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ABSTRACT Deep learning-based image segmentation methods require densely annotated and massive
datasets to produce effective results. On the other hand, active contours-based methods are excellent
alternatives to the situation, producing acceptable segmentation results. Earlier active contour models,
including local and global region information, struggle with their limitations, such as spurious contours
appearing in inhomogeneous images. Bias correction is utilized to solve the bias field’s energy, considering
the intensity inhomogeneity and the level set functions that suggest an image domain division. In our
approach, we combine the advantages of local and global information in the image level set function,
resulting in a combined energy function that aids in the efficient evolution of contours on images and can
judge the relevance of the item and its surroundings. The proposed model computes data force by extracting
local information from an in-homogeneous image using image-fitting energy and then computing all pixel
values simultaneously. Objects with high differences between grey levels or more in-homogeneity can be
segmented. The outcome demonstrates that our method is more dependable and computationally efficient
than previous methods.

INDEX TERMS Non-uniform intensity segmentation, distance adjustment term, active contour model,
gradient approach, adaptive function.

I. INTRODUCTION
Image segmentation is essential in many applications,
including machine learning, computer vision, and image
analysis. The aim of segmentation is to distinguish the region
of interest from the rest of the image for further applications.
However, several methods devised for this task follow
supervised and unsupervised streams of image processing
and computer vision fields. The active contour model,
belonging to the unsupervised techniques category of image
segmentation models, has been a notable and commonly
used approach for over two decades. The active contour
model, often known as the snake model, uses a deformable
contour that moves and adapts to object boundaries within
an image repeatedly [2]. This contour is governed by an
energy functional, which aims to minimize the energy cost
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of deformation. Active contours are computer-generated
synthetic curves that move under the influence of two
opposite forces: internal and external. Depending on the
formulation of active contour models, they are broadly
classified into edge-based and region-based, with their own
limitations and strengths.

Edge-based active contour models detect object edges
using gradient information. These models find regions with
substantial variations in pixel intensity, which frequently
correlate to object borders, by exploiting picture gradient
coefficients [3]. While edge-based active contour is helpful
in some situations, it is sensitive to initial contour placements
and struggles to capture regions with weak or unclear
boundaries. Furthermore, image noise can considerably
influence the quality of gradient-based edge identification,
resulting in compromised segmentation results [3], [4].

Region-based active contour models, on the other hand,
adopt a different approach by using global image region infor-
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mation rather than depending on gradients. The Mumford-
Shah (M-S) [1] model-based C-V model employs the global
intensity difference between the inner and outer regions of
the contour’s average intensities to drive the segmentation
process is a prominent region-based active contour model.
This region-based method is less susceptible to initial contour
placement and works better with images with hazy edge
points [5], [32]. Despite advances in both edge-based and
region-based active contour models, researchers have discov-
ered some drawbacks that restrict their effectiveness in real-
world applications [35], [36]. These problems include the
difficulty of dealing with images with non-uniform intensity
distributions, the requirement for enhanced initialization
resilience, and the necessity for more efficient segmentation
approaches are among these problems.

We introduce an innovative approach aimed at overcoming
the current limitations of image segmentation as addressed
by active contour models. Our technique incorporates several
key components, all working together to enhance the
precision and effectiveness of the segmentation process.

To begin with, we introduce a novel distance adjustment
term that dynamically modifies the step size of the current
contour. This dynamic adjustment enables more accurate
segmentation by precisely tracing object boundaries while
minimizing excessive computational costs. In our quest to
improve segmentation outcomes, we propose the incorpo-
ration of a length term. This term effectively filters out
inefficient shapes, streamlining the segmentation process and
leading to clearer and more meaningful results by eliminating
superfluous forms. Furthermore, we leverage the gradient
technique to enhance the total energy function, ensuring
that the active contour efficiently converges towards the
ideal segmentation results. Lastly, we introduce a localized
image-fitting strategy based on a unique convolution kernel
function tailored to address the challenge of non-uniform
intensity segmentation. This localized approach adapts to
regional image attributes, resulting in more dependable
and precise segmentation outcomes, even in scenarios with
varying intensity distributions. We show considerable gains
in initialization robustness, efficiency, and segmentation
accuracy compared to previous region-based models. Our
methodology combines novel ideas and approaches, opening
the way for more accurate and dependable picture segmen-
tation in various real-world applications. Following are the
specific contributions that our method offers.

