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ABSTRACT This paper introduces a class-B/C nested-gm voltage-controlled oscillator (VCO) with coupled
tail filtering in the 28 GHz band. The addition of only two cross-coupled NMOSs duplicates the gm to
boost the transconductance. This topology exhibits the characteristics of coupled VCOs, such as when two
VCOs are interconnected through a transformer. The core area is minimized by implementing a tail-filtering
inductor for a secondary harmonic filter in same space with the primary transformer. The proposed VCO is
fabricated with a 65-nmCMOS process, an output frequency of 25.4–29.12 GHz, and aKVCO of 3.72 GHz/V.
It has a supply voltage of 1 V and consumes 16.8 mW of power. It exhibits a phase noise of –105.34 dBc/Hz
with a 1 MHz offset. The proposed VCO has a core area of 0.06 mm2. The figure of merit (FoM), FoM
according to the area, and FoM according to KVCO are –182.37, –194.96, and –192.66 dB, respectively.

INDEX TERMS Area saving, CMOS, class-B/C, high VCO gain, gm boosting, LC tank, nested gm, noise
filtering, phase noise, VCO.

I. INTRODUCTION
LC voltage-controlled oscillators (VCOs) are essential in
wireless communication and sensor applications to gener-
ate the variable frequencies required for signal transmission
and reception. In particular, frequency-modulated continuous
wave (FMCW) radar applications require high-gain VCOs
that output wide frequency signals in one channel for high-
distance resolution. VCO performance requires a pure signal
to ensure the precision of the frequency output under low
power consumption and to improve the efficiency of the
device by reducing noise within the system. Therefore, VCO
designs employ phase noise and power consumption as a
figure of merit (FoM). In this process, the FoM for integration
density and that for VCO gain (KVCO) are defined as FoMA
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and FoMKVCO, respectively. These FoMs are benchmarks
in wireless communication, radar, and sensor technologies
that require continuous frequency control and efficient power
consumption.

The Lesson equation is generally used to determine the
phase noise in VCOs. Phase noise is defined using vari-
ous parameters, including the resonator’s output frequency
(fOUT ), LC tank inductance (L), noise factor (F), oscillation
amplitude (VA), and quality factor (Q). While L, fOUT , and F
are proportional to the phase noise, Q and VA are inversely
proportional. This equation describes how resonator charac-
teristics and loading quality factors affect VCO phase noise
at different frequency offsets from the carrier frequency.

In a VCO, an effective negative gm is essential for stable
and controlled oscillations. This characteristic counteracts the
inherent positive resistance within LC tank circuits. By pro-
viding negative transconductance, the VCO compensates for
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FIGURE 1. Overview of effective negative conductance (gm) topologies: (a) class-B VCO, (b) a DC decoupling class-C VCO, and
(c) a transformer-coupled class-C VCO.

the loss of the tank circuit, ensuring continuous oscillation.
This negative gm is crucial in regulating the amplitude of
the oscillation signal and stabilizing the oscillation frequency,
contributing to the overall stability of the VCO.

Fig. 1 illustrates an effective negative gm topology.
Fig. 1(a) presents cross-coupled NMOS transistors in a
class-B VCO configuration [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. These transistors are biased
to operate near the cut-off region, enabling the AC to gen-
erate oscillation waveforms. Cross-coupling between these
components improves the linearity and frequency stability
to ensure consistent output signals. Fig. 1(b) and (c) present
a VCO with class-C operation. In the VCO design shown
in Fig. 1(b), a DC decoupling capacitor removes the DC
bias in the signal path, and only an AC component can pass
through [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37]. This component ensures that the VCO
operates in a way that prevents any unwanted DC interference
from affecting the output signal. However, it results in a low
Q and high F because high resistance is required to apply the
common-mode DC bias voltage (VBIAS ). Therefore, a phase
noise drop is inevitable according to the Lesson equation.

Fig. 1(c) shows that, in the class-C operation, the trans-
former feedback involves the integration of the transformer
with the resonant LC tank. This feedback mechanism directs
energy back into the tank, helping to improve the resonance
and maintain the oscillation [38], [39], [40], [41], [42], [43],
[44], [55], [56]. In a transformer-coupled VCO, the phase
noise can be affected by the transformer’s mutual induc-
tance (k). Nonlinearity or fluctuations in the transformer
characteristics, such as loss or coupling fluctuations with the
frequency, can produce phase noise that affects the output
signal quality of the VCO. As a result, it is essential to
design a transformer with a high k and Q. In addition to these
designs, class-F VCOs have been developed that employ
both differential-mode (DM) and common-mode (CM) res-
onances by shaping impulse sensitivity functions (ISFs),
dramatically improving phase noise performance [50], [51],
[52], [53].

