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ABSTRACT DCmicrogrids are increasingly becoming the backbone of renewable energy integration. Their
ability to efficiently manage intermittent sources like solar and wind power is transforming the energy
landscape. However, a critical challenge remains in the form of DC arc faults, which can significantly
compromise the reliability and safety of these systems. Parallel arc faults represent a particularly challenging
scenario due to their unique electrical behavior. Unlike series arc faults, which cause a decrease in system
current, parallel arcs can lead to a significant increase in current due to the low resistance path they create.
This research delves into the electrical behavior of DC systems during parallel arc faults. By analyzing the
source current signals in different domains, the authors aim to identify specific characteristic features of
the source current that can serve as reliable indicators combined with artificial learning models for arc fault
diagnosis. The findings of this research can have significant implications for the improvement of advanced
arc failure recognition systems. This research represents a valuable step towards safe and reliable DC systems
by addressing the challenge of parallel arc fault detection.

INDEX TERMS DC parallel arc fault, feature characteristics, artificial learning models.

I. INTRODUCTION
The world’s insatiable appetite for fossil fuels has triggered
a two-fold crisis: dwindling resources and global warming.
In response, distributed renewable energy sources like solar
and wind power are rapidly taking root across the globe [1].
As reliance on these alternatives grows, ensuring their relia-
bility and safety becomes paramount [2]. Unlike traditional
AC systems, renewable energy systems rely on DC transmis-
sions, introducing a new vulnerability: DC arc faults. These
persistent electrical discharges can occur due to improper
installation, vibrations, or aging connections, posing a serious
fire hazard within PV systems and other DC microgrids [3].
DC microgrids, with their intricate network of cables and
connections, are vulnerable to a silent threat: DC arc faults.
These persistent electrical discharges, unlike their AC coun-
terparts, have no natural off switch, making them a ticking
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time bomb. A single spark from a damaged cable or loose
joint can ignite an inferno, as evidenced by the devastating
fire incidents in PV systems [4], [5], [6]. No zero crossing in
DC systems allows these arcs to burn uninhibited, posing a
constant threat to safety and stability. Unlike AC’s flickering
dance, DC arcs burn with unwavering rage, a silent threat
fueled by the absence of a current ‘‘reset.’’ These persistent
demons manifest in two forms: series and parallel. Series
arcs, slinking through loose connections or fleeting shorts,
sip current from connected loads, masking their presence [7].
But exceed safety limits by two to five times, and they erupt
into a scorching inferno, consuming cables and wires before
stumbling protection devices can intervene. Parallel arcs,
however, are a different beast. Born from damaged insulation,
they amplify the current, stoking an inferno that melts and
vaporizes conductors, leaving naught but smoldering ghosts,
far worse than their series counterparts [8]. This characteristic
allows them to burn at an arc current below the threshold for
most protective devices, making them a hidden threat. Unlike
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their series counterparts, parallel arc faults don’t just persist,
they can actually amplify the system’s current, leading to an
intensifying heat signature and a progressively larger, scorch-
ing flare-up. This inferno has the potential to melt and vanish
conductors and wiring, causing even greater physical damage
than the malfunctions associated with series faults [9]. The
exploration of parallel failure in DC systems is currently in
its early stages, lacking a comprehensive protection scheme.
However, existing literature offers insights into detecting arc
failure events. A comparison between series and parallel arcs
in DC systems is detailed in [10], providing a foundational
understanding. Additionally, [11] delves into the different
domain characteristics of arc failures in DC systems, con-
tributing to the knowledge base in this area. Notably, [12]
employs the detection of significant current fluctuations as
a method to identify parallel arc events, showcasing one
approach to enhance detection capabilities in these systems.
Conversely, artificial learningmodels (ALMs) have been suc-
cessfully applied in detecting arc failures, yielding promising
outcomes, as evidenced by studies such as [13], [14], [15],
and [16]. However, it’s noteworthy that these investigations
primarily focus on series arc faults, leaving a gap in the
thorough exploration of ALM applications for parallel arcs.
Recognizing this, there is a compelling necessity for a com-
prehensive study encompassing diverse operational situations
specific to parallel arc faults. Recent research into parallel arc
faults reveals a crucial correlation between the source current
in different domains and the superior performing of artificial
learning models [17]. In realistic applications, measuring the
arc current during a parallel arc fault is challenging due to the
unknown location of the arc event. Consequently, the source
current emerges as the most suitable signal for effective
fault diagnosis in this study. This recognition underscores
the importance of considering the source current for robust
diagnostic processes in the context of parallel arc faults.