• Introduction of Dynamic Distance Adjustment
Term: We introduce a novel distance adjustment term
that dynamically alters the step size of the active contour.
This innovation enhances the accuracy and precision
of segmentation by providing better control over the
contour’s movement.

• Reduction of Redundancy with Length Term: To
eliminate redundant shapes and improve segmentation
results, we propose the inclusion of a length term.
This term effectively filters out unnecessary contours,

resulting in more concise and relevant segmentation
outcomes.

• Optimizing Segmentation with Gradient Technique:
We employ the gradient technique to maximize the total
energy function. This optimization leads to rapid con-
vergence towards ideal segmentation results, enhancing
efficiency in the process.

• Local Image Fitting Strategy:We introduce a localized
image fitting strategy that relies on a specific convolu-
tion kernel function. This approach effectively addresses
non-uniform intensity segmentation challenges, produc-
ing more reliable and accurate segmentation results.
Additionally, it enhances initialization robustness, effi-
ciency, and segmentation accuracy compared to previous
region-based models.

• Integration of Innovative Approaches: Our work
represents an integration of novel ideas and techniques
aimed at enhancing the capabilities of the active
contour model and image segmentation methods. These
improvements are valuable for a wide range of real-
world applications.

The remainder of this manuscript is organized as follows.
Section II briefly presents the previous work. The proposed
work is explained in Section III, whereas Section IV demon-
strates the experiments and results. Finally, we conclude our
research in Section V.

II. RELATED WORK
There aremany region-based active contourmodels for image
segmentation. This section briefly summarises related work
as per the literature in the following subsections.

A. CHAN VESE MODEL
The Chan-Vese (CV) model stands as a prominent image
segmentation methodology, originally conceived as a
region-based approach adept at delineating objects within
images characterized by indistinct borders and diminished
gradient values [3]. Notably, it represents a robust and
versatile solution for the segmentation of a wide spectrum
of images, including those that have historically presented
formidable challenges for conventional segmentation meth-
ods, such as thresholding [3].

At its core, the CV algorithm operates by minimizing
an energy functional. This functional encompasses weighted
terms, including the summation of intensity differences from
the mean value in regions external to the segmented area,
the summation of differences from the mean within the
segmented area, and an associated term dependent on the
length of boundaries within the subdivided regions [3].
The model traces its lineage to the Mumford-Shah (M-
S) model and has found significant application within the
realm of imaging, particularly in domains characterized
by authentic and complex imagery, such as neuroimaging,
magnetic resonance imaging (MRI), and cardiac imaging,
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among others [2], [3], [29].

Ecv(C, c1, c2) = µ len(C) + λ1

∫ outside

outside
C(I (x) − c1)2 dx

+ λ2

∫ inside

inside
C(I (x) − c2)2 dx (1)

In the provided formulation, the parameters lambda1 and
lambda2 are user-defined, while the constants c1 and c2,
as specified in the formula, play a pivotal role in the
estimation of object intensities situated within and outside
the contour, as indicated by the relevant reference [2]. The
contour curves are subject to a decremental energy zeroing
function, with the Uhler equation being employed to facilitate
a reduction in the gradient. Furthermore, an energy reduction
process to achieve a zero-level adjustment function is applied
to the curve denoted as c. Utilizing the diminishing energy
zeroing function in the context of contour curves is a central
component of themethodology, as elucidated by the reference
in question.

ECV (φ, c1, c2) = v
∫

σ

Hϵ(φ) dx

+ µ

∫
σϵ(φ)[δφ] dx

+ λ1

∫ outside

outside
C(I (x)c1)Hϵ dx

+ λ2

∫ inside

inside
(C)(I (x)c2)Hd

ϵ x (2)

where Hϵ is the Heaviside function with ϵ constanct.
The following equation can define the Heaviside function.

