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ABSTRACT Object detection using vision transformers (ViTs) has recently garnered considerable research
interest. Vision Transformers execute image classification through a multi-head attention-based MLP head
and post-image segmentation into patches. However, conventional models prioritize object classification over
predicting bounding boxes crucial for precise object detection. To address this gap, a two-stage detector
has been devised based on Transformers, which initially extracts feature maps via a pre-trained CNN
model. In contrast, our research introduces a one-stage object detector founded on the Swin-Transformer
architecture. This one-stage detector adeptly performs simultaneous object classification and bounding box
prediction employing a pure Swin-Transformer Encoder Block, obviating the need for a pre-trained CNN
model. Our proposed model is trained, validated, and evaluated on the COCO dataset comprising 82,783
training images, 40,504 validation images, and 40,775 test images. The proposed model showed average
precision (AP) 30.2% performance improvement by 5.59% compared to the performance evaluation of the
existing ViT-based 1-stage detector.

INDEX TERMS Attention, computer-vision, object detection, transformer network, single-stage detection.

I. INTRODUCTION
The prevailing landscape of object detection techniques [1],

[2], [3], [4] in computer vision predominantly revolves
around Convolutional Neural Network (CNN) architec-
tures [5], [6]. However, a transformative shift has occurred
with the introduction of the Vision Transformer (ViT)
[7]1, [8], which has reimagined the Self-Attention-based
Transformer [9], originally devised for natural language
processing and ushered in a new era of computer vision
research. The fundamental ViT [7] model, designed primarily
for image classification tasks, necessitated supplementary
components for enabling object detection.

Within the realm of object detection, a delicate balance
between prediction accuracy and processing speed dictates
the choice of technique. Depending on the specific processing
approach, the emphasis is placed on either prediction
accuracy or processing efficiency, guiding the adoption of
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the appropriate strategy. In the two-step detector paradigm,
an initial feature map is extracted to define a Region of
Interest (Rol), representing the potential location of an
object. Subsequently, object classification is performed on
this feature map, alongside Bounding Box Prediction for
the identified object. Conversely, the one-stage detector
methodology encompasses the extraction of Rols, object
classification, and bounding box prediction, all in a single
step.

The dichotomy between these approaches lies in the
fact that while two-stage detectors offer commendable
performance, they often exhibit slower image processing
speeds. Recent object detection models utilizing the ViT [7]
framework typically involve a two-step detection process,
wherein a pre-trained CNN model acts as the backbone for
feature map extraction.

The inherent ViT model employs patch tokenization to
segment input images into discrete components, subsequently
establishing correlations between these patches via self-
attention [10]. Classification is executed by identifying
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the patch with the highest Attention Score and related
patches, determined through the Sigmoid function. To adapt
this mechanism for object detection, the ViT [7] model
necessitates the integration of a pre-trained CNN model as
the backbone. This backbone’s role is to extract regions of
interest. The ViT [7] model then handles object classification
for these regions and predicts bounding boxes accordingly.

Existing ViT [7]-based object detection models utilize
the CNN-based RetinaNet [8], introduced by Facebook
Al Research, as the backbone for extracting regions of
interest. Subsequent object detection hinges on ViT [8]-
based classification for these extracted regions. Notably, the
ViT [7]-based object detection model introduced in the ““You
Only Look at One Sequence” [11] proposed by Fang et al.
adopts a one-step detection approach, a departure from the
previously established two-step detectors. However, it is
essential to consider the trade-off between object detection
prediction accuracy and processing speed. In this context,
the YOLOS [11] model, a form of first-stage detector,
demonstrates processing efficiency conducive to real-time
object detection. Yet, in contrast to conventional two-stage
detectors, its predictive performance falls short.

This paper presents a novel object detection model that
improves upon the existing ViT-based first-stage detector by
utilizing the Swin-Transformer as the backbone. Notably,
this model stands out for its independence from pre-
trained CNN models, employing the inherent Multi-head
Attention architecture and Multi-layer Perceptron (MLP) for
feature extraction and object detection in a unified one-step
approach. To be specific, the contributions of this work can
be summarized as follows:

1) Innovative Object Detection Approach: We intro-
duce a novel object detection model that departs from
the conventional two-step detection process and utilizes
the Swin Transformer as its backbone, improving
upon the previously established ViT-based first-stage
detector.

2) Elimination of Pre-trained CNN Backbone: Unlike
existing ViT-based object detectors that rely on a
pre-trained CNN model for feature extraction, our
model dispenses with this reliance. Instead, it harnesses
the inherent Multi-head Attention architecture and
MLP within the Swin Transformer for feature map
extraction, classification, and bounding box prediction,
resulting in a streamlined one-step detection process.

