N Origi.nal LN IN-
Solutions Solutions| | [Solutions Solutions Rank 1 Rank 1 | '
i Selected
Rank 2 || solutions
e] 4 J. R | B . i
Generated 7 Rank2 |\ Reference-point
........................ . | based sorting
randomly Using ©
: mutation —>S lNe;w :N S ;Viw N
olutions olutions - IN*
- Generated manually _methods Non- : B 1. Normalization
“with the mCAI of 1 with mutation domm'ated : Re]e?ted 2. Association
probability sorting solutions| 3 Niching
\ /J J &
Initialization step Mutation step Selection step

! |
Generation (Cycle)

Figure 1. Schematic of our implementation procedure based on the non-dominated sorting
genetic algorithm III (NSGA-III).

We propose a method to design a set of CDSs aimed at maximizing protein expression levels by
taking into account six objective functions: CAI, CPB, HSC, HD, GC3, and SL. As our method in-
corporates six objective functions, we designed it based on the NSGA-III, an approach well-suited
for solving many-objective (four or more objective) optimization problems. The procedure of our
method comprises three key components: initialization, mutation, and the selection steps, as illustrated
in Figure 1. The main difference between our method and the original NSGA-III paper is that when
generating N new solutions from N original solutions, we only use the mutation method and do not
perform crossover. This is because Terai et al. [19] demonstrated that crossover is not effective in
generating good solutions in protein encoding problems.

In the initialization step, an initial set of N solutions was generated. These N solutions were then
utilized as the original solutions in the first cycle. Among these initial N solutions, N — 1 solutions

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2521

were randomly generated, while the remaining solution was composed of codons with the highest
weight. Additionally, reference points were established in the initialization step to facilitate reference-
point-based sorting in the selection step. To set these reference points, we adopted the Das-Dennis
method [54] as utilized in the MaOMPE approach. These reference points were initialized on the unit
simplex, determined by the partitioning number of the objective axes.

The number of reference points is determined by a combinatorial problem involving repetition,
where the number of objectives corresponds to the total number of elements, and the number of parti-
tions corresponds to the size of each subset. In Eq (1), M represents the number of objective functions,
p denotes the number of partitions, and H indicates the number of reference points. For example, if M
equals 2 and p equals 2, then H is 3. This implies that the reference points are (1,0), (0.5,0.5), and
(0, 1). Given that the number of reference points should not exceed N, and to ensure a number close to
N as suggested in the NSGA-III paper, we set the number of partitions such that the resulting number
of reference points is less than N but as close to it as possible.

H =) (1)

The mutation step generates N new solutions based on N original solutions. To generate each new
solution, one of the seven mutation methods is selected and utilized randomly. The curand_uniform()
function is employed to generate a random number for each codon. If the randomly generated num-
ber of codons is less than the mutation probability, and if there is more than one synonymous codon
available, then that codon may be mutated to another synonymous codon. In other words, a codon will
not undergo mutation if its random number exceeds the mutation probability or if its corresponding
amino acid, such as methionine, is encoded by using only a single synonymous codon. Additionally,
except for the first mutation method, a codon will be not altered if the mutation does not lead to an
improvement in the targeted objective function. The details of our mutation methods are elaborated
in 3.8.

Following the mutation step, the selection step undertakes non-dominated sorting and reference-
point-based sorting to select the N best solutions from a pool of 2N solutions. Non-dominated sorting
assigns rank values to solutions based on dominance tests and then arranges these solutions in ascend-
ing order based on their respective ranks. Solutions assigned to a rank of 0 are termed non-dominated
solutions, thus indicating they are not dominated by any other solution. However, solutions with a rank
of 1 may be dominated by those with a rank of 0. Therefore, among solutions, those with a lower rank
value are preferred. However, as solutions within the same rank do not dominate each other, determin-
ing a superior solution among them is not feasible. To select preferred solutions within the same rank,
reference-point-based sorting is employed. Reference-point-based sorting is implemented to discern
better solutions within the same rank, particularly when the count exceeds N. This process consists
of a normalization step, an association step, and niching steps. The normalization step involves the
normalization of each objective function of the solutions to mitigate bias toward any specific objective
function. For this step, we utilized the hyperplane normalization method [56], which involves the iden-
tification of the extreme points of each objective function and the creation of a hyperplane using these
points. The normalization of the objective function values is then performed using the intercepts on
each objective axis of the hyperplane. During the association step, the perpendicular distance between
the line extending from the origin to the reference points and the normalized objective function values
of the solution is calculated. Each solution is associated with the reference point that has the shortest

Electronic Research Archive Volume 32, Issue 4, 2514-2540.

2522

perpendicular distance among the reference points. The niching step is the procedure of selecting solu-
tions to be included in the N best solutions. In this step, a solution is selected among those associated
with the reference points, specifically choosing from those with the fewest associated solutions already
included in the N best solutions. After selecting the solution, the number of solutions included in the
N best solutions is updated in the reference point, thus continuously selecting the solutions from the
reference points with the fewest solutions included in the N best solutions. Once N best solutions are
selected, these N solutions are used as the N original solutions in the next cycle. Upon completion of
all cycles, the 2N solutions are saved to a file.

3.1. Codon adaptation index (CAI)

The CAI value of a CDS indicates the proportion of codons frequently used in the host organism
that are present in the CDS. Codons that are frequently used in the host organism are assigned a higher
weight. The weight of each codon is calculated by dividing its usage frequency in the host organism
by the usage frequency of the most frequently used synonymous codon. Consequently, the weight
assigned to the most frequently used synonymous codon is set to 1. The CAI value is determined
by calculating the geometric mean of the weights of all codons within the CDS. In Eq (2), the term
weight(codon;,) represents the weight of the n-th codon in the i-th CDS, and N denotes the total
number of codons within a CDS.

N
CAI(CDS,) = ’d ﬂ weight(codon;))
n=1

A higher CAI value typically correlates with improved protein expression levels. The minimum
CAI (mCAl) value, calculated from the CDSs within a solution, is utilized as the objective function, as
shown in Eq (3). Herein, I represents the total number of CDSs in a solution. This approach is adopted
because relying on the average CAl values of the CDSs in the solution may include a CDS that is unable
to maximize protein expression levels, owing to its significantly lower CAI value compared with the
average. Consequently, the objective function aims to increase the mCAlI value within the solution.
We utilized the same codon weight values as those used in previous studies [19, 35,37,46—49], which
targeted the S. cerevisiae organism.

mCAI = min CAI(CDS)) 3)

