
Citation: Dang, H.-L.; Kwak, S.; Choi,

S. Various Feature-Based Series Direct

Current Arc Fault Detection Methods

Using Intelligence Learning Models

and Diverse Domain Exclusion

Techniques. Machines 2024, 12, 235.

https://doi.org/10.3390/

machines12040235

Academic Editor: Davide Astolfi

Received: 3 February 2024

Revised: 1 April 2024

Accepted: 1 April 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Various Feature-Based Series Direct Current Arc Fault Detection
Methods Using Intelligence Learning Models and Diverse
Domain Exclusion Techniques
Hoang-Long Dang 1 , Sangshin Kwak 1,* and Seungdeog Choi 2

1 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
2 Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA
* Correspondence: sskwak@cau.ac.kr

Abstract: The expansion of DC electrical distribution systems necessitates advancements in detecting
and mitigating DC arc events, a significant contributor to fire accidents in low-voltage DC distribution
systems. Detecting DC arc faults poses considerable challenges, making them a major safety concern
in DC power lines. Conventional approaches mainly rely on arc current, which can vary during
normal operation, potentially leading to false alarms. Moreover, these methods often require manual
adjustment of detection thresholds for different systems, introducing the risk of malfunction. This
study proposes an advanced arc fault recognition procedure that extracts and utilizes various key
features for the DC arc detection. This work investigated new various features, which are the square
average, the average, the median, the rms, the peak-to-peak, and the variance values, to find out which
one can be the most effective features to detect the DC arc failure. The results of this detection process
show good evidence for the effectiveness and reliability of the proposed malfunction detecting plan.

Keywords: series arc; arc detection; various features; artificial learning

1. Introduction

Despite the myriad advantages that DC systems offer over AC systems, their extensive
implementation has been impeded by the absence of fully developed and stable trans-
mission and distribution tools. Safety is a paramount concern for practical DC system
implementation [1–3]. DC arc faults, often overlooked by fault protection equipment, pose
severe fire hazards in DC power systems [4]. Unlike AC systems, DC systems lack a current
zero point, making them susceptible to the development and sustained presence of high-
temperature plasma arc discharges during electric arc faults, which can lead to disastrous
electric fires [5,6]. Additionally, if a DC arc persists, it can escalate into a large-scale fire
hazard [7]. Detecting and interrupting series arc faults before they escalate is crucial. Arc
faults are accompanied by distinctive characteristics, including sound, light, heat rises, dis-
tortion voltage, and high-frequency component signals [8]. Previous research has focused
on modeling DC arc faults, both theoretically and experimentally [9–11]. Two types of arc
faults are possible: parallel and series. Parallel arc faults are usually caused by short circuits
and are relatively easier to detect. However, series arc faults, occurring in conductors
carrying normal load currents, are more challenging to detect and locate [12]. The voltage
and current characteristics of arc faults have been extensively studied in both time and
frequency domains [13–15]. Detection methods based solely on time domain information
require careful threshold selection to avoid false alarms. Series arc faults typically introduce
high-frequency components into the circuit current [16,17]. Machine learning algorithms
have shown promise in DC arc fault detection. Nevertheless, current methodologies fre-
quently concentrate exclusively on time or frequency domain currents, overlooking the
necessity for inclusive preprocessing of signals [18–28], although an approach with simple
indexes has been tried for DC arc detection [19].
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This research presents a novel methodology to detect arc fault recognition by extracting
and utilizing various key features for DC arc detection. This work investigated new features,
namely the square average, the average, the median, the rms, the peak-to-peak, and the
variance values, to find out which one can be the most effective features to detect DC
arc failure using intelligent learning models (ILMs) to tackle the complex issue of DC arc
fault diagnosis. The diagnostic outcomes validate the remarkable effectiveness of this
approach in improving detecting results. This paper is outlined as follows: Section 2
comprehensively details the configuration of the arc setup, explicating the alterations in
current characteristics throughout different domains during different phases, as well as
an in-depth discussion of the ILMs utilized for arc fault detection. Section 3 reports the
deductions of the fault diagnosis techniques with various features, covering scenarios
involving different current scales and functioning rates. Lastly, Section 3 synthesizes the
cumulative discoveries and comprehensions obtained from the application of ILMs in arc
fault detection, culminating in the conclusion of this study.