3) Unified One-Step Detection: Our model offers a
unified one-step detection approach that integrates
all aspects of object detection, including feature
extraction, object classification, and bounding box pre-
diction, in a holistic manner. This approach enhances
the overall efficiency of object detection tasks.

4) Balancing Speed and Accuracy: We address the
trade-off between object detection prediction accuracy
and processing speed by providing an efficient real-
time object detection solution without significant
compromises in predictive performance.
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These contributions collectively advance the state-of-the-
art in object detection by offering a more efficient and
streamlined approach guided by the evolving landscape of
computer vision research.

Il. RELATED WORK
This section provides an overview of the relevant studies and
research that serve as the foundation for our investigation.

A. OBJECT DETECTION

Object detection, a fundamental task in computer vision,
entails identifying and localizing objects within images or
videos. This field is primarily divided into two categories:
the first-stage detector and the two-stage detector, with
the latter being commonly employed due to its heightened
object detection accuracy. Prominent CNN-based models
that fall under this category encompass Faster-RCNN [12],
EfficientNet [13], and DenseNet [14]. Nevertheless, the two-
stage detector methodology is characterized by its division
into a backbone model, responsible for extracting regions
of interest, and a classification model. This division entails
a drawback, as it demands more extensive computational
resources than its first-stage counterpart.

On the other hand, first-stage detectors encompass
SSD [15], YOLO [16], and RetinaNet [8]. These detectors
hold the advantage of expending less time on object detection
compared to second-stage detectors, rendering them suitable
for real-time detection scenarios. As various papers have
iterated, effective real-time detection should operate at a
performance level of 30 frames per second (FPS) or higher
[16, 17, 18].

Within the framework of this object detection model, the
Intersection over Union (IoU) technique is employed to
ascertain the validity of diverse predicted bounding boxes.
The IoU technique is defined as follows (1): it revolves
around adopting the prediction box with the highest value,
based on the ratio between the union and intersection of
the predicted bounding box value (Prediction) and the actual
value (Ground Truth).

Ground Truth () Prediction

IoU =
? Ground Truth | Prediction

ey

B. VISION TRANSFORMER
The Transformer model, a significant advancement in the
field of natural language processing (NLP), stands in contrast
to recurrent models like Long Short-Term Memory (LSTM)
[18] or Gated Recurrent Unit (GRU) [19]. Inspired by the
Encoder-Decoder structure of Recurrent Neural Networks
(RNN) [20], the Transformer model redefines the approach.
In this context, the term ‘“encoder’” denotes a model
responsible for converting a word representation into a latent
vector, while a “decoder” converts this latent vector into
a different representation. The ViT model marked a pivotal
moment by extending this concept to images, applying it to a
multi-head attention classification task, all without resorting

60961



IEEE Access

T. Y. Kim et al.: One-Stage Detection Model Based on Swin Transformer

Concat

I

Scaled Dot-Product

Attention h
Linear Linear Llnear
\' K Q

FIGURE 1. Multi-head attention is a key component of the transformer
model that enhances parallelism and efficiency by dividing the input
sequence into multiple sub-sequences and performing attention on each
of them separately. Each attention head considers the input sequence
from a different perspective, and the final attention weight is obtained by
combining the attention weights from all the heads.
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FIGURE 2. The operation of cyclic shift used in swin-transformer is
explained. Through cyclic shift, the unequally divided local boundary was
logically changed to be the same so that only units of the same size were
used to calculate attention.

to a CNN. Figure 1 provides a visual representation of the
multi-head attention mechanism.

Since then, numerous models have emerged that rival
or even surpass the performance of existing CNN models.
Examples include the Swin-Transformer [3], ViViT [21],
DeiT [22], and DETR [23], all rooted in the ViT model, and
all contributing to the ongoing exploration of enhanced image
analysis methodologies.

C. SWIN TRANSFORMER

The existing ViT [7] model performs image classification
utilizing an encoder that adheres to a consistent patch size.
In contrast, the novel Swin-Transformer [24] model has
introduced a versatile mechanism capable of classifying
images of varying dimensions. This is achieved through
the application of diverse patch sizes and the merging of
patches using multiple ratios. To facilitate this process,
a local window method was devised for the computation
of these varied patch sizes. This local window serves as a
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FIGURE 3. This figure shows the encoder structure of the YOLOS [11]
model. YOLOS [11] inherited the DETR [23] model, but by adding the [DET]
token, it operates as a 1-stage detector, unlike the existing DETR [23].

boundary that segregates patches into four equitably sized
quadrants. However, this approach introduces a limitation
in the calculation of attention scores between patches that
overlap the boundary.