1<i<I

3.2. Codon pair bias (CPB)

Amino Acids Met Ala Gly Phe Arg |Stop
o= CPSy=mme oo CPS, -~~~

CDS, AUG |GCG |GGG | UUU | CGA ||[UAG

~~~~~ CPS, ===~ "7 (CPS; -7 TTe--e-mo

NO CPS

Figure 2. Codon pair score (CPS) of the codon pairs of the CDS ;.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2523

The CPB value of a CDS indicates the number of codon pairs that are over-represented in the host
organism and utilized in the CDS. Constructing a CDS with codon pairs that are over-represented in
the host organism can contribute to the maximization of the protein expression levels; these CDSs
typically exhibit high CPB values. Therefore, a higher CPB value in a CDS is preferred to optimize
protein expression levels.

F(AB)

F(A)xXF(B)
F(X)XF(Y) X F(XY)

CPS = ln[ “)

To calculate the CPB value of a CDS, it is essential to determine the codon pair score (CPS) values
for the codon pairs. The CPS value of each codon pair can be calculated using Eq (4). In this equation,
A and B represent the codons, while X and Y denote the amino acids that are encoded by A and
B, respectively. Furthermore, F(A) and F(B) denote the frequencies of codons A and B in the host
organism, while F(X) and F(Y) indicate the respective frequencies of amino acids X and Y in the
host organism. Given that the three-stop codons do not encode any amino acid, CPS values can be
determined for a total of 3721 codon pairs. A positive CPS value signifies that a codon pair is over-
represented in the host organism, whereas a negative CPS value suggests under-representation. We
utilized the CoCoPUTs database [57] to acquire the frequencies of the codons, codon pairs, amino
acids, and amino acid pairs.

N-2
CPB(CDS;) = Z

n=1

CPS (codon_pair;,)
N-2

(&)

As shown in Eq (5), the CPB value of a CDS is calculated as the arithmetic mean of the CPS values
of the codon pairs within the CDS. N represents the total number of codons in a CDS, while N — 2
signifies the total number of codon pairs in the CDS excluding the stop codon. In Figure 2, CDS
comprises six codons, which results in a total of five codon pairs: AUGGCG, GCGGGG, GGGUUU,
UUUCGA, and CGAUAG. Due to the inclusion of the stop codon UAG, the final codon pair CGAUAG
is without a CPS value, unlike the preceding four codon pairs that each have their own CPS value.
Consequently, the value of N — 2 for CDS  is four.

mCPB = min CPB(CDS)) (6)

1<i<!

Similar to mCALI, using the average of CPB values in a solution may obscure the presence of a CDS
with a low CPB value, which is not conductive to maximizing protein expression levels. Therefore, we
utilized the minimum CPB (mCPB) as the objective function to increase the mCPB value within the
solution.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2524

3.3. Hidden stop codon (HSC)

Amino Acids | Met) (Val (Leu The’ (Gluh...

Normal 1 | : 11 : : : : :
Lorspbiinn DS, ‘:AUG:I:GUA:|:UUA:‘:ACU:‘:GAG:‘ CG...
Amino Acids ' Gly ' Tle ' Asn ! [Stop|( Ala "
-1 Frame-shifted |~ 0 2 i i ¢ i " ; op A L
Translation cps,  Au|Geujiauuaaciucafceg]..
I V—— Amino Acids : Trp T Tyr | Stop : Leu ::r Ser B
Translation cps,  A[UGG|UAU!|uaa|cuGlacc]c

Figure 3. Schematic showing the -1 or +1 frameshifted and normal translation of the CDS .

HSC is a metric that counts the number of stop codons capable of terminating protein translation in
the events of a -1 or +1 frameshift within the CDS. Additionally, -1 or +1 frameshifts in the CDS can
result in the production of a protein that differs from the intended target protein. Therefore, promptly
terminating the frameshifted translation upon the occurrence of a -1 or +1 frameshift can potentially
prevent wastage of energy and resources. This approach maximizes protein expression levels by avoid-
ing unnecessary expenditure in the translation process.

N-1
HSC(CDS;) = Z hsc(codon_pair;,) @)
n=1

Figure 3 illustrates the normal translation of CDS | and the scenarios wherein a -1 or +1 frameshift
occurs. Each translation variant results in a different amino acid sequence: the normal translation yields
a sequence starting with Met (Methionine)-Val (Valine), the -1 frameshifted translation changes this to
Gly (Glycine)-lle (Isoleucine), and the +1 frameshifted translation alters it to Trp (Tryptophan)-Tyr
(Tyrosine). In the case of a -1 frameshift, translation prematurely terminates at the UGA stop codon,
whereas a +1 frameshift leads to early termination at the UAA stop codon. The total number of hidden
stop codons in the i-th CDS of the solution is calculated using Eq (7). The term hsc(codon_pair;,,)

represents the count of hidden stop codons in the n-th codon pair of the i-th CDS.

HSC(CDS;
mHS C = min HSCCDs) ()
1<i<I N-1

Given that hidden stop codons prematurely terminate the translation process during a -1 or +1
frameshift, the objective is to increase the minimum count of hidden stop codons present in the solution.
In other words, it is preferable to increase the value of the minimum HSC (mHSC) objective function
to maximize protein expression levels. The mHSC value is calculated by normalizing the count of
hidden stop codons in the CDS with the lowest number of such codons, then dividing this figure by
the total number of codon pairs, which is represented as N — 1. This division by N — 1 is based on the

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2525

fact that in the context of stop codon combination, a single codon pair can contain at most one hidden
stop codon.

3.4. Hamming distance of CDS pair (HD)

The HD value represents the degree of difference between the sequences of a pair of CDSs. Specif-
ically, this value is calculated by comparing nucleotides at corresponding positions in the CDS pair.

HD(CDS;,CDS ) = > o(CDS;;,CDS ) )
1<I<L
As shown in Eq (9), CDS ; refers to the /-th nucleotide in the i-th CDS of the solution, while CDS ;;
denotes the /-th nucleotide in the j-th CDS of the solution. Furthermore, as HD measures the difference
between two distinct CDSs, i and j cannot be the same. If CDS;; and CDS ;; are equal, then the value
of o(CDS;;,CDS ;) is 0; otherwise, it is 1.

. HD(CDS;,CDS))

mHD = min (10)
1<i<j<I L

Therefore, a higher HD value indicates a greater difference between the CDSs and a lower probabil-

ity of homologous recombination. Given that homologous recombination can impair protein expression

levels, and our objective is to maximize these levels, a higher HD value is preferred. Similar to the

context of mCAI, mCPB, and mHSC, we used the minimum HD (mHD) as the objective function, as

shown in Eq (10), aiming to increase the mHD value of the solution.

3.5. GC content at the third nucleotide (GC3)

Our objective is to align the ratio of guanine (G) or cytosine (C) at the third position of codons in
the CDS with the corresponding ratio observed in the host organism.

ZISnsN 6 (CDS i,n3)
N
GC3(CDS);) quantifies the difference in the G or C content ratio at the third position of codons in
the i-th CDS relative to the G or C content ratio at the third position of codons as observed in the host
organism, as shown in Eq (11). The value of 6(CDS;,,) is 1 if a G or C is present at the third position of
the n-th codon in the i-th CDS of the solution; otherwise, it is 0. Herein, N represents the total number
of codons in a CDS. GC3,4,., refers to the ratio of G or C content at the third position of codons as

observed in the host organism. This ratio, obtained from the Kazusa Codon Usage Database [58], has
a value of 38.10%.

GC3(CDS)) = - GC3i4ea (11)

MGC3 = max |GC3(CDS))| (12)

As the goal is to minimize the divergence in G or C content of the CDSs relative to the host organ-
ism, the maximum GC3 value among the CDSs in the solution is employed as the objective function,
contrasting with the use of mCAI, mCPB, mHSC, and mHD. In Eq (12), the maximum GC3 (MGC3)
is calculated as the absolute value of the GC3 of each CDS. Therefore, as the G or C ratio at the third