Several techniques have been developed to suppress the
phase noise of LC VCOs. For example, VCO tail filtering
has been designed to suppress secondary harmonics. This
method implements inductor LH and capacitor CH between
the negative gm and AC ground. The LC tank suppresses
even harmonics with high impedance to the second harmonic
frequency [10], [11], [12], [29], [36], [44], [49]. As the LC
configuration of the tail, the node touching the negative gm
falls to a voltage lower than the ground and secures the VDS of
the core MOSFET, increasing the output power of the VCO.
This tail harmonic filtering technique reduces the phase noise
but requires a greater area due to the additional inductor. This
area issue can be solved by coupling the tail filtering inductor
to a primary inductor with a low k [12].
Another useful technique is gm boosting, which can be

achieved in two ways: (1) the current paths can be arranged
at the gates of two cross-coupled MOSFETs [27], [28], [29],
[30], [31], [32], [33], [41], [42] or (2) the current paths can be
arranged in parallel with two other MOSFETs [8], [9], [36],
[43]. These methods increase the oscillation amplitude of the
output signal and support rapid start-up. This approach is suit-
able for class-CVCO structures with a low oscillation start-up
power consumption because it reduces the core current. This
technique also reduces the phase noise by increasing the sig-
nal amplitude according to the Lesson equation but requires
additional total power consumption.

Dual-core coupling VCOs that integrate two oscillators
interconnected through a coupling network have also been
developed [45], [46], [47], [48], [54]. Typically, the primary
core acts as the primary oscillator generating the main signal,
while the secondary core adjusts the frequency by synchro-
nizing with the primary core through a coupling network.
Dual-core coupling VCOs offer a wider frequency tuning
range (FTR) and lower phase noise. However, this design is
complicated by the synchronization between the two cores,
which requires sophisticated calibration, resulting in greater
design complexity and lower integration efficiency.

A VCO controls the output frequency by constructing a
varactor whose capacitance changes depending on the input
voltage. As the varactor size increases, KVCO increases to
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produce a wide FTR, but the output frequency sensitivity
increases depending on the input voltage of the VCO. This
also affects the Q of the core, resulting in low phase noise for
the VCO [49]. Previous studies on VCOs have reduced the
phase noise by increasing the Q while constructing a small
varactor that is insensitive to changes in frequency but is char-
acterized by a narrow FTR. These VCOs implement a parallel
capacitor bank to implement multiple channels and expand
the practical FTR. The VCO proposed in the present study is
an FMCW radar application target with a continuously broad
FTR that implements only a large varactor without a capacitor
bank. The proposed VCO thus has a novel structure with low
phase noise despite the Q loss.

The proposed VCO implements a coupled tail-filtering
technique with a coupled VCO to reduce the area and utilizes
a class-C nested-gm topology to boost the gm and thus sup-
press the phase noise. In this topology, where two VCOs are
interconnected, only two cross-coupled NMOSs are added to
the transformer-coupled class-C VCO. The proposed VCO
supports class-B/C mode by adjusting the bias voltage to the
secondary inductor. Configuring a tail-filtering inductor as a
transformer is thus advantageous for wide-band impedance,
exhibiting a low k with the other two inductors. The pro-
posed LC tank of the VCO achieves a frequency range of
25.40–29.12 GHz and a KVCO of 3.72 GHz/V because it only
employs a varactor without a capacitor bank.

The remainder of this paper is structured as follows.
Section II describes the concept and circuit diagram of the
proposed nested-gm class-B/C VCO with coupled tail fil-
tering. The measurement results and conclusions are then
presented in Sections III and IV, respectively.

II. PROPOSED DESIGN IMPLEMENTATION
Fig. 2 presents a block diagram of the proposed class-B/C
nested-gm VCO. Two LC banks and an effective negative gm
are employed with tail filtering. The two VCOs are intercon-
nected, supplying voltage for each core. The proposed VCO
operates in class-B mode if the internal voltage is equal to
the supply voltage (i.e., VINT = VDD) and operates in class-C
mode if the internal voltage is less than the supply voltage
(i.e., VINT<VDD). Because both VCOs must oscillate during
regular operation, VINT cannot be zero, and the voltage may
fall to the minimum oscillation condition. The nested gm in
the proposed VCO has the effect of an overlapping gm via the
effective negative gm bound to two stages. The gm-boosting
techniques described in previous studies add current to the
core, but the nested-gm approach employed in the proposed
VCO multiplies the effective gm1 and gm2 using a two-stage
common-source amplifier. Two LC tanks are coupled to each
other and have one resonance frequency. Using tail filtering,
the second harmonics are suppressed to reduce the phase
noise.