2. Hardware Specifications and Data Processing
2.1. Hardware Specifications

In order to emulate intentional DC arc faults in DC power lines connected with very
popular three-phase switching loads in practical DC power systems, the arc generator was
installed between the three-phase voltage source inverter and the DC power source. The
three-phase voltage source inverter was used to generate three-phase balanced adjustable
sinusoidal ac voltages and currents. Different switching frequencies and different output
current magnitudes were produced by the three-phase voltage source inverters, to test
effectiveness of the developed algorithm under a variety of operating conditions for the
three-phase voltage source inverter. The three-phase voltage source inverter was controlled
by a common space vector pulse-width modulation technique, which can synthesize the
variable magnitude and variable frequencies of three-phase AC output voltage waveforms.
The space vector pulse-width modulation method was programmed in a digital signal
processor to control the three-phase voltage source inverter. Figure 1 provides a hardware
setup for acquiring DC arc data based on the standard in UL1699B [23]. The recorded
data underwent a careful investigation with MATLAB software. The setup involved
fundamental modules, including a power supply, failure generator, and load parts. Of
particular significance was the N8741A DC source, generously provided by Keysight
Technologies, USA, and which prominently features in Figure 1. This power source supply
provided a power range of 0–100 V and a current range of 0–20 A, with voltage and current
resolutions of 1 mV and 1 mA, respectively. The precision of the arc rod separation was
impeccably executed through the highly accurate activation of a step motor intricately
linked with these rods. On the other hand, the authors harnessed the abilities of an
oscilloscope working at a sampling rate of 250 kHz. The oscilloscope used was the Tektronix
MSO3054 (Beaverton, OR, USA) boasting a bandwidth of 500 MHz, four analog channels,
and a sample rate of 5 GS/s per channel. The current possession procedure was additionally
assisted by the Tektronix TCP312 current probe, guaranteeing the exact measurement of arc
currents. The Tektronix TCP312 current probe, featuring a bandwidth of DC to 100 MHz
and a maximum input current of 30 A continuous (50 A peak), offered sensitivity ranging
from 10 mA/div to 50 A/div. Our comprehensive investigation of DC arc failure spanned
different domains. Systematic initiation of DC arcs took place under a varied range of
investigational conditions. The investigational factors were thoroughly specified, using a
DC source of 300 V. The authors investigated a variety of current scales of 5 and 8 A, within
different switching rates. The experiments were performed using the load combinations of
resistor (10 Ω) and inductor (10 mH). Furthermore, Figure 1 offers a visual representation
of the fundamental configuration of the three-phase DC-AC converters, which were pivotal
as the main load modules in our investigation and constructed from the insulated gate
bipolar transistor (IGBT). Additionally, the IGBT module (SKM50GB123D, SEMIKRON,
Nuremberg, Germany) boasted a maximum collector current of 100 A and a maximum
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collector–emitter voltage of 1200 V, with an operating temperature range of −40 ◦C to
125 ◦C. The inverters were qualified to convert DC–AC signals. Throughout our research,
we maintained precise control over these inverter units by implementing space vector
modulation (SVPWM)., The SVPWM method was realized in a Texas Instrument (TI) digital
signal processor (DSP) to synthesize the well-regulated balanced three-phase sinusoidal
output currents in three-phase ac loads. The main aim was to employ a predestined DC
voltage while operating the on and off conditions of the six switches, thereby emulating
the sinusoidal signals that characterize the AC network. This high level of control enabled
us to make meticulous adjustments to both the rate and amplitude parameters, confirming
the accurate and reliable adjustment of our experiments.
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Figure 1. Arc hardware setup. (a) Experimental circuit. (b) Arc generator. (c) Arcing event.

2.2. Failure Event Descriptions

Figure 2 offers a visual representation elucidating the waveforms observed in the time
domains, showcasing instances of ordinary working and the inception of failure experi-
ences at switching frequencies of 5 kHz. These observations encompass two scenarios,
one with a current amplitude of 5 A and another with an amplitude of 8 A. Prior to the
initiation of arcing, there is a discernible uniformity in waveform characteristics across
various current amplitudes and switching frequencies. Nonetheless, the establishment of
an electric failure into the circuit injects a myriad of abnormalities into these signals. These
anomalies entail an increased prevalence of harmonic components overlaid on the load
current, a deformation leading to distorting characteristics, and a slight reduction in the
amount of the existing current. The initial phase of the failure incident is conspicuously
characterized by prominent spikes in amplitude. These spikes are a straightforward effect
of the heated leak of electrical flashes. It is imperative to underscore that the exposed and
uncharacteristic occurrences sustain meaningful promise as distinctive pointers within the
realm of arc fault detection. Indeed, the behavior of the current during arcing events can
exhibit variations that may not align with conventional expectations. In this study, the
authors have observed that while there is a general trend of current reduction during the
onset of arcing, there are also instances where large fluctuations occur at the beginning
of the fault event. These fluctuations are often characterized by sudden spikes in ampli-
tude and may not follow a regular cycling pattern. These abrupt fluctuations in current
amplitude can be attributed to the dynamic nature of arc discharge. When an electrical
arc is initiated, there is a rapid and chaotic exchange of energy between the electrodes,
resulting in the formation of fiery sparks and the generation of high-frequency harmonics.
These transient phenomena manifest as sharp peaks in the current waveform, indicating
the presence of arcing activity. It is important to note that the behavior of the current
during arcing events can vary depending on other factors, such as the severity of the fault,
the characteristics of the arc, and the surrounding circuit conditions. While a reduction
in current may be observed as the fault progresses, the initial stages of the arcing event
are often characterized by these erratic fluctuations and transient spikes in amplitude.
Therefore, in Figure 2, the observed reduction in current during arcing is accompanied by
the presence of conspicuous spikes and abnormalities in the waveform, highlighting the
complex nature of arc fault phenomena.
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Figure 2. Waveforms at the rate of 5 kHz in time domains. (a) 5 A current amplitude. (b) 8 A
current amplitude.

Conversely, a completely distinct pattern materializes following the initiation of the
arc event. This pattern is marked by the noticeable emergence of a multitude of distortions
prominently evident inside the spectrum covering a specified range (3–30 kHz). These
complex interactions within the frequency spectrum provide valuable insights into the
distinctive characteristics of both switching noise and arc-induced distortions, enhancing
our understanding of the underlying phenomena.