position of the CDS approaches the GC3,,.,, value, the MGC3 value converges toward 0. To optimize
protein expression levels, we aim to minimize the MGC3 value.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2526

3.6. Stem length (SL)

Stem length is a metric used to measure the length of the stem structure within a CDS. A hairpin
loop, characterized by the formation of a double helix, occurs when two complementary regions within
the same CDS base-pair to form a stem. The presence of a hairpin loop structure can impede proper
translation, and a longer stem within the hairpin loop increases the probability of incorrect translation.
Therefore, minimizing the length of the stem within the hairpin loop is crucial for maximizing protein
expression levels.

L-4
max_len SL = - (13)

The variable max_len_SL represents the maximum stem length capable of forming a hairpin loop
within the same CDS, as shown in Eq (13). The subtraction of the value of 4 accounts for the require-
ment of at least four nucleotides between two stems to form a hairpin loop, and L denotes the length
of a CDS.

SL(CDSy) = lSqu—(l+4)<q+lSLm%1§d lslSmaxJenjLﬂ (S Lpils S i,q,l) (14)

As shown in Eq (14), SL(CDS) indicates the length of the longest stem in the i-th CDS of the

solution, p and g are the starting indices of the nucleotides for two stems within the same CDS, and /
represents the stem length.

SL(CDS))
MSL = _— 15
ey max_len_SL (15)
Similar to the MGC3 objective function, the maximum SL value among the CDSs in the solution
was employed. The maximum SL (MSL) objective function was calculated by normalizing the longest
stem length in the solution (by dividing it max_len_S L), as shown in Eq (15). Therefore, our objective

was to minimize the value of MSL in the solution.

3.7. Our approach to implement our method on GPUs

Our implementation on GPUs consists of an initialization, a mutation, and a selection kernel, as
shown in Algorithm 1. The initialization kernel executes only once at the beginning, generating the
initial N solutions. In our implementation, each thread block is responsible for creating one solution.
Each thread generates the codons for its assigned solution, and the generated solution is stored in
shared memory. This approach is adopted because a solution is read multiple times when calculating
the objective function values, thus making it more efficient to store the solution in shared memory; this
offers faster access than global memory. Additionally, the setting of reference points for reference-
point-based sorting, used in the selection kernel, is performed in the initialization kernel. After the
initialization kernel, the mutation kernel and selection kernel are executed iteratively. The mutation
kernel employs mutation methods to generate N new solutions from the N original solutions and cal-
culates the objective function values of these newly generated solutions.

In our implementation, each thread block is tasked with generating a solution, and as each thread
block is responsible for generating a solution, the threads within a block compute the objective function

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2527

values of the generated solution. Each thread within a thread block performs its parts of the computa-
tion for specific objective function values and stores intermediate values in the shared memory; these
values can be accessed by all threads within the block. The divide-and-conquer strategy was then used
to calculate the final objective function value using the intermediate values stored in shared memory.
In our method, the divide-and-conquer strategy was exploited for all calculations of the six objective
function values.

Algorithm 1 Pseudocode of our method

1: begin
2 kernel initialization > Initialization step
3 set reference points
4 generate initial N solutions
5: calculate objective function values of initial N solutions
6 end kernel
7 for cycle = 1 to max_cycles do
8 kernel mutation > Mutation step
9 generate N new solutions from N original solutions
10: calculate objective function values of N new solutions
11: end kernel
12: kernel selection > Selection step
13: perform non-dominated sorting
14: if last front exceeds N then
15: perform reference-point-based sorting
16: end if
17: end kernel
18: end for
19: write final 2N solutions to the file
20: end

After the mutation kernel, a total of 2N solutions along with their objective function values were
stored in global memory. This approach was adopted to enable all threads from each thread block to
access all solutions when selecting the N best solutions in the selection kernel. In the selection kernel,
non-dominated sorting and reference-based sorting were performed. In non-dominated sorting, each
thread handles one solution and determines its rank value by comparing it with other solutions. Dur-
ing the non-dominated sorting process, reference-point-based sorting is conducted to select solutions
for inclusion among those exceeding N within the same rank. In reference-point-based sorting, each
thread normalizes the objective function values of a solution. After normalization, each thread calcu-
lates the perpendicular distances between its assigned solution and all reference points. Each solution
is associated with the reference point with the shortest perpendicular distance. Each thread is then re-
sponsible for a reference point to select the N best solutions. The solutions are randomly selected from
the reference points that already have the fewest associated solutions selected for the N best solutions.
Once the N best solutions are chosen, the selection step concludes, and these superior solutions are
fed into the next mutation kernel as N original solutions. After all cycles have concluded, all the 2N
solutions are saved to a file.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2528

3.8. Mutation methods

As illustrated in Figure 1, the mutation step generates new solutions from the original ones to create
optimized solutions that have higher objective values. We employ six distinct mutation methods, each
aimed at improving one of six objective functions, including one method to randomly mutate codons.
Specifically, when generating a new solution, one of these seven mutation methods is randomly selected
and applied. Additionally, if the randomly generated number for a codon is less than the specified
mutation probability, the codon may be mutated to another synonymous codon of the same amino acid.

1y
2)

3)

4)

5)

6)

Random: Codons of all CDSs in a solution are randomly mutated to different synonymous codons.
mCAI: Codons within the CDS that exhibit the minimum CALI value in a solution undergo muta-
tion. Each codon is randomly mutated to one of its synonymous codons that have a greater weight
than the original codon.

mCPB: Codons within the CDS that exhibit the minimum CPB value in a solution undergo muta-
tion. As mutating a codon impacts the cumulative CPS of the adjacent left and right codon pairs
containing it, the codon is randomly mutated to one of the synonymous codons, resulting in a
higher cumulative CPS for these pairs compared with the original CPS sum. To enable parallel
mutation of codons by threads without dependency on neighboring codons, even-numbered cycles
are used to mutate even-numbered codons, while odd-numbered cycles are designated for mutat-
ing odd-numbered codons. In this scenario, the mutation probability is doubled to compensate
for half the codons eligible for mutation in the CDS.

mHSC: Codons within the CDS that have the minimum HSC value in a solution undergo mu-
tation. Similar to CPB, mutating a codon impacts the combined HSC of the adjacent left and
right codons. Therefore, only even-numbered codons are mutated during even cycles, while odd-
numbered codons are mutated during odd cycles. The codon is randomly mutated to one of the
