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SUMMARY

We describe a role for the complement system in
enhancing cancer growth. Cancer cells secrete com-
plement proteins that stimulate tumor growth upon
activation. Complement promotes tumor growth via
a direct autocrine effect that is partially independent
of tumor-infiltrating cytotoxic T cells. Activated C5aR
and C3aR signal through the PI3K/AKT pathway in
cancer cells, and silencing the PI3K or AKT gene
in cancer cells eliminates the progrowth effects of
C5aR and C3aR stimulation. In patients with ovarian
or lung cancer, higher tumoral C3 or C5aR mRNA
levels were associated with decreased overall sur-
vival. These data identify a role for tumor-derived
complement proteins in promoting tumor growth,
and they therefore have substantial clinical and
therapeutic implications.
INTRODUCTION

Complement proteins in plasma are mainly synthesized in

hepatocytes, but endothelial cells, white blood cells, and epithe-

lial cells also secrete complement proteins (Peng et al., 2008;

Pratt et al., 2002; Raedler et al., 2009; Strainic et al., 2008). There

are three pathways to activate the complement system: the

classical, alternative, and lectin pathways. The initial steps in

complement activation pathways are different, but all of them

result in deposition of C3 degradation products on target sur-

faces and generation of anaphylatoxins (C3a andC5a) andmem-

brane attack complex (MAC; C5b-9). Complement activation on

the surface of pathogens in the blood stream helps to eradicate

them from circulation. In extravascular tissues, complement

proteins also participate in cell-to-cell communications and are

involved in organ regeneration, angiogenesis, epithelial-mesen-

chymal transition, and cell migration. Despite the presence of

an extensive range of responses to complement activation in
Ce
normal tissues, the effect of complement activation in neoplastic

tissue is not well understood. Here, we have identified a role

for complement, whereby tumor-derived C3 enhances tumor

growth via an autocrine pathway.

RESULTS

Biological Effects of Tumor-Derived C3 in Ovarian
Cancer Cells
To address the question of whether host-derived complement

proteins affect tumor growth, we first used a syngeneic mouse

model of ovarian cancer in which ID8-VEGF murine ovarian

cancer cells were injected into the peritoneal cavity of wild-

type (WT) or C3-deficient (C3�/�) B6 mice. After 6 weeks, there

was no difference in the growth of implanted tumors between

the two groups of mice (average tumor weight of 0.5 g in WT

versus 0.53 g in C3�/� mice, n = 7 in each group; p = 0.84,

t test) (Figure 1A). Surprisingly, C3 immunostaining of tumor

specimens showed comparable C3 deposition in tumors re-

sected from WT and C3�/� mice (Figure 1B). Because C3�/�

mice do not produce C3, we investigated whether C3 was be-

ing produced by cancer cells. We examined a large panel of

ovarian cancer cell lines for C3 mRNA levels using quantitative

real-time PCR. C3 mRNA was present in all murine and in 30%

of human (h) ovarian cancer cell lines (Figure 1C). To determine

whether C3 is secreted by cancer cells, we measured C3 con-

centration in cell culture media of ovarian cancer cell lines. Su-

pernatant of serum-free media incubated for 72 hr with normal

murine ovarian endothelial cells (MOEC), murine (ID8, ID8-

VEGF, and IG10), or human (SKOV3) ovarian cancer cell lines

was collected and used to determine the concentration of C3

by ELISA. Ovarian cancer cells secrete much more C3 into

cell culture media than control MOECs (70 ng/ml for MOECs,

4,504 ng/ml for SKOV3ip1, 332 ng/ml for ID8, 2,411 ng/ml for

ID8-VEGF, and 1,329 ng/ml for IG10, Figure S1A). To determine

the effects of C3 secreted by the cancer cells on the growth of

implanted ovarian tumors, we reduced production of C3 in can-

cer cells by small interfering RNA for C3 (C3 siRNA). We used

hC3 siRNAs on SKOV3ip1 ovarian cancer cells that reduced
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Figure 1. Ovarian Cancer Cells Secrete

Complement Proteins, which Enhance Tumor

Growth

(A) Wemeasured total tumor weight in an orthotopic

murine model of ovarian cancer induced by ID8-

VEGF murine ovarian cancer cells in C3�/� and WT

control mice, both in C57BL/6 background. n.s, not

significant.

(B) Immunostaining of tumors induced by ID8-

VEGF inWT andC3�/�mice, using anti-C3 antibody

compared to negative control stain (secondary

antibody alone). Scale bar length is 100 mm.

(C) Quantitative real-time PCR for C3mRNA on RNA

isolated frommurine and human ovarian cancer cell

lines. Expression of C3 mRNA in cancer cell lines

was compared to that in MOECs and normal human

ovarian surface epithelial cell lines (HIO 180) (n = 3;

**p % 0.01, t test).

(D) C3 gene knockdown in SKOV3ip1 human

ovarian cancer cells using C3 siRNA, reduced pro-

liferation, migration, and invasion of these cells

in vitro. Results of three independent experiments

(each of them in triplicate) are summarized as bar

graphs (**p % 0.01, t test).

(E) C3 gene knockdown in SKOV3ip1-induced

tumors by intraperitoneal injection of hC3 siRNA

into tumor-bearing NU/NU mice reduced total

weight (*p = 0.017) and number of tumor nodules

(*p = 0.05).

(F) Representative immunostaining for C3, Ki67, and

CD31 in tumors resected from hC3 siRNA-injected

and scrambled siRNA-injected mice. Scale bar,

100 mm.

(G) The proliferation index in resected tumors

was quantified as the percentage of Ki67 positivity

shown in dot plots (39% in C3 siRNA versus 74%

in scrambled siRNA, n = 5 mice in each group;

*p = 0.05, t test). The number of blood vessels in

resected tumors was quantified by counting the

number of CD31+ lumen structures in five high-

power fields (HPFs) per section and in five sections

per tumor nodule and in five mice per group.