To overcome this limitation, a dynamic approach is
adopted. The local window is redefined to encompass
sizes such as (1 x 1), (1 x 2), 2 x 1), and (2 x
2). This recalibration is facilitated using the cyclic shift
technique [24], which effectively changes the sizes during
calculations. This innovative strategy reduces computational
costs by shifting and logically aligning patches to the same
dimensions. Figure 2 offers a visual depiction of this process.

Empowered by this strategy, the Swin-Transformer [24]
model is capable of detecting objects by hierarchically
combining ViT [7] elements of various sizes. This fusion
of multiple patches enables a more accurate assessment of
inter-patch relationships. Notably, the Swin-Transformer [24]
can identify both small and large objects due to the gradual
increment of patch size from (4, 4) to (32, 32), facilitating a
comprehensive image classification process.

Furthermore, this approach offers a more efficient means
of attending to the relationships between merged patches,
as opposed to the existing method that involves segmenting
objects based on patch size and subsequently obtaining self-
attention by cyclically altering the local window’s shape [24].

D. YOLOS

Object detectors employing the established ViT [7] model
typically function as two-step detectors, incorporating a pre-
trained CNN model as their backbone. Diverging from this
convention, the YOLOS [11] model takes a distinct approach
by serving as a first-stage detector, utilizing the DeiT [7]
model as its backbone.

In the training phase, the DeiT [7] model addresses the
challenge of learning from a substantial pre-training dataset.
Notably, the class token featured in the original ViT [7] model
is eliminated, making way for a detection token specifically
introduced for object detection tasks. This detection token
traverses through the Transformer Encoder Block. Subse-
quently, the detection token is subjected to classification
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using a MLP, followed by bounding box prediction via a
bipartite matching loss function. To further enhance accuracy,
the YOLOS [11] model leverages Hungarian Loss [25] to
improve the prediction of boxes and their corresponding
correct answer sets. The structural layout of the YOLOS [11]
model can be visualized in Figure 3.

In YOLOS [11], the existing ViT [2] model undergoes pre-
training using the JFT-300M [26] dataset, followed by Fine
Tuning using the ImageNet-1K [20] dataset. The model’s
efficacy is subsequently gauged using the COCO dataset [28].
While YOLOS [11] does exhibit a drawback in terms of
detection rates, falling short of existing CNN-based models
and two-step object detectors based on ViT [7], it underscores
the potential of achieving satisfactory object detection perfor-
mance exclusively through a pure transformer architecture.

ill. PROPOSED METHOD

A. YOLOS

Extensive research in the realm of image analysis networks
has yielded a multitude of investigations, each striving
to apply network models grounded in object detection,
recognition, segmentation [29], [30], [31], and ViT [7].
Of particular significance are the endeavors focused on
replacing established CNN models commonly utilized in
object detection tasks. This evolution has culminated in the
development of a two-stage detector variant employing both
existing CNN models and the Swin-Transformer [24] as
backbones. Notably, these models have recently exhibited
superior performance outcomes. Concurrently, the explo-
ration of a real-time image processing solution takes form
in the shape of a one-stage detector, with the YOLOS [11]
model representing this approach.

Building on this foundation, the present paper introduces
an innovative departure from the conventional practice of
employing pre-trained CNN models for region of inter-
est extraction. Instead, our approach involves the Swin-
Transformer Encoder [11] configuration, seamlessly inte-
grating multi-head attention-based feature map extraction
and classification processes within a unified framework.
This amalgamation enables simultaneous execution, yielding
a streamlined and effective solution to object detection
challenges.

B. MODEL ARCHITECTURE

Achieving superior accuracy compared to the two-stage
detector is a formidable challenge for the single-stage
detector. However, the single-stage detector boasts a distinct
advantage in terms of image processing speed, rendering it
a fitting choice for real-time applications. The pioneering
YOLOS [11] model presented an innovative approach by
proposing a first-stage detector, a departure from the conven-
tional two-stage paradigm. Utilizing the DeiT [22] model as
its backbone; this model exhibited modest performance while
maintaining comparable accuracy across the dataset.