synonymous codons that have a greater combined HSC value for the adjacent left and right codons
than the original HSC sum. Furthermore, the probability of such mutations occurring is doubled.
mHD: Codons from one CDS (within a pair), which exhibits the minimum HD value in a solution,
are subject to mutation. Among all synonymous codons, preference for mutation is given to
the codon that can increase the minimum HD value of the solution. If the minimum HD value
of the solution remains unchanged, and if there are synonymous codons capable of increasing
the HD value of the CDS pair that originally had the minimum HD value, this codon is chosen
for mutation. This approach is adopted because it could potentially decrease the HD value in
conjunction with another CDS pair; by contrast, mutating the codon increases the HD value of
the CDS pair with the original minimum HD value.

MGC3: Codons within the CDS that exhibit the maximum GC3 value in a solution undergo muta-
tion. If the CDS’s GC3 value exceeds the host organism’s ideal GC3 value, the codon is randomly
mutated to one of the synonymous codons, which would reduce the GC3 value. Conversely, if
the GC3 value of the CDS falls below the ideal GC3 value of the host organism, the codon is
randomly mutated to one of the synonymous codons, which would increase the GC3 value. With
the exceptions of methionine and tryptophan, all amino acids can be encoded by synonymous
codons that either include or lack G or C at the third position. Therefore, we dynamically ad-
justed the mutation probability, anticipating that the mutation of a single codon could reduce the
discrepancy between the ideal and the current GC3 values by one. This dynamic mutation proba-

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2529

bility can be determined by the MGC3 value of the solution. This method was chosen to achieve
efficient parallel mutation of codons across all threads.

7) MSL: The codons within one stem of the CDS, which exhibits the maximum SL value in a solu-
tion, are subject to mutation. Initially, the codon in the middle of the stem is randomly mutated to
one of its synonymous codons. If this mutation results in a decrease in the SL value, the mutation
process is terminated. Otherwise, the mutation occurs in the codon to the left side of the middle
codon. If this does not decrease the SL value, mutation then occurs in the codon to the right part
of the middle codon. This process of repeated mutations of the left and right codons progresses
from the middle codon toward the ends of the stem and terminates immediately if there is a de-
crease in the SL value. The rationale for initiating mutations from the middle codon of the stem
relies on the fact that a mutation of this codon has the potential to reduce the stems by up to half.

4. Experimental results

In our experiments, we used an AMD Ryzen 9 7950X, 16-core processor with 64 GB DDRS5 RAM,
and NVIDIA GeForce RTX 4090 (128 Ada SMs, 128 CUDA cores/SM, 24 GB global memory). The
implementation was compiled using GCC 11.4.0 and CUDA 12.3 (driver version 545.23.08), running
on the Ubuntu 22.04.3 LTS; Python (version 3.10.12) was also used.

Table 1. Protein instances used in the experiments.

Code Name CDSs Length (AA) CDSs x Length
Q5VZP5 DUS27_ HUMAN 2 1158 2316

A4Y1B6 FADB_SHEPC 3 716 2148

B3LS90 OCAS5_YEASI 4 679 2716

B4TWR?7 CAIT_SALSV 5 505 2525

Q91X51 GORS1_-MOUSE 6 446 2676

Q89BP2 DAPE_BRADU 7 388 2716

A6L9J9 TRPF_PARDS 8 221 1768

Q88X33 Y1415_LACPL 9 114 1026

B7KHU9 PETG_CYAP7 10 38 380

Table 2. Nadir and ideal points for the calculation of quality indicators.

Objective functions Nadir value Ideal value
mCAI 0 1

mCPB -0.15 0.2

mHSC 0 0.4

mHD 0 0.5

MGC3 0.6 0

MSL 1 0

Table 1 shows nine protein instances used in our experiments; these were selected based on their
length of amino acid sequences and the number of CDSs to capture a range of complexities in protein

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2530

encoding. These protein instances are the same as those utilized in MOABC [46], MOSFLA [49],
MaOMPE [35], and MOBOA [37]. The amino acid sequences for each protein were obtained from
the UniProt databases [59]. Additionally, Table 2 provides the ideal and nadir values, which are used
to normalize the objective function values to a range from zero to one, thereby ensuring an unbiased
evaluation of solution quality post-optimization. The normalized objective function value is calculated
using Eq (16). In this context, a lower objective function value, indicative of a more favorable outcome,
corresponds to a normalized value approaching zero.
Xnormalized = M (16)
Xnadir — Xideal
The hypervolume and the minimum distance to the ideal point serve as pivotal quality indicators
for evaluating the solutions in multi-objective optimization. Hypervolume, recognized as the most
extensively adopted metric, assesses the quality of solutions by calculating the volume occupied by
Pareto solutions in the objective space. In the context of the six-objective protein encoding problem
addressed here, the hypervolume corresponds to the volume of the six-dimensional objective space
encompassed by these Pareto solutions. A higher hypervolume value is indicative of superior multi-
objective quality. Conversely, the minimum distance to the ideal point quantifies the proximity between
the normalized objective function values of solutions and the utopian point, defined in this study as
(0,0,0,0,0,0). This metric is instrumental in selecting an optimal solution among the Pareto solutions
with a preference for a smaller value. These metrics usually provide a comprehensive assessment of
solution quality in multi-objective optimization problems.

Table 3. Experimental results of our GPU-accelerated NSGA-III and Pymoo-based NSGA-
III (100 solutions and 100 cycles).

Our NSGA-III Pymoo (NSGA-III)

Protein Hypervolume Min. Distances Seconds Hypervolume Min. Distances Seconds
Q5VZP5  21.46% 0.9245 1.8 21.44% 0.9180 28,766.4
A4Y1B6 14.05% 0.9989 1.0 14.19% 0.9816 15,782.8
B3LS90  13.11% 0.9940 1.1 13.16% 1.0223 19,346.7
B4TWR7 7.74% 1.0983 0.8 7.72% 1.0601 12,742.2
QI1X51  7.94% 1.0917 0.7 8.21% 1.0793 11,511.0
Q89BP2  8.54% 1.0516 0.7 9.16% 1.0373 10,132.1
A6L9J9  6.82% 1.0976 0.3 6.57% 1.0715 3614.4
Q88X33  7.76% 1.0559 0.2 8.49% 1.0133 1064.5
B7KHU9 6.16% 1.0978 0.1 6.64% 1.0509 140.8
Average  10.40% 1.0039 0.7 10.62% 0.9955 11,455.7

Table 3 presents the experimental results comparing our GPU-accelerated NSGA-III method with
the NSGA-III method provided by the Pymoo framework on CPUs. The Pymoo framework offers
various single and multi-objective optimization algorithms based on Python. In other words, Pymoo’s
NSGA-III refers to the application of the NSGA-III method from Pymoo to our protein encoding prob-
lem. The experiments were performed with 100 solutions and 100 cycles. In addition, a mutation
probability of 40% was employed as it yielded the best results compared with the mutation probabil-

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2531

ities of 1.25%, 2.5%, 5%, 10%, 20%, 40%, and 50%. As shown in Table 3, both our NSGA-III and
Pymoo’s NSGA-III demonstrated similar hypervolume and minimum distance to the ideal point out-
comes on average. However, as Table 3 illustrates, our NSGA-III executed approximately 15,454 times
faster than Pymoo’s NSGA-III. Consequently, our NSGA-III can deliver solutions of similar quality to
those of Pymoo’s NSGA-III but in a significantly reduced running time. Furthermore, the expedited
execution time implies that our method can process a larger number of solutions and cycles, indicating
its capability to accomplish more optimization within a shorter timeframe compared to Pymoo.

Figure 4 shows the comparative analysis hypervolume and minimum distance to the ideal point out-
comes for NSGA-III (6-obj), NSGA-II (6-obj), and NSGA-II (3-obj) methods for the CAI, CPB, HSC,