Fig. 3 displays a circuit diagram of the proposed class-B/C
nested-gm VCO with coupled tail filtering. M1 and M2 are
cross-coupled by transformers L1 and L3, and L1 and two
Cvar pairs are employed as primary LC tanks. In addition,

FIGURE 2. Block diagram of the proposed VCO.

FIGURE 3. Schematic of the proposed class-B/C nested-gm VCO with
coupled tail filtering.

M3 and M4 are cross-coupled, and the parasitic capacitors
of M1–4 and L3 are employed as secondary LC tanks in the
coupledVCO. The oscillation signal is sent back to L1 via L3,
and the resonance signal is generated due to the negative gm
of M3 and M4. In L3, M1 and M2 amplify the output signal
swing; therefore, the proposed design can reduce the VCO
phase noise. Second harmonic tail filtering is implemented
as CH and L4 and as a transformer coupled to the other
inductors with a low k . The control voltage (VC ) determines
the capacitance of Cvar so that the VCO oscillation frequency
can be adjusted. L2 is used to transfer the VCO output signal
to the buffer for measurement. L2 is also implemented as a
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transformer so that the input impedance of the buffer does
not affect the VCO core.

The sinewave has harmonic properties. The phase noise
of the VCO is reduced by eliminating the second harmonic,
which is an even number that affects signal interference.
The differential fundamental signals (fO+/−) of the VCO are
mixed at the source of the VCO core MOSFET, resulting in
a second harmonic signal (2fO). The LC tail filter is config-
ured on this node to filter out 2fO. However, the secondary
harmonic frequency also shifts because the VCO outputs a
frequency that changes according to the input voltage. Pre-
vious studies have solved this by externally adjusting CH or
the LC tank in the tail filtering unit with a switch to suppress
2fO and thus meet the target frequency. The proposed VCO
employs L4 as a transformer and designs the impedance
(ZTail) of the tail filtering node to exhibit a wide-band
characteristic. When two inductors with different resonant
frequencies are grouped into low k transformers, they exhibit
wideband impedance characteristics [12]. Fig. 4(a) presents
the simulation results for the impedance viewed from each
node. In the circuit for the proposed VCO, ZO and ZGate
have high impedance at fO, while ZTail exhibits resonant
characteristics at fO and 2fO. Fig. 4(b) displays the transient
simulation results for the proposed VCO. VTail oscillates to
2fO with a common-mode voltage close to zero due to tail
filtering. The resistance of L4 encounters a high current and
has a common-mode voltage greater than zero. As a result,
the amplitude of the proposed output signal from the VCO
increases while VTail has a voltage lower than zero. Fig. 4(c)
presents the ISF, gds, gm, and gm/gds transient simulation
results for the primary VCO and the coupled VCO.

Fig. 5 shows the layout of the proposed nested-gm VCO.
According to the circuit diagram in Fig. 3, the primary induc-
tor L1 is configured with the highest and thickest metal layer
M9 to obtain a high Q [35]. The L2 and L3 inductors are
composed of metals M8 and M7, respectively, to maintain
a high k . L4 is located far from the core inductors to obtain
a low k . Table 1 presents the results of the proposed VCO
parameters obtained from the simulation. L1, L2, L3, and
L4 obtain 124.2, 197.0, 167.3, and 139.2 pH, respectively,
while Q1, Q2, Q3, and Q4 are 25, 9, 12, and 2, respectively.
A coupling factor of around 0.8 is obtained from L1, L2,
and L3, which are near the center, while a value of about
0.25 is observed from L4, which is far from the center. The
transformers use high-layer metals M7–9, and Cvar is located
close to the core MOSFETs of M1–4.