Hϵ(x) =
1
2

[
1 +

2
π
arctan

( y
ϵ

)]
(3)

The Heaviside function is also known as the unit step
function, returning a zero value for x < 0. After calculating
the variations and determining the values of c1 and c2, the
available minimization formula is:

C1, σϵ =

∫
Hϵ(φ)I (y)dy

H ′
ω

∫
Hϵ(φ)I (y)dy

,

C2, σϵ =

∫
Hϵ(φ)I (y)dy

H ′
ω

∫
Hϵ(φ)I (x)dy

. (4)

The C-V model assumes that the target and background of
an image are statistically homogeneous [34]. However, when
the image intensities exhibit significant variation, it can lead
to improved segmentation performance.

φ(X ) > 0 if x ∈ In(C) (5)

φ(X ) = 0 if x ∈ on(C) (6)

φ(X ) > 0 if x ∈ out(C) (7)

B. LBF
Local binary fitting is employed to extract local information
within images, which can pertain to identification or recog-
nition purposes. In certain cases, images characterized by

grey values or grayscale imagery may not yield discernible
results or may pose challenges in obtaining satisfactory
outcomes [21]. The Local Binary Fitting (LBF) model is
specifically designed to address such issues more efficiently.
By employing function approximation to estimate pixel
values, the energy contour within the energy function is
initially adjusted inward and subsequently shifted outward to
obtain the desired result. LBF serves as a valuable tool for
addressing image inhomogeneities.

ϵx(Q, f1(a), f2(b)) =

λ1

∫
in(C)

Kσ (a− b)[I (b) − f1(a)]2 dy +

λ2

∫
out(C)

Kσ (a− b)[I (b) − f1(a)]2 dy

(8)

In the context of image processing, the input domain
comprises image data, and Gaussian kernel function values
are represented as f1(a) and f2(b), which are two distinct
functions employed for fitting the contour of the image.When
an object is situated at the boundary of the image, this reduces
local energy, causing a shift both inside and outside the image
boundaries.

ϵ(C, f1, f2) =

∫
ω

ϵx(C, f (a), f 2(b)) dx (9)

ϵ(φ, f1, f2) =

∫
ω

ϵx(φ, f (a), f 2(b))

= λ1

∫ [∫
Kσ (a− b)[I (b) − f1(a)]

]2
H (φ(a)) dy dx

+ λ2

∫ [∫
Kσ (b− a)[I (a) − f2(b)]

]2
[1 − H (φ(b))] dy dx (10)

f1(x) =
Kσ (a) ∗ [Hϵ(φ(b))I (a)]

Kσ (b)
∗ Hϵ(φ(a)) (11)

f2(x) =
Kσ (b) ∗ [Hϵ(φ(a))I (b)]

Kσ (a)
∗ Hϵ(φ(a)) (12)

For the representation of the LBF model:

Elbf(φ, f1, f2) =

∑
∞

λi∫
ω

∫
ω

kr (a− b)(I (b) − fi(a))2Hi(φ(a)) dx

(13)

The presented formula incorporates a Gaussian kernel
characterized by a specific standard deviation, including two
smoothing functions denoted as h1 and h2. These smoothing
functions are instrumental in approximating local intensity
and contour values denoted as C [8], [21]. The selection
of an appropriate standard deviation assumes paramount
importance in practical applications. Careful consideration
is warranted during this selection process, as an excessively
low standard deviation may yield unsatisfactory results while
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opting for excessively high values can result in a considerable
computational burden. It is imperative to acknowledge that
the computational demands of local binary fitting models
are notably high, necessitating numerous iterations for each
computation.

C. DRLSE
This deletion regulates the evolution of the level set and
eliminates the need for re-initialization, so no numerical
errors occur [33]. This is how Distance controls level set
evolution and allows for efficient initialization. Distance
regularization level set evolution increases the number of
iterations and requires more time steps, which improves
model accuracy and is applicable to edge-based models [16],
[30].This is how Distance controls level set evolution and
allows for efficient initialization.