HD, GC3, and SL objective functions. NSGA-III (6-obj) represents our method, whereas NSGA-II
(6-obj) denotes the application of NSGA-II to the same objective functions utilized in our method. The
primary distinction between these two methods lies in the selection step: NSGA-III (6-obj) employs
non-dominated sorting and reference-based sorting, whereas NSGA-II (6-obj) utilizes non-dominated
sorting and crowding distance sorting. The NSGA-II (3-obj) method, as proposed in [60], is a GPU-
accelerated approach based on Terai’s method, considering the CAI, HD, and LRCS objective func-
tions. NSGA-II (3-obj) provides solutions that are very similar to Terai’s but run much faster. Given
that NSGA-II (3-obj) employed a mutation probability of 5%, both NSGA-III (6-obj) and NSGA-II
(6-obj) also adopted the same mutation probability. In the experiments, the number of solutions was
set to 100, and the cycles were conducted at the intervals of 100, 200, 400, 800, 1600, 3200, and 6400.
In all cases, NSGA-II (3-obj) exhibited a poorer hypervolume and a greater minimum distance to the
ideal point compared with both NSGA-III (6-obj) and the NSGA-II (6-obj).

Furthermore, increasing the number of cycles did not result in a significant improvement in the
quality of solutions in NSGA-II (3-obj). In other words, even with an increased number of cycles, the
NSGA-II (3-obj) method, akin to Terai’s method, failed to yield satisfactory solutions in the CAI, CPB,
HSC, HD, GC3, and SL objective space. When comparing NSGA-III (6-obj) and NSGA-II (6-obj),
NSGA-II (6-obj) yielded better hypervolume outcomes with fewer cycles. However, NSGA-III (6-obj)
consistently outperformed NSGA-II (6-obj) in hypervolume in all the cycles for both the Q91X51 and
Q89BP2 proteins. In addition, from cycle 3200 onward, the NSGA-III (6-obj) showed a consistently
better hypervolume for all the proteins than NSGA-II (6-obj). Finally, NSGA-III (6-obj) demonstrated
superior results in terms of the minimum distance to the ideal point compared with NSGA-II (6-obj)
across all proteins and cycles.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2532

31%

24%

17%

HYPERVOLUME

10%

3%

—_ —_ =
I3 — 2
= w =

MINIMUM DISTANCE
)
)

0.80

31%

24%

17%

10%

HYPERVOLUME

3%

11.24

MINIMUM DISTANCE
S = &
— ~ w

=
%
=4

31%

24%

17%

10%

HYPERVOLUME

3%

E
—_
%)
=

w

MINIMUM DISTANC
s =
o S
— N~

=
%
S

——NSGA-III (6-0bj)

-=-NSGA-II (6-0bj)

—NSGA-II (3-0bj)

1 31% 31%
= =
1 =24% =24% -
I —
- -
: S 17% S179% |
z z17%
= =
= B
] S10% /A S10% 1
= =
: : 3% 3%
100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCLES NUMBER OF CYCLES
1 @124 @l24
&) 'u
z z
1 113 LI3
; —— ; — e
— - I
a a
1 '\-\___‘_\’_-\- s 10 5102
s s
1 091 091
=080 =080 . , . . .
100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCLES NUMBER OF CYCLES
(a) Q5VZPS5 protein (b) A4Y1B6 protein (c) B3LS90 protein
1 31% 31% 1
= =
1 Z24% =24% -
= 5
3 3
| 517% 217% q
= =
B B
] ///'—_. >=10% / =10% -| /
= =
3% 3%
100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCLES NUMBER OF CYCLES
1 w124 @124
— 3
1 113 213
z z
a a
1 =102 S102 -
4 EI}.‘)I EO.‘)]
z z
= .80 =080
100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCLES NUMBER OF CYCLES
(d) B4TWR7 protein (e) Q91X51 protein (f) Q89BP2 protein
1 31% 31%
= =
1 224% 224% 1
- -
q 817"/ gl7°/ 1
2 2
= =
B B
i //..4: =10% /""‘ Z10% - ///44’
= =
3% 3%
100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCLES NUMBER OF CYCLES
1 wl1.24 @lad { —————
&} )
4 4
g Z113 Z113
a a
1 =102 =102
s s
1 091 S0t 1
=080 .80
100200 400 800 1600 3200 6400 100200 400 800 1600 3200 6400 100200 400 800 1600 3200 6400
NUMBER OF CYCLES NUMBER OF CYCL NUMBER OF CYCLE!
(g) A6L9J9 protein (h) Q88X33 protein (i) B7KHU9 protein

Figure 4. Experimental results of NSGA-III (6-obj), NSGA-II (6-obj), and NSGA-II (3-obj)
methods.

Electronic Research Archive

Volume 32, Issue 4, 2514-2540.



2533

31%

24%

17%

10%

HYPERVOLUME

3%

MINIMUM DISTANCE
S = & &
— ~ w -

Fod
%
=3

31%

24%

17%

10%

HYPERVOLUME

3%

1.24

MINIMUM DISTAN(,E
= = —_
& > -
— ~ w

Fed
%
=3

Pymoo

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

Pymoo

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

(a) Q5VZPS5 protein

Pymoo

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

100 200 400 800 16003200 640012800
NUMBER OF CYCLE

(d) BATWRT7 protein

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

--#--100 solutions (static) =200 solutions (static) 4400 solutions (static) —<—100 solutions (dynamic) —*—200 solutions (dynamic) ——400 solutions (dynamic) ——Pymoo
31% A 31% A
= =
Z24% - Z24% -
= =
=) =
217"/ gl7"/
o o
5 5 Pymoo
& &~
=10% - =10% -
= =
3% 3%
100 200 400 800 1600 3200 640012800 100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES NUMBER OF CYCLES
w124 =1.24 A
@] ®]
4 z
Z113 4 Z143 -
4 2
a a Pymoo
=102 - Pymoo =102 4
= E
20.91 1 20.91 1
E0.80 20.80
100 200 400 800 16003200 640012800 100 200 400 800 16003200 640012800
NUMBER OF CYCLES NUMBER OF CYCLES
(b) A4Y1B6 protein (¢) B3LS90 protein
31% 31% A
= =
Z24% Z24% -
= =
) =
217"/ 1 217"/ 1
2" =
= =]
& )
>10% - =10%
= =
3% 3%
100 200 400 800 1600 3200 640012800 100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES NUMBER OF CYCLES
=1.24 4 =1.24 A
] ®]
z z.
Z13 Z113 -
<4 2
a a
EI.OZ 1 §1.02 1
s s
20.91 1 20.91 1
E(l.80 Z0.80
100 200 400 800 1600 3200 640012800 100 200 400 800 1600 3200 640012800
NUMBER OF CYC NUMBER OF CYCLE!
(e) Q91X51 protein (f) Q89BP2 protein
31% A 31% A
= =
224% - 224% -
- -
917"/ 1 217"/
2" 27
£ £
=10% + =10% -
= ==}
3% 3% : :
100 200 400 800 1600 3200 640012800 100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES NUMBER OF CYCLES
=1.24 o =1.24 A

Z13

o
5

=
o

L

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

(g) A6LI9J9 protein

w
L

e
&
L

0.80

MINIMUM DISTANC
>
~

w

MINIMUM DISTANC
) —
& >
— ~

Pymoo

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLES

(h) Q88X33 protein

e
%
S

100 200 400 800 1600 3200 640012800
NUMBER OF CYCLE

(i) B7KHU9 protein

Figure 5. Experimental results of our methods with static (20%) and dynamic mutation
probabilities and Pymoo (100 solutions and 100 cycles with 40% mutation probability).

Electronic Research Archive

Volume 32, Issue 4, 2514-2540.



2534

As shown in Figure 5, owing to the exceptionally short execution times of our method, we tested it
with various numbers of cycles and solutions to demonstrate its advantages. The experiments used 100,
200, and 400 solutions coupled with 100, 200, 400, 800, 1600, 3200, 6400, and 12,800 cycles. At
12,800 cycles, a mutation probability of 20% yielded the best results among the tested values of 1.25%,
2.5%, 5%, 10%, 20%, 40%, and 50% for all solution counts of 100, 200, and 400. However, for 100
solutions at 100 cycles, a 40% mutation probability provided better solutions, indicating that relatively
higher mutation probabilities were more effective in yielding high-quality solutions when the number
of cycles was low. Similarly, for 200 solutions and 400 solutions, using a mutation probability of
40% at 100 cycles yielded better hypervolume and minimum distance to the ideal point outcomes.
Nevertheless, at 12,800 cycles, a 20% mutation probability yielded the best results. It was observed
that the use of relatively lower mutation probabilities became more effective in enhancing the solutions
as their quality improved to a certain extent. Therefore, we also present extended experimental results
illustrating the effects of gradual reduction of the mutation probability. The mutation probability starts
at 40% and decreases by a certain percentage every 100 cycles until it falls below 1%, at which point the
mutation probability is fixed at 1%. Mutation decrease ratios of 10%, 20%, 30%, and 40% were tested.

The experimental results demonstrated that reducing the mutation probability by 10% every 100 cy-
cles yielded the best outcomes for all solution counts of 100, 200, and 400 at 12,800 cycles. Moreover,