Average number of CD31+ lumens per HPF is

shown as dot plots (22/HPF in C3 siRNA versus 42/

HPF in scrambled siRNA; *p = 0.05, t test).

(H) We investigated the effect of complement on

proliferation of endothelial cells by measuring the

proliferation rate of RF24 endothelial cells after

transfection with C3 siRNA. C3 knockdown did not

reduce the proliferation rate in RF24 endothelial

cells (n = 3; p = 0.07, t test).
C3 mRNA and protein level by >99% (Figures S1B and S1C).

Next, we examined whether C3 knockdown would have direct

effects on tumor cell proliferation, migration, and invasion (Fig-

ure 1D). C3 silencing in SKOV3ip1 reduced the proliferation rate

at the 48 hr time point by 55%, migration at 6 hr by 84%, and

invasive potential at 24 hr by 78% compared to cancer cells

transfected with scrambled siRNA. The effects of C3 silencing

on migration and invasion were measured using short-term

assays and were likely to be independent of the effects on

proliferation.
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C3 Silencing in Ovarian Cancer Cells Reduces Tumor
Growth In Vivo
To evaluate the in vivo effects of C3 knockdown on tumor

growth, we used hC3 siRNA in tumor-bearing mice. We selected

the most efficient hC3 siRNA in vitro (Figure S1B), conjugated

it with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)

nano-liposomes, and injected it into the peritoneal cavity of

SKOV3ip1 tumor-bearing mice twice per week for 4 weeks start-

ing 1week after injection of cancer cells. Control mice underwent

the same procedures except that they received scrambled



siRNA-DOPC. The hC3 siRNA did not affect murine C3 mRNA

level in mouse ovarian cancer cells in vitro and did not decrease

plasma C3 levels in mice (Figures S1D and S1F). Mice receiving

hC3 siRNA had about 70% reduction in their tumor burden after

4 weeks in comparison to mice receiving scrambled siRNA

(average tumor weight of 0.19 g in C3 siRNA versus 0.61 g in

scrambled siRNA, n = 10 mice/group; p = 0.017; Figure 1E).

The number of tumor nodules was also significantly lower in

mice injected with hC3 siRNA than controls (4.4 in C3 siRNA

versus 11.4 in scrambled siRNA; p = 0.05; Figure 1E). Treatment

with hC3 siRNA decreased C3 expression in vivo as determined

by immunostaining of resected tumors (Figure 1F). C3 silencing

reduced the proliferation index from 70% to 40% in tumors har-

vested at the end of this experiment (Figure 1G). Moreover, mi-

crovessel density (number of CD31+ lumens per high-power

field) in tumors was also reduced by >50% after C3 silencing in

cancer cells (Figure 1G). Although tumor-associated endothelial

cells originate from the murine host and should not be affected

by hC3 siRNA, we investigated whether reduction in tumor

growth might be due to an inhibitory effect of hC3 siRNA on

endothelial cell proliferation. We transfected the immortalized

human vesicular endothelial cell line, RF24, with hC3 siRNA or

scrambled siRNA and after 48 hr measured the proliferation

rate using 5-ethynil-20-deoxyuridine (EdU) incorporation assay.

C3 knockdown did not reduce the proliferation rate of RF24 cells

(n = 3; p = 0.07, t test; Figure 1H). We tested a second human

ovarian cancer cell line (OVCAR 5) in the murine model of ovarian

cancer and observed a similar reduction in tumor growth

(average tumor weight of 0.27 g in C3 siRNA versus 0.63 g in

scrambled siRNA, n = 10 mice/group; p = 0.02; Figures S2A

and S2B).

To study the possibility of an off-target effect of C3 siRNA in

cancer cells, we used ovarian cancer cells with low C3 expres-

sion (HeyA8) to induce tumor in mice, and we further manipu-

lated expression of C3 in induced tumors using C3 siRNA and

compared the growth of tumors in these mice to those tumors

induced by the same cell line in mice treated with scrambled

control siRNA (n = 5 in each group). The size of tumor induced

by C3-low HeyA8 cells was similar in mice injected with C3

siRNA (1.402 g) or control scrambled siRNA (1.472 g) (p = 0.9;

Figure S2C), showing that C3 siRNA did not affect the growth

of tumor induced by C3-low cells.

C5 Silencing in Ovarian Cancer Cells Reduces Tumor
Growth In Vivo
C3 activation is upstream to several other steps in the common

complement pathway, such as activation of C5, release of C5a,

and formation of C5b-9. To identify whether the effect of C3 on

cancer cells depends on complement activation, we used hC5

siRNA to knock down C5 gene expression in cancer cells (Fig-

ure S1G) and investigated its effect on tumor growth. C5 gene

knockdown, similar to C3 silencing, reduced proliferation, migra-

tion, and invasion of SKOV3ip1 cells in vitro (Figure 2A) by 66%,

60%, and 60%, respectively, as compared to the scrambled

siRNA group. In vivo, C5 silencing reduced tumor growth and

proliferation index in tumor-bearing mice (average tumor weight

of 0.19 g in C5 siRNA versus 0.41 g in scrambled siRNA, n = 10

mice/group;%0.05, t test) (Figures 2B and 2D). Reduction of C5
Ce
protein in vivo was confirmed by immunostaining tumors

resected from mice treated with C5 siRNA (Figure 2C). The

presence of a similar consequence for C3 and C5 knockdown

in cancer cells pointed to the involvement of the complement

activation pathway, rather than C3 alone, in promoting tumor

growth. To confirm activation of the complement system in

the tumor microenvironment, we investigated the presence of

complement activation end products in tumor. MAC (C5b-9) is

generated upon complement activation and inserted into the

membrane of target cells. We studied the presence of C5b-9

in tumors resected from patients and tumor-bearing mice by

immunostaining using C9 monoclonal antibody and antibody

against C5b-9 neoepitope. In all tumor specimens, cancer cells

were strongly positive for C5b-9 (Figures S3A and S3B). Interest-

ingly, tumor stromawas negative for C5b-9 stain, confirming that

cancer cells are the main target of complement activation. We

also measured production of C3a, another complement activa-

tion product, in the cell culture media of cancer cells. Although

serum-free media had 0.033 ng/ml of C3a, supernatant of media

collected after 48 hr incubation with scrambled siRNA-trans-

fected SKOV3ip1 cells had 3.77 ng/ml of C3a that increased to

19.7 ng/ml after 7 days. On the other hand, media incubated

with SKOV3ip1 cells transfected with C3 siRNA had 2.1 and

0.7 ng/ml of C3a after 48 hr and 7 days, respectively (Figure S3C).