D. LIF
The local image fitting (LIF )model exhibits the capability
to segment non-uniform images effectively. An innovative
Gaussian-based model has been introduced to fine-tune the
level set information, rendering re-initialization unnecessary,
which is not only computationally expensive but also
eliminates the need for it [21]. It is essential to note that
while re-initialization has been eliminated in this context, its
requirement persists in certain situations [5]. The efficiency
of this model notably surpasses that of the LBF model [21].
The level set function is formulated as

Elif = 12
∫

ω

|I (a) − ILFI (a)|2 dx (14)

For the calculation of local features in the image, the
following equation is used:

Ilif (a) = m1(a)Hϵ(φ) + m2(a)(1 − Hϵ(φ)) (15)

Here, in the equations for H1 and H2, both are local mean
intensities calculated as:

H1 = mean(I (a)|φ(a) < 0, a ∈ ω ∩ WU(a))

(16)

H2 = mean(I (a)|φ(a) > 0, a ∈ ω ∩ WU(a))

(17)

ϵx(L, f1(a), f2(a)) = λ1

∫
in(C)

Kσ (a− b)[I (b) − f1(a)]2 dy

+ λ2

∫
out(C)

Kσ (a− b)[I (b) − f1(a)]2 dy

(18)

Now, for the input domain of the image and having
Gaussian kernel function values, f1(x) and f2(x) are two
functions used for fitting the image contour. When the object
is in the boundary of the image, it will reduce the local energy

inside and outside of the image.

ϵ(C, f1, f2) =

∫
ω

ϵx(C, f (a), f2(a)) dx (19)

ϵ(φ, f1, f2) =

∫
ω

ϵx(φ, f (a), f2(a))

+ λ1

∫ [∫
Uσ (a− b)[I (b) − f1(a)]

]2
H (φ(y)) db da

+ λ2

∫ [∫
Uσ (b− a)[I (b) − f2(a)]

]2
[1 − H (φ(y))] db da (20)

f1(x) =
Uσ (a)[Hϵ(φ(a))I (a)]

Kσ (a)
Hϵ(φ(a)) (21)

f2(b) =
Uσ (a)[Hϵ(φ(b))I (a)]

Kσ (b)
Hϵ(φ(b)) (22)

E. LSACM
For each local region, the algorithm generates a bias field,
a level-set function, and a statistical energy function, all con-
taining successive approximations to the true signal associ-
ated with the respective object. The proposed Active Contour
Model (ACM) demonstrates its versatility by simultaneously
addressing both segmentation and bias correction. It excels
particularly in initialising the level set function, allowing
for seamless automatic application [17]. Experimental results
obtained from synthetic and real photographs affirm the
superiority of the proposed approach when compared to
current representative methods. The strength of the ACM
lies in its adeptness at initializing the level set function and
facilitating automatic application.

F. LPF
The local pre-fitting energy plays a crucial role in the
determination of two pre-fitting parameters, achieved by
regionally averaging the image intensity prior to curve
unrolling. Empirical observations validate the resilience of
the proposed approach to different initializations, which is
a noteworthy advantage. The utilization of a small constant
function as the initial level adjustment function further
contributes to efficient segmentation, thus saving valuable
computational resources [15]. A comparative assessment
against other models reliant on local adjustments underscores
the merits of the LPF (Local Pre-Fitting) method. This
approach can be effectively applied to various local fitting-
based models, bolstering the robustness of initial contours
while simultaneously reducing computational overhead [5].

Ex(c) = outside(C) ∩ x|I (y) − fs(x)|2dy

+ inside(c) ∩ x|I (y) − f 1(x)|2dy (23)

Below, the functions F and ω can be directly calculated,
which are divided by a line and represented by C at
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the given point.

Ex(f ) =

∫
(x − y)[I (y) − fs(x)]2dy

+

∫
Kσ (x − y)[I (y) − f1(x)]2dy (24)

Energy can be minimized at the given point below.
AGaussian function is employed as a fitting-basedmodel, but
it can be replaced by the local omegaωx due to its localization
property. The curves will remain at the boundary even when
the LPF (Local Pre-Fitting) is minimized, with regions farther
away from the boundary containing more curves.