This study intricately explores the electrical dynamics
associatedwith parallel arc faults. Through a detailed analysis
of source current signals in different domains, the objective
is to pinpoint distinctive features within the source current.
These identified features are intended to serve as robust
indicators when integrated with artificial learning models
for the purpose of arc fault diagnosis. The outcomes of this
research carry substantial implications for the advancement
of sophisticated arc fault detection systems. By addressing
the complexities of parallel arc fault detection, this research
contributes significantly to heightening the protection and
reliability of DC organizations, marking a crucial stride in the
domain of electrical system security. The proposed method
offers several novel contributions. By recognizing the dis-
tinct characteristics and hazards posed by parallel arcs, the
proposed method fills a significant gap in existing literature,
which primarily focuses on series arc faults. Through an intri-
cate analysis of source current signals in different domains,
the proposed method aims to identify robust indicators for
fault diagnosis. This approach offers a deeper understand-
ing of the electrical dynamics associated with parallel arc

faults, facilitating more accurate detection and diagnosis.
The study leverages ALMs as powerful tools for identifying
elusive faults. By integrating ALMs with effective feature
extraction techniques, the proposed method enhances fault
diagnosis accuracy, thereby improving the safety and relia-
bility of DC systems. This paper lays out a clear roadmap
to understanding and detecting arc faults. Section II meticu-
lously constructs the configuration setup, providing a detailed
canvas for analyzing current behavior. Section III empowers
you with knowledge of ALMs, powerful tools for identifying
these elusive faults. We delve into effective feature extracting
techniques. Section IV delivers the scientific results, unveil-
ing the secrets of current behavior across various operating
conditions. Finally, SectionV distills the wisdom gained from
ALMs, offering valuable insights and paving the way for
future advancements in arc fault detection.

II. DC PARALLEL ARC FAULT GENERATION AND
CHARACTERISTICS IN DIFFERENT DOMAINS
The experimental setup, designed in accordance with the
UL1699B standard [18], incorporates an arc creator and asso-
ciated electronics elements to gather arc data, as illustrated
in Figure 1. The KEYSIGHT N8741A, a versatile power
supply capable of delivering up to 300V, 11A, and 3.3kW
of power, plays a crucial role in this experiment. It serves
as the heart of the DC source, providing the steady 300V
voltage that fuels the arc generation process. The arc cur-
rent, denoted as iarc, flows through specially designed arc
rods held in place by a meticulous step motor. This motor
ensures safe and controlled separation of the rods, allowing
for precise arc gap adjustments crucial for analyzing arc
behavior at different distances. The gap itself is meticulously
monitored by an electric ruler, its precise measurements feed-
ing into the data acquisition system for detailed analysis.
Finally, the three-phase inverter, burdened by a 10� resistor
and 10mH inductor, serves as the simulated load represent-
ing real-world electrical systems. To ensure safety during
the generation of a parallel arc, a resistor Rlimit is serially
inserted into the arc generator. This resistor serves the crucial
role of limiting the arc current, especially given the rapid
increase in source current (is) associated with the initiation
of a parallel arc. Table 1 provides detailed specifications for
the parallel arc fault, offering comprehensive insights into
the experimental parameters and conditions. Initiating the
experiment, a controlled surge of DC voltage energizes the
three-phase inverter load. Simultaneously, the meticulously
calibrated step motor meticulously pulls the arc rods apart at
a precise rate of 2.5mm/s, replicating the gradual increase in
distance that can occur during system faults. In this controlled
separation, an oscilloscope, operating at a 250kHz sampling
frequency specifically chosen to capture the dynamic nuances
of arc current, meticulously records the electrical behavior
both before and after the rods part ways. The initiation of
the arc introduces significant fluctuations, contributing to
arc current noise. The diagnostic process, executed using
MATLAB, utilizes the collected data for accurate fault
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FIGURE 1. DC parallel arc failure generation.

TABLE 1. Specifications of experimental arc fault generation.

detection. The acquired signals are systematically divided
into sets representing 0.8 ms periods, facilitating testing and
training processes through ALMs. To precisely control the
three-phase inverter and generate realistic arc scenarios, the
experiment leverages the advanced technique of Space Vector
Pulse Width Modulation (SVPWM). The core of SVPWM
lies in the concept of ‘‘space vectors,’’ which combine the
instantaneous voltages of all three phases into a single point
in a two-dimensional space. By strategically manipulating
these vectors and calculating the corresponding switching
patterns for the inverter’s power transistors, SVPWM syn-
thesize three-phase waveforms with near-perfect sinusoidal
fidelity. This precise control over the inverter output wave-
form replicates realistic operating conditions and generate
controlled arc events for detailed analysis. This compre-
hensive approach ensures meticulous control and analysis
throughout the experimental setup.