These results confirmed that C3a is generated in the cell culture

media and is originated from C3 secreted from cancer cells. To

confirm that complement proteins involved in the complement

activation inside the tumor are originated locally, we immuno-

stained tumors resected from tumor-bearing C3�/� and WT

mice using antibody to C5b-9 (Figure S3D). Tumors induced

by murine ovarian cancer cells (ID8-VEGF) stained positively

for C5b-9 in both C3�/� and WT mice.

Complement Effects on Tumor Growth Are Independent
of T Cells
Next, we studied whether complement activation promotes

tumor growth via a direct autocrine effect on cancer cells or

through an indirect effect by altering the immune response of

the host to the tumor. To study the effect of complement proteins

secreted by cancer cells on the host’s immune response, we car-

ried out experiments in an immune-competent mouse model of

ovarian cancer. For these experiments, we introduced C3 small

hairpin RNA (shRNA) into ID8-VEGF murine ovarian cancer cells

to silence the C3 gene (Figure S5A). Stably C3 shRNA-trans-

duced ID8-VEGF cells or control cells (ID8-VEGF cells trans-

duced with scrambled shRNA) were injected into the peritoneal

cavity of C3�/� and WT B6 mice. C3 shRNA-transfected

ID8-VEGF cells generated significantly smaller tumor nodules

in both WT and C3�/� mice compared to control cells: in WT

mice, average tumor weight of 0.77 g for scrambled shRNA-

expressing cells and 0.06 g for C3 shRNA-expressing cells, n =

10mice/group (p = 0.0001); inC3�/�mice, average tumor weight

0.60 g in scrambled shRNA-expressing cells and 0.03 g in C3

shRNA-expressing cells, n = 10 mice/group (p = 0.0001) (Fig-

ure 3A). Interestingly, reduction of C3 in tumor cells resulted in

an increase of more than 10-fold in the number of CD8+ cyto-

toxic T cells infiltrating the tumor and an 80% reduction in the

number of CD11b+ myeloid cells in tumors (Figures 3B and 3C).
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Figure 2. C5 Knockdown Decreases Tumor Growth

(A) Silencing of C5 gene expression in SKOV3ip1 cells using hC5 siRNA reduced proliferation, migration, and invasion of these cells in vitro. Results of three

independent experiments (each of them in triplicate) are summarized as bar graphs (**p % 0.01, t test).

(B) C5 gene knockdown using intraperitoneal injection of hC5 siRNA into SKOV3ip1-induced tumor-bearing NU/NUmice reduced total tumorweight compared to

the same mice injected with scrambled siRNA. *p % 0.05.

(C) Representative immunostaining for C5 and Ki67 in tumors resected from hC5 siRNA-injected and scrambled siRNA-injected mice. Scale bar, 100 mm.

(D) The proliferation index in resected tumors was quantified as the percentage of Ki67 positivity in bar graphs (37.1% in C5 siRNA versus 72.3% in scrambled

siRNA, n = 5 in each group; *p = 0.05, t test).
To investigate whether a reduction in the number of tumor-

infiltrating cytotoxic CD8+ cells determines the progrowth effect

of complement on tumor, we compared tumor growth in CD8�/�

and WT mice. Silencing of the C3 gene by C3 shRNA in ID8-

VEGF cancer cells prior to intraperitoneal injection reduced

the size and number of tumor nodules in CD8�/� and WT mice

to the samemagnitude (Figures 3D and 3E). There was no signif-

icant difference in the size or number of tumor nodules induced

by scrambled shRNA-transduced ID8-VEGF cells between WT

andCD8�/�mice. We concluded that the increase in the number

of tumor-infiltrating cytotoxic CD8+ cells after C3 silencing in

cancer cells observed in the immune-competent host is not

responsible for the decrease in tumor growth.

Role of Anaphylatoxin Receptors in Cancer Cells
To confirm the presence of autocrine stimulation of cancer cells

as a result of complement activation, we studied the effect of

complement activation end products (anaphylatoxins) on cancer

cells by incubating SKOV3ip1 human ovarian cancer cells with

agonist peptides to C5aR and C3aR or to scrambled peptide

(Langer et al., 2010). The reason for using agonist peptides to
1088 Cell Reports 6, 1085–1095, March 27, 2014 ª2014 The Authors
C5aR and C3aR rather than C5a and C3a is that anaphylatoxins

(C3a and C5a) are extremely labile molecules and rapidly

degrade to much less-potent C3a-des arg and C5a-des arg.

SKOV3ip1 cells (as well as A2780, HeyA8, and OVCAR5) and

murine ovarian cancer cells (ID8, ID8-VEGF, IG10, and 3B11)

express anaphylatoxin receptors (Figures S4A–S4D). Exposure

to 0.1 mM C5aR and C3aR agonist peptides for 48 hr increased

proliferation (25% and 37%, respectively), migration (10% and

29%, respectively), and invasion (30% and 100%, respectively)

in SKOV3ip1 cells (Figure 4A) compared to scrambled peptide-

exposed cells (n = 3 in triplicates; p < 0.01, t test). On the

other hand, C5aR and C3aR inhibitors reduced proliferation of

SKOV3ip1 cells about 20% (n = 3; p % 0.001) (Figure 4B).