2.3. Screening Procedures in Time and Frequency Domains

Table 1 presents the structural parameters of the various learning models utilized in
this study. A support vector machine (SVM) is a powerful tool for effective classification
tasks, as it identifies the optimal hyperplane that maximizes the margin between different
groups, aiding in the separation of data points into multiple categories. This hyperplane acts
as the decision boundary, effectively distinguishing between diverse groups of data points.
SVMs find application in various fields, such as text classification, image classification,
face detection, bioinformatics, and financial modeling due to its versatility. When using
SVM, it is essential to select appropriate values for certain parameters, like gamma and
C, to prevent overfitting or underfitting. The value of C should be chosen optimally, as
it regulates the trade-off between a smooth decision boundary and correct classification.
Similarly, the gamma value determines the curvature of the decision boundary, with higher
values resulting in more curvature and lower values leading to less curvature. In this
context, a regulation parameter C of 1, a radial basis function kernel function, degree 3, and
an automatic gamma value are commonly used settings [24]. K-nearest neighbor (KNN) is a
classification algorithm that assigns a class label to an input data point based on the majority
class among its k-nearest neighbors. It calculates the distances between each data point and
others in the data set, typically using the Euclidean distance metric. The algorithm then
selects the k-nearest data points with the smallest distances as neighbors. In this context, a
common choice for the number of neighbors (k) is 20. KNN operates using a brute force
algorithm type, where distances are computed for all pairs of points in the data set. This
approach ensures that the nearest neighbors are accurately identified and considered in the
classification process [25]. Decision trees (DTs) are versatile algorithms that recursively split
data into subsets based on significant features to maximize information gain. This process
continues until a stopping criterion is met, resulting in a tree structure that represents
decision rules for partitioning data into classes or making predictions. Decision nodes
within the tree represent decisions based on feature values, with branches for possible
outcomes, while leaf nodes correspond to final predictions. In this case, the decision tree
type used is the classification and regression tree (CART), suitable for both classification
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and regression tasks. The depth of the tree, which determines the maximum number
of splits, is set to 4 with 14 leaf nodes [26]. Ensemble learning, a powerful technique in
machine learning, combines predictions from multiple models to enhance accuracy and
reliability. Random forest (RF) is a popular ensemble method that creates an ensemble
of decision trees. The forest size, which can vary from 100 to 1000 trees, allows for a
balance between performance and computational resources. RF overcomes the limitations
of individual decision trees by implementing bootstrap aggregation, where each tree is
trained on a random subset of the data and considers a random subset of features. In
this case, the RF consists of 500 decision trees, ensuring robustness and diversity in the
ensemble [27]. Naive Bayes (NB) is a probabilistic classifier widely used for classification
tasks. It calculates the probability of a data point belonging to different classes and assigns
the class with the highest probability as the predicted class. NB employs Bayes’ theorem to
compute class probabilities based on the features associated with the data point. Despite its
“naive” assumption of feature independence, NB remains effective due to its simplicity and
efficiency. In this case, the naive Bayes classifier adopts a Gaussian distribution model, with
hyperparameter optimization performed using a Bayesian approach. This model assumes
a normal distribution of features, allowing it to effectively classify data points based on
their probabilities [28].

Table 1. Specifications of learning models.

Learning Models

SVM KNN NB DT RF

Specifications

Regulation
parameter C = 1

Distance metric:
Euclidean

Classifier type:
Gaussian

Decision type:
classification and

regression
trees (CART)

Forest type:
bootstrap

aggregation

Kernel function:
radial

basis function
K neighbor: 20

Hyperparameter
optimization:

Bayesian
Depth of tree: 4 Number of DT: 500

Degree = 3 Algorithm type:
brute force

Distribution:
normal Leaf nodes: 14

Gamma: auto

The empirical rule, also known as the 68–95–99.7 rule or the three-sigma rule, rep-
resents a foundational rule in statistics. It posits that in the data conforming to a normal
distribution, an overwhelmingly significant greater part, roughly 99.7%, of experiential
statistics elements are concentrated inside the range of the three standard deviations (±3sig)
aligned nearby the mean (mu) [24]. To elaborate, it predicts that approximately 95% of data
are located inside the space of the two standard deviations (mu ± 2sig), while roughly 68%
exist in the span of the one standard deviation (mu ± sig). Figure 3 presents the process
of feature extraction in this study. The data, sampled at a rate of 250 kHz, is partitioned
into separated portions, each with a period or interval (T) of 0.8 ms, to assist the filtering
procedure. Inside these individual segments or data sets, each segment contains 200 data
points, and the standard deviation and the mean are computed.

We establish three distinct empirical filtering ranges for each data set, and after filtering,
the features of each data set are obtained as follows:

square averagedata set(n) =
∑M

i=1 xi
2

M
(1)

averagedata set(n) =
1
M ∑M

i=1 xi (2)
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mediandata set(n) =
x(M/2) + x(( M

2 )+1)

2
if M is even and mediandata set(n) = x(M+1)/2if M is odd (3)

rmsdata set(n) =

√
1
M∑M

i=1|xi|2 (4)

peak − to − peakdata set(n) (p2p) = max(data set(n))− min(data set(n)) (5)

variancedata set(n) =
∑M

i=1 |xi|2 −
|∑M

i=1 xi|2
M

M − 1
(6)