Figure 2 visually presents the signals during both experi-
mental arcing and normal states, specifically under conditions
of load current 3 A, 5 kHz switching frequency, and 0.5 A
arc current. The presented figures unmistakably depict wave-
form shapes that remain stable and analogous before the
commencement of any arcing. However, upon the initiation
of a fault event, a cascade of abnormal behaviors becomes
evident in the signals. The current waveform, formerly a
smooth sine wave, becomes riddled with harmonic compo-
nents, a spectral chorus whose frequencies whisper tales of
the arcing plasma’s chaotic nature. These aberrations in the
signal behavior during fault events present valuable cues that

FIGURE 2. The source current waveforms under the load current of 3 A
with the arc current of 0.5 A at switching frequency of 5 kHz.

could prove instrumental in diagnosing the occurrence of a
fault event. This in-depth analysis of the signal characteristics
during both normal and arcing states is crucial for developing
a robust diagnostic framework for failure diagnosis.

In Figure 3, the FFT investigation of the source current is
presented under conditions of 3 A load current, 0.5 A arc cur-
rent, and a 5 kHz switching frequency. The manifestation of a
parallel arc is evident in the notable increase in current during
its occurrence. This results in significantly larger harmonics
during the arcing state compared to the normal state. High-
order harmonics are visibly introduced to the signals after
initiating the arc fault. While frequency-domain analyses like
FFT provide valuable insights, they come with certain draw-
backs. The computation-intensive nature and demand for high
sampling rates could potentially compromise execution time
and precision in real-world applications, particularly dur-
ing fault events. Conversely, time-domain signals allow for
processing with lower sampling rates, ensuring faster com-
putational efficiency. This investigation leverages different
domain inputs for the diagnosis of parallel arc faults. Initially
sampled at a frequency of 250 kHz, the signals undergo seg-
mentation into discrete sets, each lasting 0.8 ms, facilitating
subsequent testing and training procedures. Employing the
FFT procedure on each dataset facilitates the extraction of
frequency-domain features. These features, derived from dif-
ferent domains, are subsequently utilized as inputs for ALMs
to effectively diagnose parallel arc events. This integrative
approach aims to leverage the powers of both domains, ensur-
ing an all-inclusive and accurate diagnostic model for parallel
arc fault detection.

III. FEATURE EXTRACTIONS FROM DIFFERENT DOMAINS
AND ARTIFICIAL LEARNING PROTOTYPES
A. CHARACTERISTIC EXTRACTIONS IN TIME DOMAINS
The role of features in machine learning implementations is
pivotal. Features, essentially subsets of input data, provide a
representation of the original data. While a richer set of fea-
tures contributes to the effectiveness of ALMs, an excessively
high number may lead to reduced classification performance
or the risk of overfitting. Striking the right balance in feature

56064 VOLUME 12, 2024



H.-L. Dang et al.: Intelligence Detection of DC Parallel Arc Failure

FIGURE 3. The FFT analysis of source current under the load current
of 3 A with the arc current of 0.5 A and switching frequency of 5 kHz.
(a) Normal state. (b) Arcing state.

selection is crucial for optimal ALM functionality. To develop
a robust model, data sampled at a frequency of 250 kHz is
subjected to careful processing. The recorded data undergoes
segmentation into smaller datasets, each spanning 0.8 ms
intervals. These segmented datasets serve the dual purpose
of training and testing ALM algorithms. For each dataset,
a range of features is extracted, encompassing metrics such
as average (avr), median (med), variance (var), root mean
square (rms), integral (int), kurtosis (kur), entropy (ent), and
the distance between the maximum and minimum currents
(ptp). This comprehensive suite of features aims to provide
a nuanced and detailed input for ALMs, fostering a balanced
and effective model for accurate fault diagnosis. These fea-
tures are expressed as:
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ptp = max (i1, i2, . . . , iK ) − min(i1, i2, . . . , iK ) (9)

here in represents the data component at nth position within
separately information array and K is the quantity of com-
ponents inside separately interval. Figures 4 and 5 provide
a visual representation of the feature values extracted from
time domain signals with load current amplitudes set at 3 A
and 0.5 A arc current, maintaining a switching frequency of
5 kHz. The computation of the average involves summing all
components inside an information array and distributing by
the entire components. Notably, average values exhibit steady
shapes across ordinary and fault conditions. The ordinary
state shows a relatively constant value, whereas the arcing
period possesses fluctuations. Median values, representing
the middle value of a dataset. Comparable with the average,
the medians display big differences among various working
states. The steadiness of the median in the ordinary condition
dissimilarities with the oscillating character in the fault con-
dition. The root mean square (rms) derived from time data
are also presented. rms values contribute additional insights
into signal characteristics, aiding in the classification pro-
cess. Similar to average, median, and rms, the peak-to-peak
(ptp) exhibit discernible differences among various working
states. Additionally, the fluctuations of ptp and kurtosis are
more pronounced than other features, leading to more reliable
index. Detailed analysis underscores the significance of these
time domain features in capturing the nuances of signals
during normal and arcing states, laying the foundation for
effective classification in arc fault detection scenarios.