the application of dynamically changing mutation probabilities led to superior hypervolume and mini-
mum distance to the ideal point values at 12,800 cycles compared with the use of a fixed 20% mutation
probability. In other words, with an equal number of solutions, dynamically reducing mutation proba-
bilities outperformed the use of a fixed mutation probability at 12,800 cycles. Consequently, initiating
higher mutation probabilities in the initial cycles and then gradually reducing them contributed to the
improvement in the quality of solutions. The red straight lines in Figure 5 represent the hypervolume
and minimum distance to the ideal point values obtained with Pymoo using 100 solutions and 100
cycles with a 40% mutation probability. In our expanded experiments, our method yielded solutions
with significantly better hypervolume and minimum distance to the ideal point values outcomes by in-
creasing both the number of solutions and cycles compared with those achieved by Pymoo. Therefore,
our method effectively generates high-quality solutions by increasing both the number of cycles and
the number of solutions.

5. Conclusions

In this study, we proposed a method for designing a set of CDSs aimed at maximizing protein ex-
pression levels by taking into account numerous influential objective functions: CAI, CPB, HSC, HD,
GC3, and SL. Our approach, based on NSGA-III, was accelerated using GPUs to optimize efficiently
these multiple objectives. As a result, our method generated the set of CDSs with similar quality in a
significantly shorter time compared with the use of the Pymoo framework. This acceleration enables
an increase in both the number of solutions and the number of cycles, thereby facilitating the maxi-
mization of protein expression levels. In other words, our method has the advantage of accommodating
a larger number of solutions and cycles. We experimented by increasing the number of solutions to 400
and the number of cycles to 12,800. As a result, the increase in the number of solutions and cycles led
to better hypervolume and minimum distance to the ideal values, demonstrating our method’s capacity
to provide higher-quality solutions.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2535

In our extended experiments, we observed that a higher mutation probability was effective for rela-
tively short cycles, while a lower mutation probability was preferred for larger cycles. In other words,
when solutions attain a certain quality level, employing relatively low-mutation probabilities signifi-
cantly improves solutions compared with the use of higher mutation probabilities. Consequently, our
experiments, which began with a 40% mutation probability and were progressively reduced by 10%
every 100 cycles until reaching 1%, showed that this gradual reduction in mutation probability yielded
better solutions than maintaining a fixed 20% mutation probability. In addition, our other experimental
results revealed that NSGA-II may have been more effective at lower cycle counts. However, beginning
at 3200 cycles, NSGA-III consistently outperformed NSGA-II in providing better solutions for all pro-
teins. Finally, our method is available as open-source software, accessible at: https://github.com/CAU-
HPCL/Protein_encoding _v2 _NSGA-III.

6. Discussion and future work

Multi-criteria decision-making (MCDM) method. In real application cases, we need a best com-
promised solution among Pareto optimal solutions. A common approach for this is the technique for
order of preference by similarity to ideal solution (TOPSIS) [61]. TOPSIS is a concept that selects
the alternative that is closest to the positive ideal solution (PIS) and farthest from the negative ideal
solution (NIS), considering both the best and worst alternatives simultaneously to facilitate rational
human decision making. This method allows users to set weights for each objective, thereby enabling
them to choose their desired optimal solution.

GPU-accelerated multi-objective optimization. There are numerous challenges in bioengineering
beyond simply maximizing protein expression levels. For instance, polymerase chain reaction (PCR) is
a technology extensively employed in almost all biotechnology research areas for the mass replication
of specific deoxyribonucleic segments. Optimizing primers is crucial for enhancing PCR performance
and minimizing biases that could result in inaccurate conclusions during quantitative analysis [62].
Additionally, the early detection of cancer biomarkers can decrease mortality rates through treatments
tailored to these biomarkers. Gene expression, a significant biomarker, can be effectively quantified
using RNA sequencing technology; however, identifying cancer biomarkers poses a challenge owing
to the generation of high-dimensional data. This issue can be addressed by selecting the most relevant
genes, with multi-objective optimization methods being particularly well-suited to this gene selection
challenge [63]. Furthermore, multi-objective optimization algorithms have found broad applicability
in addressing problems across various domains extending beyond the scope of bioengineering. For
instance, the adaptive polyploid memetic algorithm was utilized to address the truck scheduling prob-
lem, aiming to reduce operational costs at the cross-docking terminal [64]. Song et al. [65] proposed an
improved particle swarm optimization algorithm to facilitate smooth path planning for mobile robots
taking into account issues of local trapping and premature convergence. Our future work is aimed at
modifying various multi-objective optimization algorithms to enable parallel processing and applying
them to solve a diverse array of problems using GPUs. Furthermore, we intend to develop enhanced
search strategies to identify effectively the Pareto-optimal solutions to various problems.

Electronic Research Archive Volume 32, Issue 4, 2514-2540.



2536

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No. NRF-2022R1G1A1013586).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, Q. Zhang, Multiobjective evolution-
ary algorithms: a survey of the state of the art, Swarm Evol. Comput., 1 (2011), 32-49.
https://doi.org/10.1016/j.swevo.2011.03.001

2. N. Gunantara, A review of multi-objective optimization: methods and its applications, Cogent
Eng., 5 (2018), 1502242. https://doi.org/10.1080/23311916.2018.1502242

3. P. Eskelinen, K. Miettinen, Trade-off analysis approach for interactive nonlinear multiobjective
optimization, OR Spectrum, 34 (2012), 803—816. https://doi.org/10.1007/s00291-011-0266-z

4. H. Fang, M. Rais-Rohani, Z. Liu, M. F. Horstemeyer, A comparative study of metamodeling
methods for multiobjective crashworthiness optimization, Comput. Struct., 83 (2005), 2121-2136.
https://doi.org/10.1016/j.compstruc.2005.02.025

5. FE Di Pierro, S. Khu, D. Savi¢, L. Berardi, Efficient multi-objective optimal design of water distri-

bution networks on a budget of simulations using hybrid algorithms, Environ. Modell. Software,
24 (2009), 202-213. https://doi.org/10.1016/j.envsoft.2008.06.008

6. S. Fields, O. Song, A novel genetic system to detect protein—protein interactions, Nature, 340
(1989), 245-246. https://doi.org/10.1038/340245a0

7. S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-Sinha, M. G. Sanda,
et al., The polycomb group protein ezh?2 is involved in progression of prostate cancer, Nature, 419
(2002), 624—-629. https://doi.org/10.1038/nature01075

8. G. Blander, L. Guarente, The sir2 family of protein deacetylases, Annu. Rev. Biochem., 73 (2004),
417-435. https://doi.org/10.1146/annurev.biochem.73.011303.073651

9. S. P Kaur, V. Gupta, Covid-19 vaccine: a comprehensive status report, Virus Res., 288 (2020),
198114. https://doi.org/10.1016/j.virusres.2020.198114

10. M. Ahmad, M. Hirz, H. Pichler, H. Schwab, Protein expression in pichia pastoris: recent achieve-
ments and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98