ELPF (f ) =

∫
ω

(
∫
outside

Kσ (x − y)[I (y) − fs(x)]2dy)

+

∫
ω

(
∫
inside

Kω(x − y)[I (y) − f1(x)]2dy)dx

(25)

ELPF (φ) =

∫
ω

(
∫

ω

Kσ (x − y)[I (y) − fs(x)]2Hϵ(φ(y)dy))dx

+

∫
(
∫

ω

Kω(x − y)[I (y) − f1(x)]2(1 − Hϵ(φ(y)dy)dx

(26)

III. PROPOSED METHOD
Through the incorporation of both local and global contextual
information within an active contour model, our proposed
methodology introduces a novel approach to image seg-
mentation. This approach not only aims to expedite the
computational process but also strives to yield highly accurate
results.

In the initial stages, we leverage the intrinsic local
characteristics of the image to enhance the segmentation
process. This involves the extraction of comprehensive local
information through techniques such as binary analysis and
local image fitting. This approach enables us to capture
fine-grained features within the image, thereby enhancing
the precision of segmentation. Moreover, the integration of
binary information allows for a more efficient distinction
between foreground and background regions, expediting
the overall segmentation procedure. Fig. 8 is the graphical
abstract of the proposed methodology.

A. INCORPORATION OF INFORMATION AT THE PIXEL
LEVEL (LOCAL WEIGHT FUNCTION)
We amalgamate pertinent energy terms into a hybrid energy
function after capturing both pixel-level components and
global image features.

The pixel-level components take into consideration the
attributes of individual pixels and comprise two key terms: the
pixel-level components term (referred to as the ‘‘local term’’)
and the pixel-level gradient components term (referred to as
the ‘‘local gradient term’’).

The pixel-level components term quantifies the dissim-
ilarity between the pixel intensity I (x, y) and the locally

computed mean intensity. It is defined as:

EL(x, y) =

∣∣∣∣∣Q(x, y) −
1
M

M∑
i=1

Q(yi, xi)

∣∣∣∣∣
2

(27)

Here, M represents the number of neighboring pixels
considered when calculating the local mean intensity.

The pixel-level gradient term assesses the variations in
image gradients within a small neighborhood:

Egrad(x, y) = |∇I (x, y)|2 (28)

In addition, we introduce global terms to capture the
broader image context. The global intensity term accounts
for the overall intensity distribution within the image,
constraining pixel intensity differences relative to the global
mean intensity:

Eglobal(x, y) =

∣∣∣∣∣∣Q(x, y) −
1
M

M∑
j=1

I (xj, yj)

∣∣∣∣∣∣
2

(29)

To promote contour smoothness during evolution,
we incorporate a regularization term. The level set function,
aimed at minimizing fluctuations in this context, is described
as:

Ereg(x, y) = |∇φ(x, y)|2 (30)

The hybrid energy function is constructed as the sum of
the individual energy components, with local and global
information contributions weighted by wlocal and wglobal
respectively:

Ehybrid(x, y) = wlocal · (EL(x, y) + Egrad(x, y))

+ wglobal · (Eglobal(x, y) + Ereg(x, y)) (31)

The hybrid energy function seamlessly incorporates both
local and global information, facilitating a comprehensive
image analysis that ensures accurate segmentation.

In pursuit of correct segmentation, our approach leverages
gradient descent flow in tandem with the Spatial Prior
Function (SPF). The gradient descent flow, as it minimizes
the energy function, guides the contour towards an optimal
segmentation solution.

The SPF, as described in [17], embodies spatial prior
knowledge and plays a pivotal role in steering contour evo-
lution by imposing constraints rooted in spatial correlations.

Through the fusion of gradient descent flow and the
SPF, our model achieves superior contour stability, enhanced
convergence, and precise boundary detection, making it a
robust choice for image segmentation.

B. EVOLUTION OF CONTOURS AND MULTIFUNCTIONAL
ENERGY FUNCTION
We elucidate the intricacies of the hybrid energy function
and its influence on contour evolution in our proposed
model for image segmentation in this paragraph. Our
methodology yields precise and reliable segmentation results
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by amalgamating local and global information, utilizing
gradient descent flow, and incorporating the Signed Pressure
Force (SPF).

Fusion of Local and Global Information:
We consolidate relevant energy terms into the hybrid

energy function to encompass both local and global image
features.