where xi is the data point at ith position in the data set (i varies from 1 to 200), M is
the number of data points in an every period, M is equal to 200 in this study, and data
set(n) denotes the particular data set sampled at specific moment (n varies from 1 to 5000).
The equations outlined in this paper function as statistical tools applied to each data set,
extracting specific characteristics crucial for analyzing arc faults. These equations, including
metrics, like averages, medians, root mean square (RMS) values, peak-to-peak amplitudes,
variances, and other pertinent parameters, are individually employed on each data set.
Each data set represents a unique moment or time interval during which electrical signals
were sampled and logged. In contrast, the figures in this paper depict the amalgamation
of these features across all data sets, with each data set encapsulating a time interval of
0.8 milliseconds. These figures offer a holistic perspective on the arc fault behavior over
time. The curves in the figures represent a collective view of features extracted from
multiple data sets, each corresponding to a specific moment in time. By aggregating feature
values from all data sets, the overall trend or pattern in arc fault behavior is captured,
facilitating a comprehensive understanding of its dynamics and characteristics.
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denotes the particular data set sampled at specific moment (n varies from 1 to 5000). The 
equations outlined in this paper function as statistical tools applied to each data set, ex-
tracting specific characteristics crucial for analyzing arc faults. These equations, including 
metrics, like averages, medians, root mean square (RMS) values, peak-to-peak ampli-
tudes, variances, and other pertinent parameters, are individually employed on each data 
set. Each data set represents a unique moment or time interval during which electrical 
signals were sampled and logged. In contrast, the figures in this paper depict the amal-
gamation of these features across all data sets, with each data set encapsulating a time 
interval of 0.8 milliseconds. These figures offer a holistic perspective on the arc fault be-
havior over time. The curves in the figures represent a collective view of features extracted 
from multiple data sets, each corresponding to a specific moment in time. By aggregating 
feature values from all data sets, the overall trend or pattern in arc fault behavior is cap-
tured, facilitating a comprehensive understanding of its dynamics and characteristics. 
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Figure 3. Feature extraction process.

The data, sampled with the rate of 250 kHz, are initially partitioned into separated
segments, individually with a period of 0.8 ms. This segmentation facilitates the filtering
process and ensures that each data set represents a distinct sampling moment. After
partitioning, the filtering process is applied to each segmented data set to extract relevant
features. These features include statistical parameters, such as median, average, root mean
square (rms), variance, and peak-to-peak. For each data set, these statistical parameters are
calculated based on the data points within that specific segment. This process yields a set
of feature values corresponding to each segmented data set. Once the feature values are
obtained for each segmented data set, they are combined to create a comprehensive data
set encompassing all feature values across different sampling moments. This combination
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involves aggregating the feature values from each segmented data set, resulting in a data
set that encapsulates the complete range of feature values over time. Each data point on
the curve represents a specific statistical index (e.g., average, median, rms) derived from
the aggregated feature values at a particular sampling moment. By plotting these empirical
filtering indexes against time, the figure provides insights into how these statistical indexes
evolve over the duration of the data set. Figure 4 visually depicts the square average at
5 A and 8 A with the time domain refining where a encompassing a range of three sigma is
employed. As depicted in Figure 4, the utilization of square averages results in conspicuous
distinctions between the processed signals during various conditions for both the 5 A and
8 A current amplitudes. As a consequence, these signals hold the promise of substantially
improving the performance of ILMs in effectively distinguishing between normal and
arcing states. Figure 5 illustrates the average values at current amplitudes of 5 A and
8 A. The computation of the average involves summing up all data points within a data
set and dividing it by the total number of points. Notably, the average values showcase
consistent patterns across normal and arcing states. The normal state exhibits a relatively
small change, whereas fluctuations are higher during the arc condition. The fluctuations,
however, might not be distinctive enough to serve as a singular discriminative feature
between the two states.
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Figure 4. Square average with time domain refining at a 5 kHz switching frequency. (a) 5 A current
amplitude. (b) 8 A current amplitude.

In Figure 6, the median values derived from the signals are presented. The median,
which represents the middle point of a data set, offers a robust measure of central tendency.
Similar to the average, the median values exhibit discernible differences between normal
and arcing states. The stability of the median in the normal state contrasts with the
fluctuating nature of the median in the arcing state, providing a potential discriminative
feature for classification. Moving to Figure 7, the root mean square (RMS) values obtained
from the current signals are shown. The RMS is a measure of the magnitude of a varying
quantity, in this context, the signals. The RMS values, akin to the average and median,
portray a consistent behavior in the normal state and notable variations during arcing
states. The RMS values contribute additional insights into the characteristics of the signals,
aiding in the classification process.
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Figure 5. Averages with time domain refining at a 5 kHz switching frequency. (a) 5 A current
amplitude. (b) 8 A current amplitude.
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In Figure 8, the peak-to-peak (p2p) values extracted from the current signals are
presented. Unlike the average, median, and RMS, the peak-to-peak values do not display
as comprehensible differences among various states. The variations in peak-to-peak values
for both states are less pronounced, making them less reliable as discriminative features.
This suggests that certain signal characteristics might not be as effectively captured by
the peak-to-peak measure in the context of arc fault detection. Figure 9 showcases the
variance values calculated from the current signals. Variance is a measure of the spread
or dispersion of a set of values. Similar to the peak-to-peak values, variance does not
distinctly differentiate between normal and arcing states. The intersection in variance
quantities for various states indicates that this characteristic aspect alone could not support
a satisfactory inequitable capability for precise categorization. In summary, while average,
median, and RMS values exhibit consistent patterns aligning with the square averages,
peak-to-peak and variance values do not demonstrate vivid gaps in the two states. This
nuanced understanding of various signal features contributes to a more comprehensive
analysis of the effectiveness of different metrics in the context of DC arc fault detection.
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Figure 7. RMSs with time domain refining at a 5 kHz switching frequency. (a) 5 A current amplitude.
(b) 8 A current amplitude.
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Figure 8. Peak-to-peaks with time-domain refining at 5 kHz switching frequency. (a) 5 A current
amplitude. (b) 8 A current amplitude.
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Figure 9. Variances with time domain refining at a 5 kHz switching frequency. (a) 5 A current
amplitude. (b) 8 A current amplitude.
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The approach devised for mitigating switching frequency noise is rooted in the fre-
quency domain and is intricately tied to the sampled current [21]. Initially, each segment of
the data set undergoes FFT analysis to transform the time domain signal into the frequency
domain. This step yields frequency domain features, such as spectral components and
harmonics associated with the signal. Following FFT analysis, the filtering technique aims
to attenuate or eliminate noise components attributable to the system. After FFT analysis
and switching frequency noise filtering, the frequency domain features for each segmented
data set are evaluated. These features encompass various statistical parameters similar to
those extracted in the time domain, including average, median, rms, peak-to-peak, and
variance. Each feature group obtained from the frequency domain analysis represents
a specific point in time, reflecting the characteristics of the signal at that particular sam-
pling moment. By combining the feature values obtained from all segmented data sets,
a comprehensive data set that captures the behavior of frequency domain features over
time is constructed, as shown in Figures 10–15. Figure 10 demonstrates the square average
with the current amplitudes of both 5 A and 8 A, with a switching frequency set at 5 kHz.
This advancement is pivotal in making the arc distortions more conspicuously discernible
within the data. It implies that the once obscured arc-related characteristics now stand out
more prominently. This improvement in signal property supports substantial capability for
fortifying the aspect extraction procedure essential for effective arc identification. Similarly,
when the system operates with an increased current of 8 A and 5 kHz, the results remain
comparable. These outcomes hold across various scenarios, effectively mitigating switch-
ing frequency interferences and ultimately enhancing signal visibility. Consequently, this
heightened visibility significantly improves the detectability of arc distortions, ultimately
leading to more accurate detection. Figure 11 depicts the average values extracted from
the current signals, focusing on current amplitudes of 5 A and 8 A. Averaging involves
summing up data points within a data set and dividing by the total number of points. In
the context of arc fault detection, the average values present a clear pattern in the two
conditions. The normal period exhibits a relatively stable average, while the arcing state
introduces fluctuations. These variations, similar to the square average, contribute to the
discriminative power of this feature in the classification process.