B. FEATURE EXTRACTION IN FREQUENCY DOMAIN
In each distinct sample interval, the signal undergoes metic-
ulous separation, followed by FFT examination to extract
frequency domain features using equations (1 - 9) for fre-
quency components. Figures 6 and 7 vividly illustrate the
frequency domain features with current amplitudes set at 3 A
and 0.5 A arc current, maintaining a switching frequency of
5 kHz. Average values within the frequency domain exhibit
steady shapes across ordinary and fault conditions. The ordi-
nary condition demonstrations a moderately steady mean,
whereas the fault condition initiates oscillations. The median
robustly captures the middle point of a dataset. Root mean
square (rms) values showcase patterns akin to peak-to-peak
(ptp) and variance, representing steadiness in the ordinary
situation and changeability in the fault condition. Notably,
the fluctuations of kurtosis are more pronounced than other
features, although the difference gap between normal and
arcing states is not as clear as in rms, ptp, and variance.
Entropy reveals distinctions between states, but overlap-
ping regions could pose challenges for classification. This
nuanced analysis delves into the intricate details of frequency
domain features, emphasizing their role in effective signal
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FIGURE 4. The time domain features for the load current of 3 A with the
arc current of 0.5 A at switching frequency of 5 kHz. (a) Average.
(b) Median. (c) rms. (d) ptp.

classification and providing a foundation for advanced arc
fault detection systems.

FIGURE 5. The time domain features for the load current of 3 A with the
arc current of 0.5 A at switching frequency of 5 kHz. (a) Variance.
(b) Integral. (c) Kurtosis. (d) Entropy.

The analysis of time and frequency domain features pro-
vides valuable insights into the characteristics of signals
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FIGURE 6. The frequency domain features for the load current of 3 A with
the arc current of 0.5 A at switching frequency of 5 kHz. (a) Variance.
(b) Integral. (c) Kurtosis. (d) Entropy.

during normal and arcing states, laying the groundwork
for effective classification in arc fault detection scenar-
ios. Figures 8 and 9 provide the distribution of time- and

FIGURE 7. The frequency domain features the load current of 3 A with
the arc current of 0.5 A at switching frequency of 5 kHz. (a) Average.
(b) Median. (c) rms. (d) ptp.

frequency-domain features for the load current of 3 A with
the arc current of 0.5 A at the switching rate of 5 kHz, respec-
tively. In the time domain, several key features, including
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FIGURE 8. The distribution of time domain features for the load current
of 3 A with the arc current of 0.5 A at switching frequency of 5 kHz.

average, median, rms, and integral values, exhibit distinct
distributions among different operation states. Whereas, rms,
ptp, and variance exhibit distinct distributions between nor-
mal and arcing states in frequency domain. Overall, the
analysis highlights the significance of both time and fre-
quency domain features in capturing the nuances of signals
during different operation states. These features play a crucial
role in effective signal classification and provide a foundation
for the development of advanced arc fault detection systems.

To conduct experiments to verify the theoretical analysis,
a systematic approach should be followed. Set up a lab-
oratory environment or simulation platform that emulates
DC parallel arc fault conditions. Ensure that the setup accu-
rately represents real-world scenarios to make the results
applicable. Collect a sufficient amount of data representing
both normal and fault conditions. This data should include
source current signals captured during various fault scenar-
ios. Extract time-domain features and FFT features from
the collected data. Ensure that the features are computed
accurately and consistently. Implement algorithms for fault
detection using both time-domain and FFT features. This

FIGURE 9. The distribution of frequency domain features for the load
current of 3 A with the arc current of 0.5 A at switching frequency of
5 kHz.

may involve training machine learning models or develop-
ing rule-based algorithms. Conduct experiments by applying
the implemented algorithms to the collected data. Evaluate
the performance of each algorithm in terms of fault detec-
tion accuracy, and other relevant metrics. Perform statistical
analysis to compare the performance of algorithms utilizing
time-domain features, FFT features, and their combination.