(2014), 5301-5317. https://doi.org/10.1007/s00253-014-5732-5

Electronic Research Archive Volume 32, Issue 4, 2514-2540.


http://dx.doi.org/https://doi.org/10.1016/j.swevo.2011.03.001
http://dx.doi.org/https://doi.org/10.1080/23311916.2018.1502242
http://dx.doi.org/https://doi.org/10.1007/s00291-011-0266-z
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2005.02.025
http://dx.doi.org/https://doi.org/10.1016/j.envsoft.2008.06.008
http://dx.doi.org/https://doi.org/10.1038/340245a0
http://dx.doi.org/https://doi.org/10.1038/nature01075
http://dx.doi.org/https://doi.org/10.1146/annurev.biochem.73.011303.073651
http://dx.doi.org/https://doi.org/10.1016/j.virusres.2020.198114
http://dx.doi.org/https://doi.org/10.1007/s00253-014-5732-5

2537

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. D. Fouque, K. Kalantar-Zadeh, J. Kopple, N. Cano, P. Chauveau, L. Cuppari, et al., A proposed
nomenclature and diagnostic criteria for protein—energy wasting in acute and chronic kidney dis-
ease, Kidney Int., 73 (2008), 391-398. https://doi.org/10.1038/sj.ki.5002585

J. Dehghani, A. Movafeghi, E. Mathieu-Rivet, N. Mati-Baouche, S. Calbo, P. Ler-
ouge, et al., Microalgae as an efficient vehicle for the production and targeted deliv-
ery of therapeutic glycoproteins against sars-cov-2 variants, Mar. Drugs, 20 (2022), 657.
https://doi.org/10.3390/md20110657

S. Huleani, M. R. Roberts, L. Beales, E. H. Papaioannou, Escherichia coli as an antibody ex-
pression host for the production of diagnostic proteins: significance and expression, Crit. Rev.
Biotechnol., 42 (2022), 756-773. https://doi.org/10.1080/07388551.2021.1967871

P. Gu, F Yang, T. Su, Q. Wang, Q. Liang, Q. Qi, A rapid and reliable strategy
for chromosomal integration of gene(s) with multiple copies, Sci. Rep., 5 (2015), 9684.
https://doi.org/10.1038/srep09684

C. A. Scorer, J. J. Clare, W. R. McCombie, M. A. Romanos, K. Sreekrishna, Rapid selection using
2418 of high copy number transformants of pichia pastoris for high—level foreign gene expression,
Nat. Biotechnol., 12 (1994), 181-184. https://doi.org/10.1038/nbt0294-181

K. Tyo, P. K. Ajikumar, G. Stephanopoulos, Stabilized gene duplication enables long-
term selection-free heterologous pathway expression, Nat. Biotechnol., 27 (2009), 760-765.
https://doi.org/10.1038/nbt.1555

R. Aw, K. M. Polizzi, Can too many copies spoil the broth? Microb. Cell Fact., 12 (2013), 128.
https://doi.org/10.1186/1475-2859-12-128

J. Buerstedde, N. Lowndes, D. G. Schatz, Induction of homologous recombination between se-
quence repeats by the activation induced cytidine deaminase (aid) protein, Elife, 3 (2014), e03110.
https://doi.org/10.7554/eLife.03110

G. Terai, S. Kamegai, A. Taneda, K. Asai, Evolutionary design of multi-
ple genes encoding the same protein, Bioinformatics, 33 (2017), 1613-1620.
https://doi.org/10.1093/bioinformatics/btx030

S. T. Parvathy, V. Udayasuriyan, V. Bhadana, Codon usage bias, Mol. Biol. Rep., 49 (2022), 539—
565. https://doi.org/10.1007/s11033-021-06749-4

J. Athey, A. Alexaki, E. Osipova, A. Rostovtsev, L. V. Santana-Quintero, U. Katneni, et
al., A new and updated resource for codon usage tables, BMC Bioinf.,, 18 (2017), 391.
https://doi.org/10.1186/s12859-017-1793-7

J. M. Comeron, M. Aguadé, An evaluation of measures of synonymous codon usage bias, J. Mol.
Evol., 47 (1998), 268-274. https://doi.org/10.1007/PL0O0006384

M. Gouy, C. Gautier, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids
Res., 10 (1982), 7055-7074. https://doi.org/10.1093/nar/10.22.7055

P. M. Sharp, W. Li, The codon adaptation index-a measure of directional synonymous
codon usage bias, and its potential applications, Nucleic Acids Res., 15 (1987), 1281-1295.
https://doi.org/10.1093/nar/15.3.1281

Electronic Research Archive Volume 32, Issue 4, 2514-2540.


http://dx.doi.org/https://doi.org/10.1038/sj.ki.5002585
http://dx.doi.org/https://doi.org/10.3390/md20110657
http://dx.doi.org/https://doi.org/10.1080/07388551.2021.1967871
http://dx.doi.org/https://doi.org/10.1038/srep09684
http://dx.doi.org/https://doi.org/10.1038/nbt0294-181
http://dx.doi.org/https://doi.org/10.1038/nbt.1555
http://dx.doi.org/https://doi.org/10.1186/1475-2859-12-128
http://dx.doi.org/https://doi.org/10.7554/eLife.03110
http://dx.doi.org/https://doi.org/10.1093/bioinformatics/btx030
http://dx.doi.org/https://doi.org/10.1007/s11033-021-06749-4
http://dx.doi.org/https://doi.org/10.1186/s12859-017-1793-7
http://dx.doi.org/https://doi.org/10.1007/PL00006384
http://dx.doi.org/https://doi.org/10.1093/nar/10.22.7055
http://dx.doi.org/https://doi.org/10.1093/nar/15.3.1281

2538

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

G. A. Gutman, G. W. Hatfield, Nonrandom utilization of codon pairs in escherichia coli, PNAS,
86 (1989), 3699-3703. https://doi.org/10.1073/pnas.86.10.369

A. Tats, T. Tenson, M. Remm, Preferred and avoided codon pairs in three domains of life, BMC
Genomics, 9 (2008), 463. https://doi.org/10.1186/1471-2164-9-463

M. Baeza, J. Alcaino, S. Barahona, D. Septlveda, V. Cifuentes, Codon usage and
codon context bias in xanthophyllomyces dendrorhous, BMC Genomics, 16 (2015), 293.
https://doi.org/10.1186/s12864-015-1493-5

R. Prabha, D. P. Singh, S. Sinha, K. Ahmad, A. Rai, Genome-wide comparative analysis of
codon usage bias and codon context patterns among cyanobacterial genomes, Mar. Geonomics,
32 (2017), 31-39. https://doi.org/10.1016/j.margen.2016.10.001

J. R. Coleman, D. Papamichail, S. Skiena, B. Futcher, E. Wimmer, S. Mueller, Virus at-
tenuation by genome-scale changes in codon pair bias, Science, 320 (2008), 1784-1787.
https://doi.org/10.1126/science.1155761

H. Seligmann, Cost minimization of ribosomal frameshifts, J. Theor. Biol., 249 (2007), 162-167.
https://doi.org/10.1016/j.jtbi.2007.07.007

H. Seligmann, D. D. Pollock, The ambush hypothesis: hidden stop codons prevent off-frame gene
reading, DNA Cell Biol., 23 (2004), 701-705. https://doi.org/10.1089/dna.2004.23.701

A. Gupta, T. R. Singh, Shift: server for hidden stops analysis in frame-shifted translation, BMC
Res. Notes, 6 (2013), 68. https://doi.org/10.1186/1756-0500-6-68

P. Svoboda, A. D. Cara, Hairpin rna: a secondary structure of primary importance, Cell. Mol. Life
Sci., 63 (2006), 901-908. https://doi.org/10.1007/s00018-005-5558-5

C. Bao, S. Loerch, C. Ling, A. A. Korostelev, N. Grigorieff, D. N. Ermolenko, mRNA
stem-loops can pause the ribosome by hindering a-site trna binding, Elife, 9 (2020), €55799.
https://doi.org/10.7554/eLife.55799

M. V. Diaz-Galian, M. A. Vega-Rodriguez, Many-objective approach based on problem-
aware mutation operators for protein encoding, Inf. Sci., 613 (2022), 376-400.
https://doi.org/10.1016/j.ins.2022.09.048

A. Watts, S. Sankaranarayanan, A. Watts, R. K. Raipuria, Optimizing protein expres-
sion in heterologous system: strategies and tools, Meta Gene, 29 (2021), 100899.
https://doi.org/10.1016/j.mgene.2021.100899

B. Gonzalez-Sanchez, M. A. Vega-Rodriguez, S. Santander-Jiménez, A multi-objective but-
terfly optimization algorithm for protein encoding, Appl. Soft Comput., 139 (2023), 110269.
https://doi.org/10.1016/j.as0c.2023.110269

K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: solving problems with box constraints, /[EEE Trans.
Evol. Comput., 18 (2013), 577-601. https://doi.org/10.1109/TEVC.2013.2281535

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput., 6 (2002), 182—197. https://doi.org/10.1109/4235.996017

Electronic Research Archive Volume 32, Issue 4, 2514-2540.


http://dx.doi.org/https://doi.org/10.1073/pnas.86.10.369
http://dx.doi.org/https://doi.org/10.1186/1471-2164-9-463
http://dx.doi.org/https://doi.org/10.1186/s12864-015-1493-5
http://dx.doi.org/https://doi.org/10.1016/j.margen.2016.10.001
http://dx.doi.org/https://doi.org/10.1126/science.1155761
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2007.07.007
http://dx.doi.org/https://doi.org/10.1089/dna.2004.23.701