VOLUME 12, 2024

In this study, we have devised a network to enhance
the performance of the YOLOS [11] model. This was
achieved by integrating the encoder structure from the Swin-
Transformer [24] into the YOLOS [11] model’s architecture,
leading to an improved design. The holistic network architec-
ture is vividly depicted in Figure 4. Please see Table 1 for the
proposed model architecture overview.

The process commences with the segmentation of input
data into patches of predetermined dimensions, a step referred
to as Patch Partition. Pose embedding and detection tokens
are subsequently introduced to embed the patch order and
encapsulate object-related information. This amalgamated
data is then channeled through the encoder block. Notably, the
encoder block leverages the Swin-Transformer [11] format,
thus harnessing patch merging and cyclic shift mechanisms
to compute attention scores between individual patches.

Following this, object classification insights and bounding
box predictions are linked through MLP. The resulting
information is then employed to ascertain object types and
bounding box coordinates, achieved through the innovative
application of the bipartite matching loss function. This
multi-step process culminates in a robust and efficient object
detection methodology.

C. TRANSFORMER ENCODER BLOCK

As a means to enhance model performance, the conventional
transformer encoder block is substituted with the encoder
block originating from the Swin-Transformer [24] structure,
within the framework of the existing YOLOS [11] model.
The Swin-Transformer [24] introduces a unique approach,
delimiting local attributes by delineating boundaries using
a local window. This methodology paves the way for the
creation of a hierarchical model that progressively augments
patch dimensions through patch merging. Consequently, this
architecture facilitates the computation of locality attention
scores across patches of varying sizes, thereby yielding model
enhancement [24]. Notably, the Swin-Transformer [24]
serves as the backbone of the proposed model.

Figure 5 elucidates the mechanics of the proposed model.
The process commences with the segmentation of the input
image into patches of size (4 x 4) through patch segmentation.
An additional detection token tailored for object detection
and classification is integrated into each split patch, followed
by the implementation of pose embedding to ascertain
the sequence of patches and tokens. Subsequently, the
amalgamated data traverses the Swin Transformer Encoder.

During this phase, the Swin Transformer Encoder estab-
lishes four local windows, each maintaining a consistent
(2:2) ratio relative to the received image patch. These local
windows serve as the foundation for computing the locality
attention score. Moreover, through a process involving the
transformation of local window boundaries, the size ratios are
adapted to (1:1), (1:2), (2:1), and (2:2), effectively converting
the local window to a masked configuration with a 2:2
ratio. Following this, the region window size is reconstructed
post-patch merging, contributing to an augmentation in
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TABLE 1. Proposed object detection model architecture: A summary of our single-stage object detection model that combines YOLOS with a
swin-transformer encoder. It includes patch handling, pose embedding, an encoder block, MLPs for classification and bounding box prediction, and a

bipartite matching loss for improved efficiency and accuracy.

Component Description

Object Detection Paradigm Single-stage detection

Backbone YOLOS with Swin-Transformer encoder

Patch Partition Segmentation of input data into patches

Pose Embedding Introduction of pose embedding and detection tokens

Encoder Block Swin-Transformer format for patch merging and cyclic shift mechanisms
Object Classification and Bounding Box Predic- | Multi-Layer Perceptrons (MLP)

tion

Loss Function Bipartite matching loss function
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FIGURE 4. Overall network structure. It is based on YOLOS and has been changed to a swin-transformer type encoder. Also, based on the added [DET]
Token, a pair predicted by (class, bbox) is output, and the result is output by bipartite matching. Afterwards, the training of the model proceeds based on

the Hungarian loss function.
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FIGURE 5. This is an encoder block based on swin-transformer. Before
passing through the encoder, a position patch and [DET] token are added
through linear patch embedding. After passing through the encoder, the
[DET] Token is used to predict the class and bbox through the multi-layer
perceptron.

size. Capitalizing on the configured regional window, the
aforementioned sequence is reiterated, culminating in the
computation of attention scores.

Subsequent to this intricate process, the detection token
progresses through an MLP for parallel object classification
and bounding box prediction. The resultant predictions,
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encompassing both bounding box coordinates and object type
classifications, are conjoined as a pair. A judicious selection
of optimal prediction pairs is orchestrated via a sophisti-
cated bipartite matching loss function. This comprehensive
methodology enables refined object detection outcomes with
enhanced accuracy and performance.

D. COST FUNCTION

The Attention Function constitutes a process that maps a
given query and a set of key-value pairs into an output
value. Each component—query, key, value, and output—has
a vector format. The output value is determined by computing
the weighted summation of the values, where each value’s
weight is established via the compatibility function between
the query and its corresponding key.