C. ARTIFICIAL LEARNING MODELS
Support Vector Machines (SVMs) stand out as robust and
versatile algorithms extensively utilized in machine learning
for diverse tasks, spanning classification to regression. SVM
operate on the core principle of delineating data points into
separate categories by identifying a hyperplane. This hyper-
plane serves as a clear boundary. SVMs effectively segregate
data while maximizing the distance between different classes.
This distance, known as the margin, is vital for optimum
sorting functioning, as it ensures robust segregation between
classes [19]. In the arena of arc fault detection, a potent
implementable algorithm often takes center stage: K-Nearest
Neighbors (KNN). Imagine placing a new signal, suspected
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of harboring an arc fault, amongst a multitude of previously
analyzed signals. KNN would then meticulously calculate
the distances between this newcomer and all its neighbors,
leveraging metrics like Euclidean or Manhattan distances to
measure their closeness. But not all neighbors hold equal
weight. KNN identifies the k closest companions, those whis-
pering the most similar stories, and ultimately assigns the
newcomer the class label most prevalent among this intimate
circle. The simplicity and interpretability of this logic make
KNN a compelling choice, especially when dealing with
complex, non-linear relationships like those often found in
arc fault diagnostics. Subsequently, the algorithm evaluates
the group categorizations of these data and appoints the
most prevalent group classification to the data input. This
distinctive procedure fundamentally signifies that the clas-
sification of the data input is contingent on the collective
‘‘vote’’ of its nearest labels [20]. Decision Trees (DTs) takes
the form of a tree organization, separately node denotes a
judgment with a particular aspect, and separately subdivi-
sion indicates a potential conclusion. The construction of
a DT begins with a particular foundation point containing
the intact data inputs. This particular foundation point is
divided into numerous sub-nodes using the most explanatory
characteristic. The selection of the most informative feature
is guided by data factor, which determines the decline in
indecision about the classification markers. At individually
intersection, a judgement regulation is formulated using the
selected characteristic and a divided spot that amplifies data
factor. This decision law partitions the information into sub-
divisions based on the characteristic rate. The procedure
of recursive separating endures till a specified interrupting
condition is crossed. The terminal points at the end of the
structure, known as end-nodes, represent definitive classi-
fication or regression predictions [21]. Ensemble learning
methodologies (ELM) diverge from single models by lever-
aging the cooperative knowledge of numerous prototypes
to attain high-class functioning. This collaborative approach
involves uniting the prognostications of various particular-
ized prototypes, ensuing the outcomes that are more precise
and consistent than those of some single prototype. Among
the multitude of ELM, Random Forest (RF) emerges as one
of the most widely adopted, stemming from the foundational
principles of DTs. The mechanics of Random Forest involve
constructing a collaborative comprising numerous DTs, indi-
vidually focused on a distinct subdivision of the fundamental
information. A critical hyperparameter in RF is the number of
trees, which affects the algorithm’s performance and can be
adjusted accordingly. While a larger forest generally leads to
improved accuracy, it also increases computational demands.
Typically, the number of trees chosen falls inside the scale of
several hundreds to thousands, achieving a delicate equilib-
rium between precision and computational productivity [22].
Naive Bayes (NB) utilizes Bayes’ statement principles to
assemble prognostications. In this framework, the possibility
of a components fitting to a particular category is processed
with observed features and aforementioned knowledge of the

problem domain. The NB algorithm begins by establishing
the prior probability for each class. Subsequently, it calculates
the provisional possibility of examining the characteristics
for each class, assessing the evaluate between characteris-
tic assessments and the particular category. By means of
Bayes’ theorem, it then computes the subsequent possibil-
ity of individually category with the former possibility and
the provisional possibilities. This decider possibility repre-
sents the category involvement of the information aspect
once studying all monitored characteristics. The predicted
category is determined by selecting the group with the top
subsequent possibility [23].

IV. DIAGNOSIS OF DC PARALLEL ARC FAULT WITH
FEATURING FROM DIFFERENT DOMAINS
In the framework of diagnosing DC parallel arc faults, our
method strategically leverages the features extracted from the
source current, as delineated in Figure 8. This study strate-
gically leverages features extracted from the source current
signal, focusing on both time and frequency domains. In the
time domain, we meticulously employ eight features, cap-
turing various aspects of the current behavior. Additionally,
eight features are extracted in the frequency domain, pro-
viding insights into the spectral characteristics of the current
signal. Notably, this innovative approach involves combining
these features, pairing time averages with frequency aver-
ages to generate unique inputs. This comprehensive strategy
results in a total of 24 distinct inputs, each contributing to a
nuanced understanding of arc behavior. The refined approach
underscores the critical importance of feature combinations
for achieving enhanced diagnostic accuracy. By combining
features from both time and frequency domains, this research
captures a broader range of information, enabling more pre-
cise fault detection. In each domain - time, frequency, and the
combination of both - there are 8,000 data sets for training
purpose and 6,400 data set for testing. Therefore, a total of
24,000 datasets are employed for training purposes, while
19,200 datasets are allocated for testing. To ensure a compre-
hensive evaluation of algorithmic performance, this research
maintains a balanced ratio of arcing to normal sets