Machines 2024, 12, x FOR PEER REVIEW 11 of 22 
 

 
Figure 10. Square averages with frequency domain screening at 5 kHz. (a) 5 A current amplitude. 
(b) 8 A current amplitude. 

 
Figure 11. Averages with frequency domain screening at 5 kHz. (a) 5 A current amplitude. (b) 8 A 
current amplitude. 

 
Figure 12. Medians with frequency domain screening at 5 kHz. (a) 5 A current amplitude. (b) 8 A 
current amplitude. 

(a)

0

0.0005

0.0025

0.003

0 0.5 1 1.5 2 2.5 3 3.5 4

M
ag

ni
tu

de
s

Time [s]

Normal state Arcing state

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

Normal state Arcing state

0.001

0.0015

0.002

0

0.0005

0.0025

0.003

M
ag

ni
tu

de
s

0.001

0.0015

0.002

(a)

0
0.01

0.05

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

M
ag

ni
tu

de
s

Time [s]

Normal state Arcing state

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

Normal state Arcing state

0.02

0.03

0.04

0

M
ag

ni
tu

de
s

0.09

0.1

0.07

0.08

0.01

0.05

0.06

0.02

0.03

0.04

0.09

0.1

0.07

0.08

(a)

0
0.01

0.05

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

M
ag

ni
tu

de
s

Time [s]

Normal state Arcing state

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

Normal state Arcing state

0.02

0.03

0.04

0

M
ag

ni
tu

de
s

0.09

0.1

0.07

0.08

0.01

0.05

0.06

0.02

0.03

0.04

0.09

0.1

0.07

0.08

Figure 10. Square averages with frequency domain screening at 5 kHz. (a) 5 A current amplitude.
(b) 8 A current amplitude.
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Figure 11. Averages with frequency domain screening at 5 kHz. (a) 5 A current amplitude. (b) 8 A
current amplitude.
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Figure 12. Medians with frequency domain screening at 5 kHz. (a) 5 A current amplitude. (b) 8 A
current amplitude.
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Figure 13. RMS values with frequency domain screening at 5 kHz. (a) 5 A current amplitude. (b) 8 A
current amplitude.
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Figure 14. Peak-to-peak values with frequency domain screening at 5 kHz. (a) 5 A current amplitude.
(b) 8 A current amplitude.
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Figure 15. Variances with frequency domain screening at a 5 kHz switching frequency. (a) 5 A current
amplitude. (b) 8 A current amplitude.

In Figure 12, the median values obtained from the signals are illustrated. The median,
as a measure of central tendency, is robust in capturing the middle point of a data set.
Similar to the average, the median values showcase discernible differences between normal
and arcing states. The stability of the median in the normal state and its fluctuations in the
arcing state provide valuable information for effective classification. Figure 13 presents
the RMS values calculated from the current signals. RMS, as a measure of magnitude,
reflects the overall energy content of the signals. The RMS values exhibit patterns similar
to the square averages, demonstrating consistency in the normal state and variability in the
arcing state.

Moving to Figure 14, the peak-to-peak values extracted from the current signals are
shown. Unlike the average, median, and RMS, the peak-to-peak values do not demonstrate
comprehensible differences between various states. The variations in peak-to-peak values
for both states are less pronounced, suggesting that this feature might not be as efficient
in catching the dissimilarities of the two different conditions. Figure 15 illustrates the
variance values calculated from the signals. The variance, as a measure of spread, provides
insights into the dispersion of values within a data set. Similar to the square average,
the variance values present clear differences in the two different conditions. The overlap
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in variance values for both states indicates the potential of this feature in enhancing the
discriminative power for accurate classification. In summary, average, median, rms, and
variance values exhibit consistent patterns akin to the square average, contributing to the
enhanced visibility of arc distortions. However, peak-to-peak values do not show clear
differences in the two different conditions, suggesting limited efficacy in the context of arc
fault detection. This detailed analysis of various signal features provides valuable insights
for optimizing the detection method.