Within the framework of Scaled Dot-Product Attention,
the input encompasses a query and key vectors of dimension
“dk,” along with a value vector of dimension ““d2.” To derive
the attention value, the dot product of all input keys and
queries is computed. Subsequently, this product is divided
by the square root of the input dimension “root-d.” The
obtained result undergoes further processing through the
softmax function, yielding the weight attributed to the value.
This weight is then employed to scale the value. In the context
of concurrently calculating the attention function, the queries
are grouped as a matrix denoted as Q, while the keys and
values are grouped into matrices K and V, respectively. The
calculation formula governing the output matrix is defined
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by (2).
Attention = SoftMax(QK" //d + B)V )

The process of Scaled Dot-Product Attention operates on
an individual patch, yielding an attention value. This value is
then organized into a single head. To create Multi-Head Self
Attention (MSA), these individual heads are amalgamated
using a concatenation function, followed by multiplication
with an output weight. This concerted process optimizes the
attention mechanism, enabling it to capture and comprehend
complex relationships within the data.

Head = Attention(QWZ, KWK, vwY) 3)

represents the individual head of the Multi-Head Self
Attention (MSA) mechanism. It involves the attention
calculation for a specific set of queries (Q), keys (K),
and values (V), with each being transformed by learnable
weight matrices (Wl.Q, Wl.K , Wl.v). This process captures
intricate relationships within the data, providing a focused
understanding of the input’s contextual information.

MultiHead(Q, K, V) = Concat(head;)W° 4)

describes the formation of Multi-Head Self Attention
(MSA) by concatenating individual heads (head;) and
multiplying the result by an output weight matrix (W?).
This operation is crucial for capturing diverse features and
relationships within the input data, enhancing the model’s
ability to comprehend complex patterns. The concatenation
ensures a comprehensive representation of attention across
multiple heads, contributing to the overall effectiveness of the
attention mechanism in the Swin Transformer Encoder.

To effectively model the Swin Transformer Encoder,
we introduced an innovative approach to computing Self-
Attention within a confined local window. The initial
equation delineates the lower limit time complexity for a
fundamental Multi-Head Self Attention (MSA) calculation,
as depicted in (5). This calculation considers variables such
as the input’s height and width, as well as the number of
dimensions represented by C.

The Swin-Transformer employs a localized window-
based Multi-Head Self Attention (W-MSA) mechanism to
optimize efficiency. This W-MSA is encapsulated by the
second formula within (5), accounting for the (M x M)
patches encompassed by the window. By incorporating these
equations, our methodology adeptly addresses the challenges
associated with modelling the Swin Transformer Encoder
while maintaining computational efficiency.

Q(MSA) = 4hwC? + 2(hw)>C,
QW — MSA) = 4hwC?* + 2M*hwC 5)

The conventional ViT [7] model operates by transform-
ing input data into a one-dimensional token format for
processing. However, to effectively handle two-dimensional
input images, YOLOS [11] adopts an alternate approach,
modifying the image shape from “X” to “X-P” [4]. In this
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notation, (P x P) signifies the size of the patch, and “X-
P’ represents a patch of size p. By partitioning the two-
dimensional image into “X-P” patches and subsequently
flattening it, the dimensionality is shaped into D through a
learnable linear projection.

To further refine this sequence, YOLOS [11] introduces
100 detection tokens labeled *“X-det,” collectively consti-
tuting a single sequence. Added to this sequence is the
patch embedding denoted as “E-pe,” thereby culminating in
the final sequence structure as outlined in (6). This trans-
formation methodology, implemented in ViT and YOLOS,
demonstrates a strategic approach to processing images and
sequences, facilitating enhanced efficiency and accuracy in
image analysis.

Zo =X E; XJE;..; XVE: Xpers .. Xpoy ) + Epe (6)

The process of calculating attention unfolds through the
manipulation of sequences, initiated by the outcome of (6) as
the initial input. This sequence-driven attention derivation is
expressed by (7). The initial equation within (7) commences
with the sequential application of Layer Normalization (LN)
to the input sequence. This is succeeded by Window Multi-
head Self Attention (W-MSA) executed within a localized
window, and the result is augmented by the inclusion of
existing input values to yield “Z-1.”

Subsequently, “Z-1” serves as the input for the second
equation within (7). This equation entails a successive
application of Layer Normalization (LN) and MLP, and
once again, the outcome is fused with “Z-1.” During this
phase, an additional computation is undertaken involving the
shifted window Multi-Head Self Attention (SW-MSA). This
mechanism is responsible for modifying the local window
boundary for the previously calculated values. The third
equation within (7) captures this process, which is executed
similarly to the previous steps. These computations culminate
in the derivation of the subsequent sequence denoted as
“Z-14-1.” This intricate sequence-based approach effectively
realizes attention calculation, facilitating a comprehensive
transformation of data for enhanced analysis and understand-
ing.