(1:1) across all cases. This balanced dataset allows to
assess the effectiveness of our diagnostic method under both
fault and normal operating conditions. The chosen evaluation
metric for gauging the efficacy of the ALMs is accuracy. The
accuracy rate, representing the ratio of correctly predicted
datasets and the total test datasets, stands as a robust measure
of algorithmic performance. It is stated as:

Accuracy rate =
number of dataset correctly classified

all the dataset in test set
(10)

The identification of the best-performing algorithm is
grounded in achieving the highest accuracy, underscoring
the algorithm’s exceptional ability to discern between arc-
ing and normal states with precision. This approach ensures
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a rigorous assessment and selection of the most effective
algorithm for DC parallel arc fault diagnosis.

In the assessment of DC parallel arc fault diagnosis utiliz-
ing SVM models, as depicted in Figure 11, the role of input
features emerges as a critical determinant of performance.
Across various scenarios, certain features prove to be excep-
tionally effective, with time average, time rms, time median,
time integral, and combinations of time and frequency fea-
tures (average, median, rms, ptp) consistently achieving high
accuracy percentages. Additionally, FFT ptp, time ptp, and
time kurtosis exhibit reliable performance, contributing sig-
nificantly to robust fault detection. Conversely, features such
as FFT median, FFT rms, FFT kurtosis, and FFT average,
while generally reliable, demonstrate slightly lower accuracy
when compared to the top-performing features. Particularly,
FFT median exhibits less consistent performance across dif-
ferent scenarios, suggesting a potential decrease in reliability
for fault detection. This nuanced analysis underscores the
crucial importance of selecting appropriate features for DC
parallel arc fault diagnosis, with time average, time rms,
time median, time integral, and certain feature combinations
emerging as the most dependable inputs for accurate and
reliable fault detection.

In the diagnostic evaluation of DC parallel arc faults utiliz-
ing RF models, presented in Figure 12, a diverse set of input
features reveals varying levels of performance. Notably, time
average, time median, time rms, and time integral consis-
tently exhibit robust fault detection capabilities across diverse
fault scenarios, showcasing high accuracy percentages. These
features emerge as reliable indicators, particularly in scenar-
ios involving 0.5A arcs at both 5kHz and 15kHz, as well
as 1A arcs at 5kHz. On the other hand, time ptp and time
variance, while generally reliable, demonstrate slightly lower
accuracy when compared to the top-performing time features.
Shifting the focus to frequency domain features, FFT rms,
FFT ptp, and FFT variance display commendable perfor-
mance, contributing to accurate fault detection. However,
other FFT features show comparatively lower accuracy in
specific scenarios. Interestingly, combining time and FFT
features yields the most promising results. These hybrid
features demonstrate a balanced performance across fault
conditions, mitigating the shortcomings observed in individ-
ual time or frequency domain features. This nuanced analysis
underscores the importance of selecting and combining fea-
tures judiciously for effective DC parallel arc fault diagnosis
using RF models.

In the diagnostic assessment of DC parallel arc faults
utilizing K-Nearest Neighbors (KNN) models, as depicted in
Figure 13, the method consistently demonstrates robust per-
formance across diverse fault scenarios. Time average, time
median, time integral, time entropy, and time rms emerge as
stalwart features, consistently showcasing robust fault detec-
tion capabilities and achieving high accuracy percentages.
Notably, their performance remains impressive in scenarios
involving 0.5A arcs at both 5kHz and 15kHz, as well as 1A
arcs at 5kHz, with accuracy consistently reaching or nearing

100%. Time ptp and time variance also display commendable
performance, albeit slightly lower than the top-performing
time features. Shifting to the frequency domain, FFT ptp,
FFT variance, and FFT rms exhibit reliability, contributing
to accurate fault detection. While FFT average and FFT
median show slightly lower accuracy, their overall perfor-
mance remains commendable. Similar to the RF model,
combining time and FFT features enhances the overall perfor-
mance, offering a balanced approach to fault detection. This
detailed analysis emphasizes the effectiveness of KNN in DC
parallel arc fault diagnosis and the significance of selecting
and combining features judiciously for optimal performance.