We also used complement-inhibiting peptide, Compstatin

(150 mg/ml), to inhibit cleavage of C3 by C3 convertase. Comp-

statin reduced the proliferation rate in SKOV3 cells by 15%

(Figure 4C).

To further investigate the role of anaphylatoxin receptors in

cancer cells, we generated stably transduced murine ovarian

cancer cells (ID8-VEGF) using C3aR shRNA, C5aR shRNA,

C5L2 shRNA, and scrambled shRNA (Figures S5A and S5B).



We compared the weight of tumor induced by these cells in WT

B6mice. Knockdown of C5L2 in ID8-VEGF cells did not affect tu-

mor growth, but C3aR and C5aR knockdown, similar to C3

knockdown, significantly reduced the size of induced tumors

compared to control mice injectedwith scrambled shRNA-trans-

duced ID8-VEGF cells (Figures S5C and S5D).

Anaphylatoxin receptors are G protein-coupled receptors and

might signal through the phosphatidylinositol 3-kinase (PI3K)/

AKT pathway (Dorsam and Gutkind, 2007; Perianayagam et al.,

2002). We investigated the effect of C3aR and C5aR agonist

peptides on the PI3K/AKT signaling pathway in ovarian cancer

cells and detected an increase in AKT mRNA (Figure 4D) and

enhanced phosphorylation of p85 (a regulatory subunit of PI3K)

and AKT as a result of stimulation of C3aR and C5aR (Figure 4E).

Immunostaining of tumor tissues for phosphorylated AKT (p-AKT

S473) showed a reduction in p-AKT as a result of C3 silencing

(Figure 4F). Silencing of PI3K or AKT by relevant siRNAs elimi-

nated the C5aR agonist- and C3aR agonist-induced enhanced

proliferation of SKOV3ip1 cells. Silencing of PI3K or AKT without

exposure to C3aR and C5aR agonists did not diminish, but

increased, proliferation in SKOV3ip1 cells (Figure 4G). From

these results, we concluded that anaphylatoxins enhance tumor

growth through the PI3K/AKT signaling pathway.

Clinical Relevance of Tumoral C3 and C5aR Expression
in Ovarian Cancer
To correlate our findings in cell lines and mice to the behavior of

ovarian cancer in humans, we quantified the amount of C3

mRNA in tumor specimens obtained from 75 patients with

ovarian cancer. The baseline clinical and pathologic character-

istics of these patients are summarized in Table S1. Patients

with a higher expression of C3 mRNA in their tumor had signif-

icantly shorter overall survival (OS) compared to those with low-

C3 mRNA-expressing tumors (mean OS of 36 versus

82.8 months for low versus high C3, respectively; p = 0.004)

(Figure 4H). Expression levels of C5aR in ovarian tumors also

affected the OS of 562 patients with ovarian cancer in The Can-

cer Genome Atlas (TCGA), with shorter average OS

(40.4 months) for patients with a higher expression of C5aR

and longer survival (51.3 months) for patient with a lower level

of C5aR in their tumors (Figure 4I) (p = 0.019).

A General Role for Complement in Cancer Growth
To investigate whether complement proteins could be produced

by other cancer cells besides ovarian cancer, we analyzed

expression of C3 mRNA in different cancer cell lines using the

Cancer Cell Line Encyclopedia (CCLE) database (http://www.

broadinstitute.org/ccle/home) and identified a high level of C3

expression in liver, kidney, lung, endometrium, and ovarian can-

cer cell lines (Figure S6A). To evaluate the functional effects of

complement protein expression in these cancer cell lines, we

identified uterine (Hec265) and lung squamous cell (H226) can-

cer cell lines with a high expression level of C3 (Figure 5A) and

reduced expression of C3, C5, and C5aR in these cells using

appropriate siRNAs. Similar to the findings with ovarian cancer

cells, reduction of C3, C5, or C5aR was associated with a reduc-

tion in the proliferation rate of uterine and lung cancer cells

in vitro (Figures 5B and 5C). We also examined tumoral expres-
Ce
sion of complement proteins in other cancers besides ovarian

cancer using TCGA database and identified a high tumoral

expression of C3 in lung, uterine, and kidney cancers (Fig-

ure S6B). Among these, we examined the correlation between

expression of C5aR mRNA in lung cancer specimens and sur-

vival rate. There was a significant correlation between OS and

tumor expression of C5aR among 167 patients with lung cancer,

with an average OS of 34.8 months for patients with a high

expression level of C5aR in their tumors and 98.0 months for

those with a low expression level of C5aR (p = 0.026) (Figure 4J).

DISCUSSION

We provide evidence that complement production and activa-

tion in tumor microenvironment enhance tumor growth by a

direct autocrine effect. A few studies have revealed a progrowth

effect of complement in cancer (Corrales et al., 2012; Gunn et al.,

2012; Rutkowski et al., 2010b), in which the systemic level of

complement proteins had an indirect effect on cancer growth

via altering the immune response of host to the tumor. Our

findings provide a paradigm in which local tumoral production

and activation of complement were found to be distinctly impor-

tant for promoting tumor growth. The systemic production of

complement by liver did not affect cancer as was evident by a

similar growth of implanted tumors in C3�/� and WT mice

and by deposition of complement activation end products in re-

sected tumors from C3�/� mice. The importance of complement

proteins in the cell-cell interactions has previously been shown

in the antigen-presenting cells (APCs) and T cell cognate com-

plexes in the T cell/APC interface, where complement proteins

secreted by APCs regulate T cell proliferation and differentiation

(Kemper and, Atkinson 2007; Longhi et al., 2006; Peng et al.,

2008; Sacks, 2010; Strainic et al., 2008).