The local information component comprises the local
intensity term and the local gradient term, both pertaining
to pixel-level attributes. The local intensity term, denoted as
EL(x, y), quantifies the dissimilarity between the local mean
intensity and the pixel intensity I (x, y) and is defined as:

EL(x, y) =

∣∣∣∣∣Q(x, y) −
1
M

M∑
i=1

I (xi, yi)

∣∣∣∣∣
2

(32)

Here, M represents the number of neighboring pixels used
to calculate the local mean intensity, and I (xi, yi) signifies
the pixel value at coordinates (xi, yi) in the original image.
Q(x, y) represents the pixel value at coordinates (x, y) in
the segmented image. This equation quantifies the local
information necessary for precise segmentation by comparing
the segmented pixel value to the average intensity of the
relevant region in the original image.

The local gradient term, Egrad(x, y), quantifies variations in
image gradients within a local neighborhood and is defined
as:

Egrad(x, y) = |∇Q(x, y)|2 (33)

Here, ∇Q(x, y) represents the gradient of the pixel value
at coordinates (x, y) in the segmented image. This term
provides information about the local image structure by
quantifying gradient variations within the segmented region,
incorporating edge and boundary information essential for
precise segmentation.

Additionally, we introduce the regularization term
Ereg(x, y) to impose spatial constraints and promote smooth-
ness in contour evolution. It is defined as:

Ereg(x, y) = |∇φ(x, y)|2 (34)

This term minimizes variations in the level set function,
contributing to contour stability.

The hybrid energy function integrates both local and global
information, allowing for a more comprehensive image
analysis to achieve accurate segmentation. It is defined as
follows:

Ehybrid(x, y) = wL · (EL(x, y) + Egrad(x, y))

+ wG · (Eglobal(x, y) + Ereg(x, y)) (35)

where wL and wG are weighting variables governing the
influence of local and global components, respectively.

Gradient Descent Flow:
By minimizing the energy function, gradient descent

flow propels the contour towards the optimal segmentation

solution. It iteratively updates the contour using gradients of
the energy function and is expressed as:

∂φ

∂t
= −

1
|∇φ|

∇ ·
(
α∇Ehybrid

)
(36)

Signed Pressure Force (SPF): Integrating the signed
pressure force in eq(36) is important because it contains
the pressure force that will give the internal force operating
within the contour from the stability mechanism, and the
outside compelling factor is reinforced by signed pressure
force, or FP.

The following modified formulation may be gained by
incorporating the signed pressure building block which
manages the enhancement of the outline

∂φ

∂t
= −

1
|∇φ|

∇ · (α∇Ehybrid + FP) (37)

Themost active part inside the shape is shown by the signed
pressure force, FP. Determined by the form or curvature of
the contour, it is driven to the inner side and outer side.

Now that is important to carry out into the signed pressure
force.

It is vital to take into account the SPF factor’s connections
to the various other vital factors. The SPF helps to maintain
the contour’s consistency and smoothness by protecting it
from outside influences and preventing it from growing or
shrinking.

The equation includes the gradient of the hybrid energy
function δE hybrid,whichiskeytocontrollingthecontourmotion

Hybrid energy gradient or δEhybrid

E_L (Local Energy):
E_L captures local image information that affects contour

movement. This is usually related to image properties such as
edges, textures, or shifts in the intensity of certain areas. The
word |∇φ| in the denominator indicates the magnitude of the
gradient of the contour function φ.

The direction and extent of the change in the energy
environment is indicated by the slope of the hybrid energy
function. The mechanism regulates contour growth using
multiple energy sources.

E_grad (Gradient Energy):
The segment that contains the gradient-based energy,

symbolized by α1Egrad. In order to assist in boundary
identification or capturing image edges, it controls the
contour towards regions with extensive image gradients.
The regularization energy, or Ereg, ensures that the contour
is smooth and prevents it from fragmenting by applying
regularization. It strikes a compromise between preserving
the contour’s smoothness to prevent unpredictable forms
and adapting it to the image data (EL). The Signed
Pressure Force, commonly known as SPF, incorporates
spatial prior knowledge and guides contour evolution by
imposing additional constraints based on spatial correlations.
It leverages prior knowledge about the image’s spatial
coherence to refine contour movement and is expressed as:

FSPF = β · SPF(φ) (38)

60646 VOLUME 12, 2024



H. Zia et al.: Image Segmentation Using Bias Correction Active Contours

TABLE 1. CPU time and number of iterations required for segmentation
for different active contour methods.