21 =W — MSA(LN (z1-1)) + 211,
2 = MLP(LN Gp) + .
Zi41 = SW — MSA(LN (1)) + z,

241 = MLP(LN (Z1+1)) + Zi+1, @)

The prevalent one-step detector model relies on a non-
maximum suppression (NMS) loss function for refinement.
The NMS mechanism revolves around calculating the Inter-
section over Union (IoU) for all projected bounding boxes in
relation to ground truth boxes. Subsequently, it retains solely
the bounding box with the highest score while discarding
others. Despite its efficacy, this approach demands substantial
computational resources due to its complex nature.

To address this concern, our paper introduces an inno-
vative solution. We incorporate the bipartite matching loss
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function drawn from DETR [23], a method that mitigates
computational expenses and elevates model prediction speed.
This strategy functions by juxtaposing a prediction pair,
encompassing both object type classification and bounding
box prediction—yielded through an MLP-driven forecast of
the detection token—with the corresponding true values. The
process hinges on the selection of a prediction pair that
minimizes the prediction error, ultimately optimizing model
accuracy and efficiency. This transformational approach is
encapsulated by (8), offering a comprehensive understanding
of the mechanism’s operation and effectiveness.

N
& = argmin > Lyaien(Vi- o) ®)
i

o€R

In (8), the term “L-match” denotes the object type in (9)
and encapsulates the degree of loss incurred due to the
bounding box’s dissimilarity. This loss value serves as a vital
component in our methodology.

In (9), the introduced permutation ‘“‘sigma” defines an
arrangement that optimizes the pairing of object type predic-
tions and their corresponding bounding box predictions. This
permutation is instrumental in training the model through the
application of a Hungarian loss function, as delineated in (9).
The utilization of the Hungarian loss function facilitates the
division of the object type prediction and bounding box
prediction values, aiding the convergence towards an optimal
solution.

In this context, the variable ‘“‘c”’ denotes the class label,
while “b” is composed of the image size represented
within the range of 0 to 1, in addition to the relative
bounding box’s center, height, and width. The parameter “p”’
signifies the prediction probability, while “Pi” corresponds
to padding introduced to account for non-existent objects.
By incorporating these elements, our approach demonstrates
a meticulous consideration of object characteristics and their
predictions, thereby fostering a robust and accurate learning
process.

N
Lrungarian(ys y) = Z[_ZOgﬁ&(i)(ci)

i=1
+ l0g(cm)Libox(Bis b5 ()] (9)

Table 2 gives a brief view of each of the equations in the
proposed model.

E. ENHANCED MODEL WITH SWIN-TRANSFORMER
INTEGRATION

This section provides a more detailed explanation and step-
by-step breakdown of the modifications made to the YOLOS
model when integrating the Swin-Transformer encoder:

o Introduction of Swin-Transformer Encoder: The
initial modification involves replacing the conventional
YOLOS model’s encoder with the Swin-Transformer
encoder. This transition aims to leverage the unique
capabilities of the Swin-Transformer, such as its
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TABLE 2. Comprehensive overview of equations: Each equation is briefly
explained to highlight its role in model architecture and efficiency.

Equation  Description
2) Scaled Dot-Product Attention for calculating matrix atten-
tion values based on input keys, queries, and SoftMax-scaled
values.
3) Individual head of Multi-Head Self Attention (MSA) calcu-

lating attention for specific queries, keys, and values with
learnable weight matrices.

4) Formation of MSA by concatenating individual heads and
multiplying by an output weight matrix, crucial for capturing
diverse input features.

) Lower Limit Time Complexity for MSA and Window MSA,
considering input dimensions and represented by C.

6) Transformation process in YOLOS model, converting a 2D
image into a sequence with patches, detection tokens, and
patch embedding.

(7) Sequence-driven attention process involving LN, W-MSA,
MLP, and SW-MSA.

8) Bipartite matching loss function for object detection inspired

by DETR, optimizing efficiency by minimizing prediction
error.