NB emerges as a powerful diagnostic tool for DC par-
allel arc faults, as illustrated in Figure 14, especially when
capitalizing on a synergistic combination of time and fre-
quency domain features. Time features, encompassing aver-
age, median, integral, entropy, and rms, effectively capture
crucial aspects of signal dynamics over time. These fea-
tures offer valuable insights into the overall behavior and
patterns exhibited during the occurrence of arc faults. The
reliability of time features is evident in NB’s consistently high
accuracy percentages across various fault scenarios, such as
0.5A arcs at both 5kHz and 15kHz, as well as 1A arcs at
5kHz. In the frequency domain, NB strategically utilizes FFT
features, including ptp, variance, and rms, to analyze the
spectral characteristics of the signal. This domain provides
information about the frequency components present in the
signal, offering a complementary perspective to time-domain
analysis. The efficacy of NB in leveraging frequency features
is demonstrated by its robust fault detection capabilities, even
in scenarios with challenging conditions. The combination
of time and FFT features harnesses the strengths of both
domains, capturing nuanced information about the signal.
This synergistic integration enhances fault detection accuracy
by providing a more comprehensive view of the underlying
signal features. The amalgamation of time and FFT features
compensates for potential limitations in each domain, result-
ing in a more robust diagnostic model.

Figure 15 illustrates the diagnostic prowess of DT in
detecting DC parallel arc faults, revealing consistent high
accuracy across various fault scenarios. When scrutinizing a
3A load and 0.5A arc, whether at 5kHz or 15kHz, DT excels
in capturing distinctive features from both time and frequency
domains. The robust performance of DT across individual
features, such as time average, time median, time rms, time
integral, FFT ptp, FFT variance, and the combinations of time
and frequency features, underscores its capability to discern
complex fault patterns. Expanding the analysis to a 5A load
with 0.5A and 1A arcs, time average, time median, FFT ptp,
FFT variance, and the combinations of time and frequency
features continue to demonstrate reliability in fault detection.
Notably, these diagnostic results are evident in scenarios
with varying fault intensities, emphasizing its adaptability
to different fault conditions. The amalgamation of time and
FFT features further elevates DT’s performance, showcasing
a harmonized approach to fault diagnosis.
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FIGURE 10. The diagnosis scheme for DC parallel arc faults with featuring from time and frequency domain.

FIGURE 11. Detecting accuracy of SVM (a) 3 A load current amplitude. (b) 5 A load current amplitude.

Figure 16 presents a comprehensive overview of the diag-
nostic performance of various input features under different
Artificial Learning Models (ALMs) for detecting DC parallel

arc faults. Time-domain features, encompassing metrics such
as average, median, integral, and rms, consistently exhibit
superior performance across different fault scenarios. These
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FIGURE 12. Detecting accuracy of RF (a) 3 A load current amplitude. (b) 5 A load current amplitude.

FIGURE 13. Detecting accuracy of KNN (a) 3 A load current amplitude. (b) 5 A load current amplitude.

features effectively capture the temporal characteristics of
signals, providing valuable insights into the dynamic behav-
ior during arc faults. The reliability of time-domain features
is evident in their robustness across different fault magnitudes

and frequencies, showcasing their adaptability to diverse
conditions. On the other hand, FFT features, including aver-
age, median, and rms, demonstrate slightly lower accuracy
compared to time-domain features. While FFT features offer
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FIGURE 14. Detecting accuracy of NB (a) 3 A load current amplitude. (b) 5 A load current amplitude.

FIGURE 15. Detecting accuracy of KNN (a) 3 A load current amplitude. (b) 5 A load current amplitude.

insights into the spectral components of the signal, theymight
face challenges in capturing nuanced temporal dynamics. The
limitations of FFT features are particularly noticeable in cer-
tain fault scenarios, where their performance is surpassed by

time-domain counterparts. The combination of time and FFT
features presents a compelling approach to fault detection.
This fusion leverages the strengths of both domains, com-
pensating for the limitations inherent in each. The synergistic
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FIGURE 16. Overall detecting accuracy of AIL models (a) 3 A load current amplitude and 0.5 A arc current. (b) 3 A load current amplitude
and 1 A arc current. (c) 5 A load current amplitude and 0.5 A arc current. (d) 5 A load current amplitude and 1 A arc current.

TABLE 2. Comparisons of different arc fault diagnosis approaches.

effect enhances the overall diagnostic accuracy, providing a
more comprehensive understanding of the signal characteris-
tics. This combination proves beneficial in scenarios where
fault patterns are complex and multifaceted. In summary,
while time-domain features outperform FFT features in DC
parallel arc fault detection, the combination of both domains
emerges as a powerful strategy. Time features offer robust
insights into the temporal dynamics of signals, whereas FFT
features contribute spectral information.