3. Diagnosis of DC Arc Failure Using Various Indexes with Intelligence
Learning Models

This approach commences with the collection of operational data, which are subse-
quently divided into data sets, each containing 200 data points, equivalent to a duration of
0.8 ms. The choice of 200 data points aligns with practical considerations, such as compu-
tational efficiency and memory constraints, making it feasible to process and analyze the
data effectively. Overall, with the choice of 200 data points, it is important to consider its
implications in relation to the specific requirements and characteristics of the signal being
analyzed. The statistics are originally tested at 250 kHz to ensure the capture of fine-grain
details. Subsequently, a rigorous process is applied to substitute statistics elements by
dropping the outer predefined spans. Time domain square averages are then extracted
for each data set. Simultaneously, the data subgroups undergo FFT examination with the
output of the FFT operation Both input square averages, originating from both time and
frequency domains, are preserved for further analysis. This comprehensive framework
spans both training and testing phases, ensuring valuation of the algorithm’s performance
under various operative circumstances. The process is systematically applied to various
cases, starting with the extraction of square averages in different scenarios. This includes
analyzing square averages in the time domain, as well as in the frequency domain. By com-
paring the performance across these different cases, the optimal approach is determined
and subsequently applied to other aspects, such as the median, average, peak-to-peak,
rms, and variance. The feature that yields the highest diagnosis rates among all features is
identified as the best-performing feature and is consequently prioritized for further analysis
and model refinement.

The process of training a machine learning model for an arc identification task involves
several key steps. Initially, the data are collected and split into data sets. Next, data
preprocessing is performed, including filtering and feature extraction. The data are then
divided into training and testing sets. Following this, the machine learning models are
selected, and the models are trained on the training data. During training, the model learns
the patterns and relationships between the features and labels in the data set. The trained
model is evaluated using the testing data, and its performance is assessed using metrics,
such as accuracy. In this study, the authors meticulously assembled a training data set
comprising 2000 data sets for the training phase and 1000 data sets for each test scenario,
covering a range of current amplitudes and switching frequencies. This extensive data set
totaled 16,000 data sets for training and 8000 data sets for testing. Each sample within the
data set corresponds to a precise moment in time, capturing the electrical signals sampled
and recorded at that particular instance. Care was taken to ensure a balanced representation
of normal and arcing states within the data set, maintaining a 1:1 ratio between the two
states. During the testing phase, this study relied on the accuracy metric as the primary
evaluation criterion. The accuracy metric, derived from the confusion matrix, performs by
quantifying the proportion of properly categorized instances relative to the entire quantity
of instances. The accuracy metric is computed as the correctness detection rate, representing
the percentage of precisely forecasted sets out of the entire quantity of examination sets.
Precisely forecasted data sets comprise the sum of true positive and true negative instances,
while the total number of examination data sets includes true positive, true negative, false
positive, and false negative instances. Given the balanced data set distribution and the



Machines 2024, 12, 235 14 of 22

binary classification task of distinguishing between normal and arcing states, accuracy
provides a robust indicator of our model’s classification accuracy.

The depiction in Figure 16 showcases the efficacy of arc fault diagnosis in a three-phase
inverter across different operational parameters. These outcomes are derived from the SVM
algorithm. A noteworthy observation is the superior accuracy achieved with the square
average underscoring the efficacy of the filtering process in amplifying the visibility of arc
distortions. Moreover, combining square averages in both domains yields a substantial
upgrade in the precision of diagnosis when compared to using either the empirical or SCE
square averages alone. This enhancement is particularly prominent across all switching
rates, signifying the efficiency of this approach in enhancing diagnostic accuracy. It is
important to emphasize that, in certain cases, the accuracy achieved by combining the
time domain signal square average and FFT square average is similar to the proposed
method. However, it should be noted that the proposed approach significantly improves
the overall diagnostic accuracy, offering a more robust and effective solution for arc fault
detection. This enhanced accuracy is specifically distinct for a current of 8 A, showcasing
the robustness and efficiency of this technique across different scenarios. In Figure 17,
the authors present a comprehensive analysis of the fault diagnosis performance for an
inverter system, investigating a range of operational conditions encompassing various
current scales (5 A and 8 A) and various switching rates. This in-depth analysis involves
the utilization of an integrated methodology that combines filtering techniques and the
RF model. The results of this analysis shed light on the system’s effectiveness in detecting
and diagnosing arc faults under diverse scenarios. It is particularly striking to observe that
the accuracy of the signal square average consistently outperforms that of the raw signal
square average. By preprocessing the data, we effectively amplify the diagnostic potential
of the signal, resulting in more pronounced and discernible fault signatures. Furthermore, a
significant breakthrough emerges when we combine square averages that have undergone
a preprocessing operation.
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Figure 16. The diagnosis rates of SVM under various current scales and switching rates. (a) 5 A load.
(b) 8 A load.
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Figure 17. The diagnosis rates of RF under various current scales and switching rates. (a) 5 A load.
(b) 8 A load.