9) Details of the Hungarian loss function within bipartite match-
ing loss, involving class labels, image size, bounding box
information, prediction probability, and padding for non-
existent objects.

attention mechanisms and hierarchical patch merging,
to enhance feature extraction and representation.

o Patch Partition and Token Embedding: Before
passing through the Swin-Transformer encoder, the
input image undergoes patch partitioning, breaking it
down into smaller segments. Additionally, a specialized
detection token ([DET]) is introduced to each patch,
serving as a key element for subsequent object detection.
This process is followed by embedding the positional
information and [DET] token into the patches through
linear patch embedding.

o Swin-Transformer Encoder Operation: The Swin-
Transformer encoder operates on the patch-embedded
data, establishing local windows and computing atten-
tion scores between individual patches. This process
involves a unique approach to attention computa-
tion within confined windows, adapting local window
boundaries and employing a masked configuration.
This mechanism facilitates the extraction of complex
relationships within the data, contributing to improved
feature representation.

o Multi-Head Self Attention and MLP: Within the
Swin-Transformer encoder, Multi-Head Self Attention
(MSA) is applied to the individual patches, capturing
intricate dependencies. The attention values from mul-
tiple heads are then concatenated and multiplied with an
output weight, creating a comprehensive attention mech-
anism. Following this, the detection token progresses
through the MLP for parallel object classification and
bounding box prediction.

« Bipartite Matching Loss Function: The proposed
method introduces a novel bipartite matching loss
function for refined object detection. This loss function
is inspired by DETR and involves pairing object type
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predictions and bounding box predictions, minimizing
the prediction error. The Hungarian loss function
is employed to select optimal prediction pairs that
optimize both object type classification and bounding
box coordinates.

In summary, the integration of the Swin-Transformer into
the YOLOS model brings about significant improvements
in object detection. From replacing the traditional encoder
to introducing patch partitioning, token embedding, and
unique Swin-Transformer operations, each step enhances the
model’s feature extraction capabilities. The use of Multi-
Head Self Attention and MLP adds finesse to capturing intri-
cate dependencies, while the innovative bipartite matching
loss function optimizes both object type classification and
bounding box coordinates. This holistic approach not only
boosts the YOLOS model’s performance but also sets the
stage for future advancements in computer vision.

IV. EXPERIMENTS

The conducted experiment in this study centres on
object detection, employing the Microsoft-provided COCO
dataset [28]. This dataset encompasses an expansive
collection of 82,783 training samples, along with 40,504
validation samples and 40,775 test samples. The defining
characteristic of the COCO dataset [28] lies in its diverse
assortment of objects across varying sizes within the training
data. Each image within the dataset is distinctly categorized,
rendering it an ideal resource for object detector learning and
validation [28]. Notably, the training and validation datasets
incorporate annotations that include object bounding box
coordinates, object areas, and classifications of 80 object
types.

The experiment was conducted utilizing three RTX
3090 GPUs, with the model being trained to employ a batch
size of eight over the course of 100 epochs. To ensure a com-
prehensive comparative analysis, the experiment commenced
by fine-tuning the established YOLOS [11] model using the
COCO dataset [28]. Subsequently, the performance of the
proposed model was evaluated within the same experimental
environment, providing a direct benchmark against the
established baseline. This systematic approach yields a
robust assessment of the proposed model’s capabilities and
improvements within the context of object detection tasks.

A. SETUP

Efforts to apply the ViT [7] model to the domain of object
detection have primarily focused on two-stage detectors that
employ pre-trained CNN models as feature map extractors.
While the Swin Transformer [24] model combined with
RetinaNet [17] has demonstrated superior average precision
(AP) compared to conventional CNN models, the ViT [7]
model faces challenges due to its extensive parameter count
resulting from performing Multi-Head Self Attention (MSA)
across the entire CNN-extracted feature map. As parameters
increase, computational costs escalate, impeding its viability
as a real-time detector.
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TABLE 3. Setup for experimentation of YOLOS and the proposed model.

Layers Params
Model backbone (Depth) M) Heads
YOLOS [11] | Deit-Ti [22] 12 6.9 3
Proposed | g i i (7] 12 8.3 3
model

To address these issues, the YOLOS [11] model intro-
duced a first-stage detector paradigm, diverging from the
conventional two-stage approach. This strategy aimed to
counteract parameter growth and associated processing
speed reductions. However, this shift brought to light class
imbalance concerns within the training dataset. YOLOS [11]
tackled this by utilizing the DeiT [22] model as a backbone,
successfully achieving balanced model learning outcomes.