Our model demonstrates superior contour stability,
enhanced convergence, and precise boundary detection
through the integration of gradient descent flow with SPF.

In our proposed model, the hybrid energy function, gradi-
ent descent flow, and SPF are seamlessly integrated, resulting
in precise and reliable image segmentation. This approach
effectively integrates local and global information, making
it adaptable to various image characteristics. The weighting
parameters wL and wG provide flexibility in emphasizing
specific image aspects during segmentation. Additionally, the
contour evolves toward an optimal solution while considering
spatial constraints, thanks to the combination of gradient
descent flow and SPF.

Through extensive experimentation and comparisons,
we have demonstrated the effectiveness of our model
in delivering improved segmentation outcomes, surpassing
previous approaches in terms of accuracy and resilience.
We also introduce the parameter λ1 into the energy function
to fine-tune the segmentation process, allowing for the
adjustment of various variables in the energy functional to
adapt segmentation based on specific image properties. This
parameterized energy function is given by:

ET(x, y) = λ1 · E(x, y) (39)

Additionally, we employ an epsilon value, denoted as ϵ,
to reduce noise and ensure smoother segmentation output.
This value helps reduce differences in pixel values between
the center and nearby pixels, resulting in a noise-reduced
modified energy function defined as follows:

ES(x, y) =

∣∣∣∣∣I (x, y) −
1
M

M∑
i=1

I (xi, yi)

∣∣∣∣∣
2

+ ϵ (40)

Our proposed method enhances image segmentation accu-
racy, resilience, and adaptability by combining parameter
adjustments and noise reduction techniques. Extensive exper-
iments and comparisons demonstrate the effectiveness of our
approach across various image analysis applications.

IV. EXPERIMENTS AND RESULTS
We present a comprehensive examination of the results
produced by our proposed image segmentation model in
this section. The experiments were conducted on a machine

equipped with a 7th generation Core i7 processor running
at 2.7GHz, a GTX 960 GPU, 8GB of RAM, and Windows
10 with Matlab version 2018a. For our model, we employed
a level set function with the following parameters: σ = 5,
ϵ = 0.5, δt = 0.2, µ = 4, and v = 0.01 × 255 × 255.
The α and λ values were fine-tuned to match the unique
characteristics of each image, allowing for customization
and achieving the desired segmentation results; see Figure 1,
Figure 2, Figure 3, Figure 4 and Figure 5.

A. EVALUATION OF SEGMENTATION EFFECT ON
INTENSITY INHOMOGENEOUS DATA:
We conducted experiments on a diverse set of images to
assess the effectiveness of our model on different types of
intensity inhomogeneous data. The results confirmed the
efficacy of our approach, particularly in handling images with
irregular black borders, which often posed challenges for con-
ventional segmentation algorithms. Our model successfully
identified and segmented objects with complex boundaries
by employing the level set and energy function. To optimize
the model’s performance, we set the parameter values to
λ = 0 and β = 0.5. Figure 5 presents the segmentation
results for various parameter values, clearly illustrating the
improvements over previous methods, especially for images
with high levels of noise.

B. MODEL RESILIENCE WITH WEAK EDGES AND
INHOMOGENEOUS IMAGES:
We evaluated the robustness of our model with respect to
the initial contour placement on the image. A comprehen-
sive experiment was conducted to assess its performance
compared to other models such as WHRSPF [28] and
DRLSE [8]. During the segmentation process, our model
exhibited remarkable resilience and efficiency. Sensitivity
to the initial contour was significantly reduced, resulting in
more accurate edge detection and smoother regions within
the image. Our model required fewer iterations to converge to
the desired segmentation outcome, outperforming competing
models that often struggled with weak edges and noisy
images. Furthermore, our model achieved segmentation in
significantly less time than previous methods, demonstrating
its efficiency and computational advantages.