We found that complement production by cancer cells altered

immune cells infiltrating into tumors (increased myeloid-derived

suppressor cells and reduced cytotoxic T cells), consistent with

what is described by Markiewski et al. (2008); however, in our

study, the effect of complement on tumor growthwas not depen-

dent on the number of cytotoxic T cells, and silencing of C3 in

cancer cells reduced tumor growth in CD8�/� mice to the

same extent as that in WT mice. For that reason, we focused

our attention on a direct effect of complement activation on tu-

mor growth rather than on an indirect immunomodulatory effect.

Our results showed an autocrine effect of complement proteins

secreted by cancer cells on tumor growth (Figure 6) mediated

by a direct effect of complement activation on cancer cells: (1)

we found that C5b-9 complexes are deposited on cancer cells

in tumors resected from patients and tumor-bearing mice,

sparing other stromal cells; (2) knockdown of C3 in endothelial

cells did not affect proliferation of endothelial cells; and (3)

knockdown of C3aR and C5aR in cancer cells reduced the size

of induced tumors in mice. Receptors for anaphylatoxins,

C3aR and C5aR, are G protein-coupled receptors present on

many cell types, including activated lymphocytes, monocytes,

neutrophils, and epithelial cells. Activation of C5aR results in a

variety of responses, including antiapoptotic responses in neu-

trophils (Perianayagam et al., 2002, 2004) and T cells (Lalli

et al., 2008) and increase in cell proliferation in endothelial
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Figure 3. Role of Immunomodulatory Effect of C3 Knockdown on Tumor Growth

(A) ID8-VEGF murine ovarian cancer cells stably expressing murine (m) C3 shRNA or control scrambled shRNA were injected into immune-competent C57BL/6

mice (WT and C3�/�). Cancer cells with C3 knockdown generated smaller tumors in both WT and C3�/� mice. **p % 0.0001.

(B) Representative immunostaining for CD8 and CD11b in tumors induced by mC3 shRNA-expressing or scrambled shRNA-expressing ID8-VEGF cells in WT

mice. Scale bar, 100 mm.

(C) The number of cytotoxic T cells (CD8+) and myeloid cells (CD11b+) were determined by counting cells in three high-power fields per tumor nodule per mouse

and in five mice per group, and the results are summarized as bar graphs (28 CD8+ cells/HPF in scrambled shRNA-expressing and 358 CD8+/HPF in C3 shRNA-

expressing cell-induced tumors; 82 CD11b+ cells/HPF in scrambled shRNA-expressing and average number of 25 CD11b+ cells/HPF in C3 shRNA-expressing

cell-induced tumors, n = 15 HPF; *p = 0.001, t test).

(legend continued on next page)

1090 Cell Reports 6, 1085–1095, March 27, 2014 ª2014 The Authors



(Kurihara et al., 2010) and colon cancer cell lines (Cao et al.,

2012). We showed that C5aR and C3aR agonists increased pro-

liferation, migration, and invasion of ovarian cancer cells, and

C5aR and C3aR antagonists decreased proliferation of these

cells. Anaphylatoxin receptors signal through the PI3K/AKT

pathway in cancer cells, and the proliferative effect of C5aR

and C3aR stimulation could be eliminated by AKT silencing.

Although here we link anaphylatoxins to tumor growth, these re-

sults are not completely unexpected, considering that anaphyla-

toxins (C3a and C5a) and sublytic concentration of C5b-9 can

activate mitogenic signaling pathways, activate cell cycle, upre-

gulate expression of growth factor genes (hepatocyte growth

factor, platelet-derived growth factor, and basic fibroblast

growth factor), and increase tumorigenic cytokines (interleukin-

6, tumor necrosis factor a, and transforming growth factor b)

(Rutkowski et al., 2010a).

In summary, we have identified a prominent role for tumor-

derived complement production and activation in ovarian cancer

growth and progression. These data provide a new under-

standing of the role of complement in cancer biology and have

significant implications for innovative therapeutic and biomarker

strategies for ovarian and other cancers (Brodsky et al., 2008; Hill

et al., 2010; Hillmen et al., 2006).

EXPERIMENTAL PROCEDURES

Reagents

All cell lines were obtained from ATCC. h ovarian cancer cell lines (HeyA8,

SKOV3ip1, A2780, A2774, OVCAR3, OVCAR5, OVCAR8, and IGROV) were

maintained in RPMI 1640 with 15% heat-inactivated fetal bovine serum

(FBS) supplemented with 0.1% gentamycin sulfate (Gemini Bio-Products). h

endometrial cancer cell lines (SK-UT2, Hec1A, Hec 265, Ishikawa, Spec2,

and AN3CA) were maintained in Dulbecco’s modified Eagle’s medium

(DMEM), RPMI 1640, or minimal essential medium (MEM) with 10% heat-inac-

tivated FBS supplemented with 0.1% gentamycin sulfate. h lung cancer cell

lines (HOP-92, H1299, and H226) were maintained in MEM with 10% heat-in-

activated FBS supplemented with 0.1% gentamycin sulfate. Murine ovarian

cell lines (ID8, ID8-VEGF, IG10, 1C5, 1F5, 3B11, 2C12, and 2C6) were main-

tained in DMEM with 5% heat-inactivated FBS supplemented with 0.1% gen-

tamycin sulfate. RNA was extracted from various cancer cell lines using the

RNeasy Plus Kit (QIAGEN) or TRIzol (Invitrogen) following the manufacturer’s

protocol. All in vitro experiments were conducted using 60%–80% confluent

cell cultures. Female athymic NU/NU mice were purchased from Taconic

and WT C57BL/6, C3�/�, and CD8�/� mice from The Jackson Laboratory.