III. MEASUREMENT RESULTS
Fig. 6 presents die micrographs of the proposed nested-gm
VCO with coupled tail filtering fabricated using a 65 nm
CMOS process. The proposed VCO core occupies an area of
0.06 mm2. The measurement equipment measures the phase
noise and spectrum of the proposed VCOwith a signal source
analyzer and a PXA signal analyzer. A transformer and a
buffer amplifier are configured in the VCO core according
to the specifications of the measurement equipment, and an

FIGURE 4. Simulation results for (a) the impedance of the proposed VCO,
(b) the transient voltage, and (c) the ISF, gds, gm and gm/gds.

on-chip current mode logic frequency divider is configured
to output a frequency that is eight times lower than VCO
outputs.

Fig. 7 presents the measurement results for the phase noise
of the proposed nested-gm VCO. Specifically, Fig. 7(a) dis-
plays the measurement results for the signal output to an
on-chip divider, showing that –123.4 dBc/Hz is obtained at
a 1MHz offset with a 3.64 GHz carrier, while –105.3 dBc/Hz,
which is the conversion data, is obtained with a 29.12 GHz
carrier. Fig. 7(b) and (c) present the measurement and
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FIGURE 5. Layout of the proposed nested-gm VCO with coupled tail
filtering.

TABLE 1. Proposed VCO parameters.

FIGURE 6. Die micrographs and die block diagram.

simulation results for the phase noise and the flicker noise
corner, respectively. In a non-ideal environment, unexpected

FIGURE 7. Phase noise results for the proposed VCO (a) at a carrier
frequency of 3.64 GHz, (b) simulation and measurement data, and
(c) flicker phase noise corner.

RLC between the printed circuit board (PCB) and chip
and process-voltage-temperature (PVT) variation reduces the
phase noise performance by less than 1 dBc/Hz. Furthermore,
an unexpected parasitic effect in the electromagnetic (EM)
and corner simulations in the VCO circuit impacts all the
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TABLE 2. Performance summary and comparison table.

FIGURE 8. Measurement results for the power consumption and output
frequency.

FIGURE 9. Measurement results for the power spectrum.

factors of the Lesson equation. In addition, depending on the
output frequency range and voltage bias condition of VCO,

FIGURE 10. FoMs calculated using the measured data.

the measurement results of the phase noise and the flicker
noise corner differ from the simulation.

Fig. 8 presents the measured power consumption and
output frequency of the proposed VCO. The value of
Cvar decreases as VC increases, and consequently the power
consumption decreases. The VCO output frequency accord-
ing to the input voltage VC is 25.40–29.12 GHz, and KVCO is
3.72 GHz/V. At the highest output frequency of 29.12 GHz,
16.8 mWof power is consumed, and the supply voltage is 1 V.
The output frequency of the proposed VCO is about 1 GHz
lower even though EM data, PVT variation, and parasitic
capacitance are considered in the simulation. Fig. 9 presents
the output spectrum measurement results, with –15.68 dBm
obtained at 29.12 GHz.

Fig. 10 presents the FoMs for the proposed VCO based on
the measurement results. The equations for the FoM, FoMA
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and FoMKVCO are as follows:

FoM = L (1f ) − 20log(
fout
1f

) + 10log(
PDC
mW

), (1)

FoMA = FoM − 10log(
Area
mm2 ), (2)

FoMKVCO = FoM − 20log(KVCO ·
V
GHz

) (3)

In equations (1), (2), and (3), 1f is the offset frequency
L (1f ) is the phase noise, fOUT is the output frequency, PDC is
the power consumption, andKVCO is the gain of VCO. Table 2
presents a performance summary and comparison with state-
of-the-art LC VCOs.

IV. CONCLUSION
The class-B/C VCO proposed in this article demonstrates low
phase noise, a high KVCO, and a small area due to its use of a
nested-gm topology and coupled tail filtering. The proposed
VCO is fabricated using a 65-nm RF CMOS process. This
VCO adds two cross-coupled NMOSs to produce a structure
where the coupled VCO and gm overlap to increase the signal
amplitude. The phase noise is reduced by removing the sec-
ondary harmonic via LC tail filtering. This L is composed of
a transformer to reduce the chip area. It has a large impedance
in a wide frequency band due to the coupling of different fre-
quencies. By reducing the gate voltage of the core MOSFET,
the proposed VCO improves the FoM through the class-
C operation. The proposed nested-gm VCO has an output
frequency of 25.40–29.12 GHz and a KVCO of 3.72 GHz/V
without a capacitor bank. The supply voltage is 1 V, the power
consumption is 16.8 mW, and the area is 0.06 mm2. The FoM
according to power, area, and KVCO is –182.37, –194.96, and
–192.66 dB, respectively.
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