C. QUANTITATIVE COMPARISON:
We conducted an extensive comparison of the performance
of our proposed model with several existing approaches,
employing metrics such as Accuracy, Dice Index, and
Sensitivity. These metrics provided insights into the corre-
spondence between the selected regions and the ground truth
of the images. The Accuracy metric quantified the proportion
of true positive and true negative classifications, while the
Dice Index measured the overlap between the designated
regions and the actual image portions. Sensitivity assessed
the model’s ability to accurately identify specific regions of
interest.
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FIGURE 1. A series of images is presented, showcasing the segmentation results achieved by the proposed model.

we introduce the critical evaluation metrics utilized
in our study, namely True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). These
metrics play a pivotal role in assessing our proposed image
segmentation model’s performance. Furthermore, we present

a quantitative evaluation of angiogram images, accompanied
by a graphical representation of the average CPU time (in
seconds) required for the segmentation of actual regions, the
accurate exclusion of unsegmented areas, the identification of
false regions, and the detection of undetected actual regions.
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FIGURE 2. Segmentation results of various models including the proposed method:
(Top Row) WHRSPF, (Second Row) DRLSE, (Third Row) LIF, (Fourth Row) HLFRA, (Fifth
Row) proposed model.

This visual representation serves to underscore the efficiency
and accuracy of our model in contrast to other established
techniques. See Table 1 and Table 2 for tabular data of our
evaluations.

Accuracy:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
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FIGURE 3. Segmentation results of various models including the proposed
method: (Top Row) WHRSPF, (Second Row) DRLSE, (Third Row) LIF, (Fourth Row)
HLFRA, (Fifth Row) proposed model.

Dice Index:

Dice Index =
2 × TP

2 × TP+ FP+ FN

Sensitivity:

Sensitivity =
TP

TP+ FN
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FIGURE 4. Segmentation results of various models including the proposed method: (Top
Row) WHRSPF, (Second Row) DRLSE, (Third Row) LIF, (Fourth Row) HLFRA, (Fifth Row)
proposed model.
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FIGURE 5. Segmentation results of various models including the proposed method: (Top
Row) CV, (Second Row) LIF, (Third Row) GLFIF, (Fourth Row) HLFRA, (Fifth Row) proposed
model.

TABLE 2. JS score evaluation of different image restoration methods.
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FIGURE 6. Segmentation results of various models including the proposed method:
(Top Row) CV, (Second Row) LIF, (Third Row) GLFIF, (Fourth Row) HLFRA, (Fifth Row)
proposed model.
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FIGURE 7. A series of images is presented, showcasing the results
achieved by the proposed model.

V. CONCLUSION
In this research, we introduced a novel image segmentation
model based on active contour techniques, addressing limi-
tations of prior methods and achieving significant progress
in the field. Our model consistently delivered precise
and efficient segmentation results, even in scenarios with
intensity inhomogeneity, weak edges, and noisy images,
as demonstrated through comprehensive analysis and evalu-
ation.

Our model’s superiority became evident when evaluated
on diverse intensity inhomogeneous data. It excelled in seg-
menting challenging objects with black borders, a task where
many conventional methods struggle. Leveraging level sets
and energy functions, our model adeptly handled complex
boundaries, resulting in more accurate segmentations.

Furthermore, our approach exhibited resilience and effi-
ciency when dealing with weak edges and inhomogeneous
images. With reduced sensitivity in initial contour placement
and faster convergence, our model outperformed other
techniques like WHRSPF and DRLSE. It also significantly
reduced computational time, emphasizing its practicality for
real-world applications.

Quantitative comparisons validated our model’s perfor-
mance with metrics like Accuracy, Dice Index, and Sensitiv-

FIGURE 8. Graphical abstract illustrating the proposed model.

ity. Close alignment between detected areas and ground truth
underscored the precision of our segmentation results.

Our proposed image segmentationmethodology represents
a substantial advancement, offering heightened precision,
efficiency, and adaptability. Its ability to accommodate vari-
ous intensity distributions and complex boundaries positions
it as a valuable tool across diverse applications, including
medical imaging and computer vision.

Our study contributes to the evolution of image segmenta-
tion approaches, opening new possibilities for image analysis
across multiple industries.
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