This hybrid approach substantially bolsters the precision of fault diagnosis. In direct
comparison to using the square average in isolation, the combined approach excels across
the entire spectrum of switching frequencies. This not only reaffirms the value of the
filtering process but also highlights the complementary nature of SCE, which enhances
the diagnostic accuracy by considering the signal’s complexity. It is worth noting that in
specific instances, combining the time domain signal square average with the FFT square
average appears to yield accuracy levels similar to those achieved through the proposed
methodology. However, what sets the proposed approach apart is its consistent and sig-
nificant improvement in overall diagnostic accuracy. This improvement is particularly
evident when dealing with a higher current of 8 A. The robustness and efficiency of this
method in diagnosing arcing failures across diverse scenarios become evident, making it a
superior choice for enhancing diagnostic precision. Moreover, the precision achieved with
the proposed approach outperforms other input combinations with remarkable accuracy,
underscoring its effectiveness in arc fault detection. In Figure 18, we present a comprehen-
sive and meticulous examination of the performance of an arc fault diagnosis system within
the context of a three-phase inverter setup. This investigation encompasses a spectrum
of operational scenarios, spanning altered scales (5 A and 8 A) and an array of switching
rates. This detailed analysis employs an integrated methodology that harmoniously com-
bines empirical filtering, SCE, and the KNN algorithm. The findings that emerge from
this thorough evaluation illuminate the system’s prowess in the detection and diagnosis
of arc faults across a diverse range of operational contexts. Notably, a prominent and
consistent trend arises throughout the analysis: the accuracy of the filtered signal square
average consistently surpasses that of the raw signal square average. This observation
underscores the invaluable role of the filtering procedure in accentuating the discernibility
and unequivocal identification of arcing alterations within the signal. By subjecting the
data to empirical filtering, we significantly amplify the diagnostic potential of the signal,
leading to the emergence of more pronounced and distinctly discernible fault signatures.
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Figure 18. The diagnosis rates of KNN under various current scales and switching rates. (a) 5 A load.
(b) 8 A load.

Moreover, a pivotal advancement materializes when we amalgamate square averages
that have undergone preprocessing with both empirical filtering and SCE. This hybrid
approach markedly bolsters the precision of arcing diagnosis. In direct comparison to the
utilization of either the empirical or SCE square average in isolation, the combined approach
consistently excels across the entire spectrum of switching frequencies. This outcome
reaffirms the intrinsic value of the filtering process and accentuates the complementarity of
SCE in terms of enhancing diagnostic accuracy, considering the signal’s complexity. This
improvement is particularly evident in scenarios involving higher current amplitudes,
such as 8 A. This underscores the robustness and efficiency of this method in diagnosing
arcing failures across diverse operational settings, establishing it as the preferred choice for
enhancing diagnostic precision. In Figure 19, we present a meticulous and all-encompassing
examination of the performance of an arc fault diagnosis system implemented within the
context of a three-phase inverter configuration. This comprehensive investigation spans
a gamut of operational scenarios, including varying current amplitudes (5 A and 8 A)
and an assortment of switching frequencies. This detailed analysis is underpinned by
an integrated methodology that seamlessly harmonizes empirical filtering, SCE, and the
NB algorithm. The outcomes emerging from this exhaustive evaluation shed light on the
system’s remarkable capabilities in the domain of detecting and diagnosing arc faults across
a wide spectrum of operational conditions. A conspicuous and recurring trend permeates
this extensive analysis: the accuracy of the filtered signal square average consistently
outperforms that of the raw signal square average. This observation accentuates the
invaluable role of the filtering procedure in developing the discernibility and unequivocal
identification of arc distortions embedded within the signal. By subjecting the data to
empirical filtering, we conspicuously amplify the diagnostic potential of the signal, thereby
inducing the emergence of more pronounced and distinctly discernible fault signatures.
Furthermore, a significant milestone is achieved when we amalgamate square averages
that have undergone preprocessing with both empirical filtering and SCE.
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Figure 19. The diagnosis rates of NB under various current scales and switching rates. (a) 5 A load.
(b) 8 A load.

This hybrid approach substantially bolsters the precision of failure diagnosis. In direct
comparison to the use of either the empirical or SCE square average in isolation, the com-
bined approach consistently excels across the entire spectrum of switching frequencies. This
outcome not only reaffirms the intrinsic value of the filtering process but also underscores
the complementarity of SCE in terms of enhancing diagnostic accuracy, particularly with re-
gards to the complexity of the signal. This enhancement is especially prominent in scenarios
involving higher current amplitudes, such as 8 A, underscoring the robustness and efficacy
of the proposed technique in diagnosing arc faults across diverse operational settings. This
firmly establishes it as the preferred choice for enhancing diagnostic precision in a wide
array of situations. In Figure 20, we present an exhaustive and comprehensive analysis
of the performance of an arc fault diagnosis system, operating within the framework of
a three-phase inverter setup. This in-depth investigation encompasses a wide spectrum
of operational scenarios, incorporating variable amplitudes (5 A and 8 A) and an array of
switching rates. This intricate analysis is underpinned by an integrated methodology that
harmoniously blends empirical filtering, SCE, and the DT algorithm. The outcomes arising
from this thorough evaluation shed illuminating insights into the system’s formidable
capabilities in the realm of detecting and diagnosing arc faults under a diverse range of
operational contexts. A prominent and consistent trend surfaces throughout this extensive
analysis: the accuracy of the filtered signal square average consistently surpasses that of the
raw signal square average. This observation underscores the invaluable role of the filter-
ing process in accentuating the visibility and unequivocal identification of arc distortions
within the signal. By subjecting the data to empirical filtering, we significantly amplify
the diagnostic potential of the signal, leading to the emergence of more pronounced and
distinctly discernible fault signatures.
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Figure 20. The diagnosis rates of DT under various current scales and switching rates. (a) 5 A load.
(b) 8 A load.