Table 2 provides a comprehensive summary of the detec-
tion accuracies achieved by different approaches, including

approaches 1 [24], 2 [25], and 3 [17], all of which achieved
100% accuracy. The comparison among these approaches
sheds light on their methodologies and techniques in achiev-
ing high detection accuracies for DC parallel arc faults.
Approach 1 showcases the efficacy of utilizing specific fea-
tures extracted from time-domain signals for accurate fault
detection. However, its reliance on manually engineered fea-
tures such as current spike and arc energy may limit its
adaptability to diverse operating conditions and fault scenar-
ios, potentially overlooking certain arc behaviors. Approach
2 emphasizes the potential of frequency-domain analysis in
identifying arc faults, particularly through the examination
of spectral components. Nonetheless, the simplicity of sum-
ming the frequency spectrum may oversimplify the nuanced
characteristics of arc signatures, potentially compromising
detection robustness. Approach 3 harnesses the power of
artificial intelligence to analyze complex data from multiple
domains, resulting in accurate fault detection. However, its
drawback lies in using raw data from both domains without
extensive feature engineering, potentially hindering its ability
to extract relevant information effectively. In contrast, the
proposed approach combines the strengths of both time and
frequency domains by utilizing time- and frequency-domain
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source current signals. This approach integrates features from
both domains and employs intelligence learning techniques
for fault detection, demonstrating the effectiveness of inte-
grating diverse features for enhanced fault detection.

Considering the complexity and nuances associated with
diagnosing DC parallel arc faults, leveraging deep learning
techniques could indeed be a promising approach. Deep
learning models, particularly neural networks, have demon-
strated remarkable capabilities in handling intricate patterns
and relationships within data. By training deep learning mod-
els on a diverse dataset comprising both normal and fault
conditions, it’s possible to extract intricate features and pat-
terns that may not be easily discernible using traditional
methods. However, the decision to adopt deep learning should
be carefully considered based on quality of data, computa-
tional resources and so on. In general, deep learning models
need a lot of labeled data for training, which may pose chal-
lenges in certain scenarios where data collection is limited
or expensive. Moreover, the implementation of deep learn-
ing models necessitates significant computational resources,
including powerful hardware and potentially lengthy train-
ing times. Additionally, the interpretability of deep learning
models can sometimes be a concern, as they operate as black
boxes, making it challenging to understand the underlying
mechanisms driving their decisions. Despite these challenges,
the potential benefits of employing deep learning for DC par-
allel arc fault diagnosis are substantial. Deep learning models
have the capacity to automatically learn complex represen-
tations from data, potentially leading to more accurate and
robust diagnostic systems. Therefore, while careful consid-
eration of the associated challenges is warranted, exploring
the application of deep learning in this context could offer
valuable insights and advancements in arc fault detection
technology.

V. CONCLUSION
In conclusion, the investigation into DC parallel arc fault
diagnosis presents notable findings that significantly con-
tribute to the understanding and enhancement of diagnostic
accuracy in electrical systems. The source current emerges
as a key signal that encapsulates critical information about
the system’s behavior during fault conditions. Its significance
suggests that focusing on this parameter can lead to more
effective fault detection strategies. Further investigation into
the source current involves a detailed analysis of time-domain
features, FFT features, and their combinations. It is observed
that time-domain features consistently exhibit superior per-
formance across different fault scenarios compared to FFT
features. Time-domain features, such as average, median,
integral, and rms, effectively capture the temporal charac-
teristics of signals and provide valuable insights into the
dynamic behavior during arc faults. FFT features, offering
a spectral perspective of the signal, complement the time-
domain features.While slightly trailing in accuracy compared
to time-domain features, FFT features contribute valuable
frequency-related information. However, the combination of

time and FFT features presents a compelling approach to
fault detection. This fusion leverages the strengths of both
domains, compensating for the limitations inherent in each.
The synergistic effect enhances the overall diagnostic accu-
racy, providing a more comprehensive understanding of the
signal characteristics. This combination proves beneficial in
scenarios where fault patterns are complex and multifaceted.
However, it’s essential to recognize the trade-offs between
time and frequency domains. Time-domain features might
excel in capturing temporal dynamics but could be less
effective in representing frequency-related characteristics.
Conversely, FFT features may provide spectral insights but
might struggle with nuanced temporal patterns. The choice
between the two should be driven by the specific diag-
nostic requirements and the nature of the fault conditions.
In essence, the investigation into DC parallel arc fault diag-
nosis not only highlights the impact of switching frequency
and the significance of source current but also underscores
the effectiveness of a multi-faceted approach. Integrating
time-domain and FFT features offers a robust strategy for
fault detection, balancing the strengths and weaknesses of
each domain. This nuanced understanding contributes to the
development of more reliable and adaptable fault detection
systems in electrical systems.
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