http://dx.doi.org/https://doi.org/10.1186/1756-0500-6-68
http://dx.doi.org/https://doi.org/10.1007/s00018-005-5558-5
http://dx.doi.org/https://doi.org/10.7554/eLife.55799
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.09.048
http://dx.doi.org/https://doi.org/10.1016/j.mgene.2021.100899
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2023.110269
http://dx.doi.org/https://doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/https://doi.org/10.1109/4235.996017

2539

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

A. Razmi, M. Rahbar, M. Bemanian, Pca-ann integrated nsga-iii framework for dormitory building
design optimization: energy efficiency, daylight, and thermal comfort, Appl. Energy, 305 (2022),
117828. https://doi.org/10.1016/j.apenergy.2021.117828

I. Khettabi, M. A. Boutiche, L. Benyoucef, NSGA-II vs NSGA-III for the sustainable
multi-objective process plan generation in a reconfigurable manufacturing environment, /FAC-
PapersOnLine, 54 (2021), 683-688. https://doi.org/10.1016/j.ifacol.2021.08.180

X. Li, H. Lv, D. Zeng, Q. Zhang, An improved multi-objective trajectory planning
algorithm for kiwifruit harvesting manipulator, IEEE Access, 11 (2023), 65689-65699.
https://doi.org/10.1109/ACCESS.2023.3289207

H. Ishibuchi, R. Imada, Y. Setoguchi, Y. Nojima, Performance comparison of nsga-ii and nsga-iii
on various many-objective test problems, in 2016 IEEE Congress on Evolutionary Computation
(CEC), IEEE, (2016), 3045-3052. https://doi.org/10.1109/CEC.2016.7744174

S. Wang, Y. Wang, Y. Wang, Z. Wang, Comparison of multi-objective evolutionary algo-
rithms applied to watershed management problem, J. Environ. Manage., 324 (2022), 116255.
https://doi.org/10.1016/j.jenvman.2022.116255

J. Blank, K. Deb, Pymoo: multi-objective optimization in python, IEEE Access, 8 (2020), 89497—
89509. https://doi.org/10.1109/ACCESS.2020.2990567

B. Gonzalez-Sanchez, M. A. Vega-Rodriguez, S. Santander-Jiménez, J. M. Granado-Criado,
Multi-objective artificial bee colony for designing multiple genes encoding the same protein, Appl.
Soft Comput., 74 (2019), 90-98. https://doi.org/10.1016/j.as0c.2018.10.023

B. Gonzalez-Sanchez, M. A. Vega-Rodriguez, S. Santander-Jiménez, Parallel multi-objective
optimization approaches for protein encoding, J. Supercomput., 78 (2022), 5118-5148.
https://doi.org/10.1007/s11227-021-04073-z

B. Gonzalez-Sanchez, M. A. Vega-Rodriguez, S. Santander-Jimenez, Multi-objective protein en-
coding: redefinition of the problem, new problem-aware operators, and approach based on variable
neighborhood search, Inf. Sci., 500 (2019), 173-189. https://doi.org/10.1016/j.ins.2019.05.088

B. Gonzalez-Sanchez, M. A. Vega-Rodriguez, S. Santander-Jimenez, Multi-objective memetic
meta-heuristic algorithm for encoding the same protein with multiple genes, Expert Syst. Appl.,
136 (2019), 83-93. https://doi.org/10.1016/j.eswa.2019.06.031

D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function op-
timization: artificial bee colony (abc) algorithm, J. Global Optim., 39 (2007), 459-471.
https://doi.org/10.1007/s10898-007-9149-x

P. Hansen, N. Mladenovié, J. A. Moreno Perez, Variable neighbourhood search: methods and
applications, Ann. Oper. Res., 175 (2010), 367-407. https://doi.org/10.1007/s10479-009-0657-6

N. Mladenovi¢, P. Hansen, Variable neighborhood search, Comput. Oper. Res., 24 (1997), 1097-
1100. https://doi.org/10.1016/S0305-0548(97)00031-2

E. Elbeltagi, T. Hegazy, D. Grierson, A modified shuffled frog-leaping optimization al-
gorithm: applications to project management, Struct. Infrastruct. Eng., 3 (2007), 53-60.
https://doi.org/10.1080/15732470500254535

Electronic Research Archive Volume 32, Issue 4, 2514-2540.


http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2021.117828
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2021.08.180
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2023.3289207
http://dx.doi.org/https://doi.org/10.1109/CEC.2016.7744174
http://dx.doi.org/https://doi.org/10.1016/j.jenvman.2022.116255
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2018.10.023
http://dx.doi.org/https://doi.org/10.1007/s11227-021-04073-z
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.05.088
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2019.06.031
http://dx.doi.org/https://doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/https://doi.org/10.1007/s10479-009-0657-6
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/https://doi.org/10.1080/15732470500254535

2540

54

55.

56.

57.

38.

59.

60.

61.

62.

63.

64.

65.

@ AIMS Press

. I. Das, J. E. Dennis, Normal-boundary intersection: a new method for generating the pareto
surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8 (1998), 631-657.
https://doi.org/10.1137/S1052623496307510

S. Arora, S. Singh, Butterfly optimization algorithm: a novel approach for global optimization,
Soft Comput., 23 (2019), 715-734. https://doi.org/10.1007/s00500-018-3102-4

K. Deb, E. Goodman, C. A. C. Coello, K. Klamroth, K. Miettinen, S. Mostaghim, et al., Evolu-
tionary Multi-Criterion Optimization: 10th International Conference, EMO 2019, East Lansing,
MI, USA, March 10-13, 2019, Proceedings, Springer, 11411 (2019).

D. D. Holcomb, A. Alexaki, U. Katneni, C. Kimchi-Sarfaty, The kazusa codon usage database,

cocoputs, and the value of up-to-date codon usage statistics, Infect., Genet. Evol., 73 (2019), 266—
268. https://doi.org/10.1016/j.meegid.2019.05.010

Kazusa DNA Research Institute, Saccharomyces cerevisiae gc contents, 2023. Available from:
https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4932.

The UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids
Res., 51 (2023), D523-D531. https://doi.org/10.1093/nar/gkac1052

D. Kim, J. Kim, Optimization of designing multiple genes encoding the same protein based
on NSGA-II for efficient execution on GPUs, Electron. Res. Arch., 31 (2023), 5313-5339.
https://doi.org/10.3934/era.2023270

G. Tzeng, J. Huang, Multiple Attribute Decision Making: Methods and Applications, CRC press,
2011.

D. L. Church, L. Cerutti, A. Giirtler, T. Griener, A. Zelazny, S. Emler, Performance and application
of 16s rrna gene cycle sequencing for routine identification of bacteria in the clinical microbiology
laboratory, Clin. Microbiol. Rev., 33 (2020). https://doi.org/10.1128/CMR.00053-19

B. Xue, M. Zhang, W. N. Browne, X. Yao, A survey on evolutionary computa-
tion approaches to feature selection, IEEE Trans. Evol. Comput., 20 (2015), 606-626.
https://doi.org/10.1109/TEVC.2015.2504420

M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-
docking terminal, Inf. Sci., 565 (2021), 390—421. https://doi.org/10.1016/j.ins.2021.02.039

B. Song, Z. Wang, L. Zou, An improved pso algorithm for smooth path planning of mobile
robots using continuous high-degree bezier curve, Appl. Soft Comput., 100 (2021), 106960.
https://doi.org/10.1016/j.as0c.2020.106960

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 4, 2514-2540.


http://dx.doi.org/https://doi.org/10.1137/S1052623496307510
http://dx.doi.org/https://doi.org/10.1007/s00500-018-3102-4
http://dx.doi.org/https://doi.org/10.1016/j.meegid.2019.05.010
http://dx.doi.org/https://doi.org/10.1093/nar/gkac1052
http://dx.doi.org/https://doi.org/10.3934/era.2023270
http://dx.doi.org/https://doi.org/10.1128/CMR.00053-19
http://dx.doi.org/https://doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.02.039
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106960
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related works
	Method proposed by Terai et al. and MOABC
	MOVNS and MOSFLA
	MaOMPE and MOBOA

	Problem definition
	Codon adaptation index (CAI)
	Codon pair bias (CPB)
	Hidden stop codon (HSC)
	Hamming distance of CDS pair (HD)
	GC content at the third nucleotide (GC3)
	Stem length (SL)
	Our approach to implement our method on GPUs
	Mutation methods

	Experimental results
	Conclusions
	Discussion and future work