Mice were cared for in accordance with guidelines set forth by the American

Association for Accreditation of Laboratory Animal Care and the US Public

Health Service Policy on Human Care and Use of Laboratory Animals. Rabbit

anti-mouse C3 antibody (Abgent), mouse anti-hC3 antibody (Acris Antibodies),

rabbit anti-hC5 antibody (Abcam), rabbit polyclonal anti-Ki67 antibody

(Thermo Scientific/Lab Vision), rat anti-mouse CD31 antibody (BD Biosci-

ences, BD PharMingen), mouse anti-C5b-9 antibody (Dako), mouse anti-C9

antibody (Hycult Biotech), anti-CD8 and anti-CD11b antibodies (AbD Serotec),

rabbit-anti-h AKT, p-AKT, P85, and p-P85 antibodies (Cell Signaling Technol-

ogy), C5aR antagonist (W-54011) (Sumichika et al., 2002):N-((4-dimethylami-

nophenyl)methyl)-7-methoxy-1,2,3,4-tetrahydronaphthalen-1-carboxamide,
(D) ID8-VEGF cells stably expressingmC3 shRNA or control scrambled shRNAwe

size after injection with scrambled shRNA-expressing cancer cells between CD8�

group; p = 0.19). C3 silencing by mC3 shRNA in cancer cells resulted in 98% red

(E) A representative necropsy in mice showing the presence of tumor nodules on v

mice injected with ID8-VEGF cells expressing scrambled shRNA and lack of tum

show tumor nodules on the peritoneal surface of diaphragm.

Ce
HCl, and C3aR antagonist (SB290157) (Ames et al., 2001):N2-((2,2-dipheny-

lethoxy)acetyl)-L-arginine (EMD Chemicals), 3,30-diaminobenzidine (DAB;

Open Biosystems), and Gill’s #3 hematoxylin (Sigma-Aldrich) were pur-

chased from the perspective commercial sources. Primer and siRNA

sequences are available upon request.

Murine Model of Ovarian Cancer

All of the studies on mice were conducted according to the protocols

approved by the institutional review board and Institutional Animal Care

and Use Committee of the University of Texas M.D. Anderson Cancer Center

(UT MDACC). Orthotopic murine models of ovarian cancer were generated by

intraperitoneal injection of cancer cells. In the athymic nude model, 1 3 106

human ovarian cancer cells were resuspended in 200 ml of Hank’s balanced

salt solution and injected into the peritoneum of NU/NUmice. In the syngeneic

immune-competent model, the same number of murine ovarian cancer

cells was injected intraperitoneally to C57BL/6 WT, C3�/�, or CD8�/� mice.

In both models, 4–6 weeks after injection, mice became moribund and

were sacrificed. Tumor nodules were resected from peritoneum, counted,

and weighed. Some tumor nodules were fixed in formalin, and others

were saved as fresh frozen samples by embedding in optimum cutting

temperature (O.C.T.) compound. In some experiments, siRNAs conjugated

to DOPC-based liposomes were injected to the tumor-bearing mice at a

dose of 150 mg/kg/mouse twice a week for 4–6 weeks starting 1 week after

injection of cancer cells.

Immunostaining

Immunohistochemical analyses for C3, C5, C5b-9, C9, and Ki67 were per-

formed on 4-mm-thick formalin-fixed paraffin-embedded epithelial cancer

specimens. Slides were deparaffinized with xylene and decreasing concentra-

tions of ethanol and rehydrated with PBS. Antigen retrieval was performed us-

ing 13 Borg-decloaker (dilute 1:10 in distilled water if 103) (BioCare Medical)

under steamer cooker at 65�C for 45min followed by 80min cooldown at room

temperature. Endogenous peroxidases were blocked with 3% hydrogen

peroxide in PBS followed by washes with PBS. Nonspecific binding was

blocked with 5% normal horse serum and 1% normal goat serum in PBS for

20 min. Immunohistochemical analyses for CD31, CD8, and CD11b were per-

formed on 4 mmO.C.T. compound-embedded fresh frozen cancer specimens.

Slides were fixed with acetone and acetone:chloroform and rehydrated with

PBS. Nonspecific binding was blocked with 5% normal horse serum in PBS

for 20 min. Primary antibodies (C3, C5, C5b-9, C9, Ki67, CD8, CD11b,

pAKT, and CD31) were diluted to 1:200 concentration using 5% normal horse

serum (100–200 ml/slide) and incubated overnight at 4�C. After washing,

biotinylated secondary antibodies were incubated for 20 min and amplified

using the streptavidin horseradish peroxidase label (4plus Mouse-on-Mouse

Avidin-Biotin Detection; BioCare Medical) for 20 min. After washing with

PBS, the slides were incubated with 100–200 ml of DAB at room temperature,

counterstained with hematoxylin for 15 s, and mounted on a bright-field

microscope.

Immunofluorescence Staining

ID8-VEGF tumor cells were stably transduced with murine C3 shRNA, C3aR

shRNA, C5aR shRNA, or C5L2 shRNA carrying lentiviri and plated at a density

of 5 3 103 cells in a 2-well chamber slide. Twenty-four hours after plating,

tumor cells were fixed with 4% paraformaldehyde for 30 min and permeabi-

lized in 0.01% Triton X-100 in PBS for 10 min. Following incubation with the

primary antibodies (C3, C3aR, C5aR, and C5L2, 1:100 diluted in 1% BSA-

PBS) for 1 hr at room temperature, cells were incubated with the secondary

antibodies (goat anti-rabbit Alexa 594, 1:1,000 diluted; chicken anti-goat Alexa

594, 1:1,000 diluted) (Life Technologies) for 1 hr at room temperature. DAPI
re injected toCD8�/� andWTmice. There was no significant difference in tumor
/� and WT mice (0.60 ± 0.23 g versus 0.77 ± 0.17 g, respectively; n = 10 mice/

uction in tumor weight in both WT and CD8�/� mice (*p % 0.001).

iscera and peritoneal surfaces (surrounded by dashed lines) in WT and CD8�/�

or nodules in those injected with mC3 shRNA-expressing cancer cells. Arrows
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Figure 4. Direct Effect of Complement Activation on Tumor Growth

(A) Agonist peptides to anaphylatoxin receptors (C3aR-AG and C5aR-AG) increase proliferation, migration, and invasion of SKOV3ip1 human ovarian cancer cells

in vitro compared to those in cells incubated with scrambled peptide (control). SKOV3ip1 cells were incubated with 0.1 mM C3aR-AG and C5aR-AG for 48 hr

(proliferation),6hr (migration),or24hr (invasion).Results of three independentexperiments (eachof themin triplicate) aresummarizedasbargraphs (*p%0.01, t test).