Figure 21 provides results of the accuracy of ILMs in the exciting field of DC arcing
failure diagnosis using various features and different models. This observation emphasizes
that the preprocessing techniques complement each other effectively, enhancing diagnostic
accuracy. Additionally, it is worth noting that the accuracy achieved using the combination
of time domain square average and frequency FFT square average closely align with
the proposed scheme. This result suggests that traditional methods that do not require
advanced preprocessing can still provide competitive accuracy, particularly in specific
scenarios. This indicates that while advanced techniques, like empirical filtering and SCE,
offer significant benefits, there is still value in more straightforward approaches. Within the
domain of ILMs, RF and KNN consistently stand out as the top performers, irrespective
of the input or switching rates. This incredible reliability emphasizes the strong abilities
of ILMs for DC arcing failure diagnosis. Their adaptability and accuracy in providing
diagnoses across diverse conditions render them highly suitable for arc fault detection
systems. In summary, the diagnostic results are both evident and compelling. The proposed
approach for DC arc fault diagnosis consistently surpasses various alternative techniques,
underscoring its potential to enhance diagnosis accuracy across a spectrum of scenarios.
The integration of empirical filtering and SCE, coupled with versatile learning models,
such as RF and KNN, presents a formidable strategy for DC arc fault detection. This study
constitutes a significant contribution to the realm of electrical system safety, addressing
a critical concern in applications where DC arc faults pose substantial risks. The results
confirm the viability of these approaches and lay the foundation for more reliable and
accurate arc fault detection systems, ultimately enhancing safety and reducing the potential
for catastrophic electrical events. The comprehensive diagnostic procedures applied to
square averages were replicated for additional features, including average, median, p2p,
RMS, and variance. Through extensive analysis, it is clear that the combination of the
empirical filtering square average with the SCE square average consistently outperforms
alternative configurations across diverse input scenarios. The intricate details of this
comparison are omitted for brevity, focusing on the collective superiority of these combined
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square averages. In Figure 22, an exhaustive overview of the accuracy of ILMs is presented,
utilizing various input features in the demanding area of DC arcing failure diagnosis. The
performance evaluation indicates that the square average, median, and RMS features exhibit
superior capabilities in diagnosing arc faults compared to p2p and variance features. These
findings underscore the effectiveness of this diagnosis approach, consistently surpassing
alternative techniques and demonstrating its potential to enhance diagnostic accuracy
across a spectrum of scenarios. The results not only validate the viability of the employed
approaches but also establish a robust foundation for the development of more reliable
and accurate arc fault detection systems. This advancement holds significant promise for
improving overall safety in electrical systems and mitigating the risks associated with
potentially catastrophic electrical events. The thorough exploration and comparison of
various features contribute valuable insights to the refinement and optimization of future
diagnostic methodologies in the context of DC arc fault detection. The developed features
in this paper showed better performance in comparison with previous approaches to detect
the DC arc failures using some catalogue [19]. The previous approach in [19] used a few
simple features, which were integral, kurtosis, and Shannon entropy, to detect the DC arc
faults. On the other hand, this work proposed new features different than those used in
the previous paper, which are the square average, the average, the median, the rms, the
peak-to-peak, and the variance values, to find out which one can be the most effective
features to detect DC arc failure. In this paper, the new features, such as the square average,
the rms, and the median values among the various features, which can detect the DC
arc failure more accurately than the simple features of the previous paper. Furthermore,
this paper addressed which artificial learning model can be better in conjunction with the
various developed features, and the K-nearest neighbor (KNN) was found out to show
the best accuracy. In addition, the proposed setup includes an arc generator designed to
produce well-defined arcs, as evidenced by the distinct patterns observed in Figure 2, which
depict the differences between different states. These patterns serve as valuable indicators
for identifying and characterizing fault events within the electrical system. However, the
system’s performance in scenarios involving the superimposition of a normal state with
a state of low-intensity arcing is noteworthy. In such cases, where low-intensity arcing
may occur concurrently with normal operating conditions, the detection of arcing events
becomes more challenging due to the presence of subtle variations in the electrical signals.
To address this challenge, this proposed detection method leverages advanced signal
processing techniques and feature extraction algorithms to discern subtle changes in the
waveform characteristics associated with low-intensity arcing. By analyzing the temporal
and spectral features of the electrical signals, this method is capable of detecting and
distinguishing between different states, even in scenarios where the intensity of the arcing
event is relatively low. Furthermore, the use of machine learning algorithms enhances the
system’s ability to identify patterns indicative of arcing activity, allowing for the reliable
detection of fault events amidst varying operating conditions. Through rigorous testing and
validation procedures, we have demonstrated the effectiveness of our detection method
in accurately identifying and classifying arcing events. Despite the challenges posed by
the superimposition of normal and low-intensity arcing states, this proposed system is
designed to address these challenges through its robust signal processing techniques and
machine learning capabilities. This approach offers a reliable solution for detecting and
mitigating the risks associated with arc faults in electrical systems.
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4. Conclusions

This pioneering study introduces a novel strategy for addressing the intricate challenge
of DC arc fault detection. In this paper, notably, RF and KNN emerge as top-performing
ILMs, consistently exhibiting robust diagnostic capabilities under different operating con-
ditions. The comparison between features highlights the superior performance of ILMs
using various input features in the demanding realm of DC arc fault detection. Specifi-
cally, the square average, median, and RMS features stand out as exceptional performers,
outclassing peak-to-peak (p2p) and variance features. This collective success underscores
the considerable potential of the proposed approach to enhance safety and reliability in
electrical systems. Beyond laboratory settings, its real-world impact is tangible, addressing
critical concerns in industrial settings and data centers. By laying the groundwork for more
robust, precise, and dependable arc fault detection, this research contributes promising
strides towards safety and reliability in diverse critical electrical systems.
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