(B) C3aR inhibitor (W-54011), labeled as C3aR-AT, and C5aR inhibitor (SB290157), labeled as C5AR-AT, reduced proliferation of SKOV3ip1 human ovarian

cancer cells in vitro compared to those in cells incubatedwith scrambled peptide (control). SKOV3ip1 cells were incubatedwith 0.1 mMC3aR-AT andC5aR-AT for

48 hr. Results of three independent experiments (each of them in triplicate) are summarized as bar graphs (*p % 0.001).

(C) SKOV3ip1 human ovarian cancer cells were incubated with Compstatin (Tocris Bioscience), a peptide inhibitor of C3 convertase, at a final concentration of

150 mg/ml or with the controlled scrambled peptide for 2 days. Cell proliferation wasmeasured at the end of the incubation period using EdU incorporation assay.

Compstatin reduced the proliferation rate in SKOV3ip1 cells by 15% (n = 3; *p % 0.002, t test).

(legend continued on next page)
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Figure 5. Cancer Cells Originated from Different Organs Secrete

Complement Proteins that Enhance Cell Proliferation

(A) Quantification of C3 mRNA in h breast, ovarian, lung, and endometrium

cancer cell lines using quantitative real-time PCR (n = 3).

(B and C) Reducing C3 gene expression in (B) H226 human squamous cell lung

cancer and in (C) Hec265 human endometrium cancer cell lines using C3

siRNA reduced proliferation, migration, and invasion of these cells in vitro.

Results of three independent experiments (each of them in triplicate) are

summarized as bar graphs (*p % 0.01 and **p % 0.001, t test).
(Life Technologies) was used as a nuclear counterstain. Images were obtained

using the Zeiss Axioplan 2 Fluorescence microscope.

Quantitative Real-Time PCR

Total RNA was prepared from h or murine ovarian cancer cell lines using the

RNeasy Plus Kit. cDNA was synthesized from 1 mg of total RNA using the

Thermo Scientific Verso cDNA Synthesis Kit according to the manufacturer’s

protocol, followed by quantitative real-time PCR using the ABsolute Blue

QPRC Low ROX Mix (Thermo Scientific) and primers for h or murine C3, C5,

C3aR,andC5aRmRNAs.The sequencesof primersare available upon request.

Cell Proliferation Analysis

Cell proliferation was measured by incorporation of fluorescence-conjugated

EdU to the newly synthesized DNA, according to the manufacturer’s protocol
(D) The relative abundance of AKT mRNA in total mRNA isolated from SKOV3i

quantitative real-time PCR, and the result of three experiments are summarized

(E) A representative immunoblot on total cell lysate prepared fromSKOV3ip1 cells

to p-85, AKT, and their phosphorylated forms (n = 3).

(F) Immunostaining of tumors induced by ID8-VEGF cells expressing scrambled

(G) To investigate the effect of AKT or PI3K silencing on C3aR and C5aR agonist-

SKOV3ip1 was reduced using AKT or PI3K siRNA (data not shown), and cell prolif

compared to SKOV3ip1 cells transfected with scrambled siRNA (n = 3; *p % 0.0

(H) C3 mRNA level in the tumor specimens of 75 patients diagnosed with ovar

correlated with their OS (p = 0.004) and presented as Kaplan-Meier survival curv

(I) Correlation between expression of C5aR in tumor and OS in 562 patients with

(J) The amount of C5aRmRNA in tumors resected from 167 patients with a diagno

PCR and was correlated to the OS of these patients as documented in TCGA da

Ce
(Click-iT EdU Alexa Fluor; Invitrogen). Briefly, ovarian cancer cells were plated

at a density of 53 104 cells in a 6-well dish and transfected with siRNAs. Forty-

eight hours after transfection, tumor cells were treated with 10 mM EdU for

2 hr, washed three times with PBS, detached with 0.25% EDTA, fixed with

4% paraformaldehyde for 15 min, immunostained with anti-EdU-FITC

(1:200), and analyzed using flow cytometry (EPICS XL 4-Color Cytometer;

Beckman Coulter).

Mouse Plasma C3 ELISA

The concentration of C3 in serum samples was determined using mouse C3

ELISA kit, according to the manufacturer protocol (GenWay Biotech). Blood

samples for this assay were collected from mice before tumor dissection,

and the plasma C3 concentration was determined using a calibration curve

constructed with different dilutions of mouse C3.

ELISAs on Cell Culture Media

The concentration of C3 and C3a in cell culture media from SKOV3ip1

cells was determined using hC3 ELISA kit (GenWay Biotech) and C3a ELISA

Plus Kit (Quidel), respectively, according to the manufacturer protocol. Culture

media samples for this assay were collected from serum-free media at indi-

cated time points, and secreted C3 and C3a concentrations in culture media

were determined using a calibration curve constructed with different dilution

of hC3 and hC3a.

Invasion and Migration Assays

We used modified Boyden chambers (Coster) coated with either defined ma-

trix (invasion) or 0.1% gelatin (migration). Untreated cells (8 3 104 cells for

migration and 4 3 104 cells for invasion) were suspended in 500 ml serum-

free media and added into the upper chamber. Complete media containing

10% FBS (500 ml) were added to the bottom chamber as a chemoattractant.

The chambers were incubated at 37�C in 5% CO2 for either 6 hr (migration)

or 24 hr (invasion). After incubation, the cells in the upper chamber were

removedwith cotton swabs.Migrating or invading cells to the bottom chamber

were fixed, stained, and counted by light microscopy from five random fields.

siRNA Delivery

For in vitro transfections, cancer cells were incubated with a siRNA/liposome

mixture with a ratio of 2 mg siRNA to 3 ml of liposome suspension (Lipofect-

amine reagent; Life Technologies) for 48 hr. Prior to transfection, cells were

incubated in serum-free media for 24 hr. For in vivo delivery, siRNAs were

incorporated into DOPC-based liposomes. Briefly, siRNAs were mixed with

DOPC in the presence of excess tertiary butanol (1:10 w/w siRNA/DOPC),

thenmixed with Tween 20 (1:19 v/v Tween 20/siRNA-DOPC), and finally lyoph-

ilized and stored at�80�C until use. Immediately prior to in vivo administration,

the lyophilized preparation was hydrated with 0.9% saline.

Preparation of shRNA and Stable Cell Lines

Murine C3 shRNA, C3aR shRNA, C5aR shRNA, and C5L2 shRNA carrying

lentiviri were produced by the core facility for molecular cloning and lentivirus

production system in the Department of Cancer Biology at UTMDACC. Briefly,

murine C3 shRNA, C3aR shRNA, C5aR shRNA, C5L2 shRNA, or scrambled

sequence was cloned into pGreenPuro lentiviral vectors (pGreenPuro; System
p1 cells after 24 hr exposure to C3aR and C5aR agonists was quantified by

as bar graphs (*p % 0.001).

after 48 hr exposure to C3aR andC5aR agonists and inhibitors using antibodies

shRNA or mC3 shRNA in C57BL/6 mice using anti-pAKT antibody.

induced enhancement of SKOV3ip1 proliferation, expression of AKT or PI3K in

eration was quantified 48 hr after exposure to C3aR-AG and C5aR-AG and was

01).

ian cancer in MDACC was determined using quantitative real-time PCR and

e.

ovarian cancer in TCGA database (p = 0.019).

sis of lung squamous cell carcinoma was quantified using quantitative real-time

tabase. The results are shown as Kaplan-Meier survival curve (p = 0.026).
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Figure 6. Cancer Cell-Produced Complement Enhances Tumor

Growth in an Autocrine Manner
Cancer cells secrete complement proteins resulting in complement activation

in the tumor microenvironment. Complement activation products such as

C3a and C5a activate their receptors on cancer cells that through PI3K/AKT

signaling increase cell proliferation.
Biosciences) and tagged with GFP. A total of 20 mg of these cloned lentiviral

vectors was transfected into HEK293T cells along with 15 mg of packaging

plasmid (2nd generation psPAX2; Addgene) and 15 mg of envelope plasmid

(2nd generation pMD2G) using FuGENE transfection reagent (Promega) in

accordance with the manufacturer’s protocol. Supernatants containing the

lentiviruswere collected, filtered, and added to the cancer cells in the presence

of 8 mg/ml Polybrene (Promega). Twenty-four hours later, 4 mg/ml of puromycin

was added to the media for 7 days. Transduction efficiency of the cells was

calculated by dividing the number of GFP-expressing cells by the total number

of cells and was found to be 100% in all of the experiments. Transduced cells

were analyzed by quantitative real-time PCR assay to determine the level of C3

mRNA silencing.

Tumor Samples and Clinical Data from Patients with Cancer

All of the studies on the h subjects were conducted according to the approved

protocol of the institutional review board of the UT MDACC. We obtained

tumor samples from 75 patients with invasive epithelial ovarian cancer from

specimens stored in the M.D. Anderson Cancer Center’s Tumor Bank (Merritt

et al., 2008). Clinical data relevant to these patients were obtained from

patients’ medical records. Using quantitative real-time PCR, we compared

and normalized ovarian cancer patients’ C3 mRNA expression level to an

average of six normal individuals’ C3 mRNA expression. TCGA data portal

(http://tcga.cancer.gov) was used to download information on clinically

annotated information on patients with high-grade serous ovarian cancer

and squamous cell lung cancer. The OS duration was defined as the interval

(in months) between the date of initial surgical resection to death or last

follow-up. For TCGA database analysis, we randomly split the entire popula-

tion into training/validation cohorts (2/3 and 1/3), and we checked for a relation

with survival. Using the training set, we identified the optimal cutoff of approx-

imately 0.3, which was then validated in a separate cohort. Access to TCGA

database was approved by the National Cancer Institute. The UT MDACC

approved the waiver for performing this survival analysis with deidentified

database information.

Statistical Analysis

In the experiments with animal models of ovarian cancer, the null hypothesis of

no difference in tumor weights and number of tumor nodules between each

experimental group and control was tested against the alternative hypothesis

that the experimental treatment reduced tumor weights or number of nodules.

Based on our preliminary data, we estimated that the coefficient of variation to
1094 Cell Reports 6, 1085–1095, March 27, 2014 ª2014 The Authors
be 0.65 for changes in tumor weight and 0.75 for changes in the number of

tumor nodules. For an effect size (ratio of fixed effect and residual SD) of

0.65, a sample size of n = 10 mice in each group was sufficient to provide

80% power for a test at significance level of 0.05.

Tumor weights and the number of tumors in each mouse group were

compared using the Student’s t test or the Mann-Whitney U rank sum test.

Two-tailed p values of less than 0.05 were deemed statistically significant.

Continuous variables with normal distribution were compared using the

Student’s t test, and those that were not normally distributed were compared

using a nonparametric test (Mann-Whitney U test). Only two-tailed values are

reported in this study. Statistical analysis of the clinical data was performed

using two-sample t test and Fisher’s exact test. Survival analysis was per-

formed using Kaplan- Meier analysis.
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