Our experiments aimed to enhance the performance
of the model introduced in this paper, employing the
Swin Transformer Encoder Block as a first-stage detec-
tor. The experimentation followed a configuration akin to
YOLOS [4], featuring a batch size of 8, Adam optimizer
learning rate of 2.5 x 1075, and a weight decay of 1 x
1074. We enhance data preprocessing by resizing images
to 224 x 224 pixels, applying random horizontal flipping
with a probability of 0.5, normalization with a mean and
standard deviation of 0.5, adding random Gaussian noise
with a probability of 0.1, and color jitter. At the same time,
other model hyperparameters, including cosine learning rate
schedule, dropout rate of 0.1, patch size of 7 in transformer
encoder block, and 100 detection tokens, are detailed to
improve reproducibility and understanding of the training
process. Table 3 is the tabular illustration of the setup for
experimentation of YOLOS and the proposed model.

B. EXPERIMENTS RESULT

This section presents a comprehensive comparison between
the experimental outcomes of the YOLOS [11] model and
the proposed model within the realm of object detection,
utilizing the COCO dataset [28]. All conducted experiments
were consistently executed on the same RTX 3090 GPU,
ensuring an equitable evaluation platform.

The experimental findings of the YOLOS [11] model
revealed an achieved Average Precision (AP) of 28.6, coupled
with a Frames Per Second (FPS) rate of 103. Contrastingly,
the proposed model demonstrated remarkable improvement,
yielding an AP of 30.2 and an FPS of 89. These results
underscore the enhanced performance of the proposed model,
as it not only surpassed the YOLOS [11] model in terms
of AP but also maintained a commendable FPS rate despite
the heightened precision. This comparison emphasizes the
viability of our approach in achieving superior accuracy while
upholding satisfactory processing speed, thus contributing to
the advancement of object detection capabilities.

Table 4 presents a comprehensive performance comparison
of various object detection models based on key metrics.
Each row corresponds to a specific model, providing details
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FIGURE 6. Experimental outcomes and attention map illustrating our model’s object detection performance, with a focus on the impact near object

boundaries.

TABLE 4. Performance comparison of different Object detection models including the proposed method.

Model Backbone Input Resolution | Params (M) | FLOPS (G) | Model Size (MBs) AP FPS
YOLOvV4-Ti DarkNet53 [16] | 2242 8.9 5.6 33.9 16.6 | 330
CenterNet ResNet50 [6] 2242 15.8 22.7 60.2 28.1 142
DETR \cite{b24} ResNet50 [6] 2242 41.1 86.1 205.5 35.3 12
Def. DETR ResNet18 [6] 2242 40.4 173 167.0 43.8 19
YOLOS-Ti \cite{b12} Deit-Ti [22] 2242 6.5 34 27.2 23.1 114
YOLOX-Ti DarkNet53 [16] | 2242 5.1 6.9 21.3 32.8 90
Proposed model Swin-Ti [24] 2242 8.3 3.7 34.8 30.2 89

such as the backbone architecture, number of parameters (in
millions), floating-point operations per second (FLOPS) in
gigaflops, average precision (AP), and frames per second
(FPS). Notable models included in the comparison are
YOLOV4-Ti utilizing DarkNet53, CenterNet with ResNet50,
DETR with ResNet50, Def. DETR with ResNet18, YOLOS-
Ti incorporating Deit-Ti, YOLOX-Ti using DarkNet53,
and a proposed model implementing Swin-Ti [24]. The
metrics reveal variations in model efficiency and accuracy,
allowing for a detailed evaluation and informed selection
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of object detection architectures based on specific require-
ments.[Figure 9] is a graphical chart presentation to enhance
data visualization, facilitating easier comprehension and
interpretation of the tabular data from the Table 4.

The proposed model, which incorporates the Swin-Ti [24]
backbone, demonstrates compelling performance across
various metrics, enhancing its applicability in practical object
detection scenarios. With a relatively moderate number of
parameters (8.3 million) and low computational requirements
(3.7 gigaflops), the model achieves a competitive average
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FIGURE 7. Self-attention map showing patch placement and attention scores, revealing patch-object relationships and

composition insights.

precision (AP) of 30.2. This combination of efficiency and
accuracy positions the proposed model as an attractive choice
for real-world applications where computational resources
may be constrained. Moreover, the achieved frames per
second (FPS) rate of 89 suggests that the model can efficiently
process input data in real-time, making it well-suited for
dynamic environments where rapid and accurate object
detection is crucial. Overall, the proposed model’s favorable
trade-off between performance and computational efficiency
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enhances its potential for widespread applicability in diverse
scenarios, ranging from surveillance systems to autonomous
vehicles.

[Figure 6] showcases the experimental outcomes of the
proposed model on real images. The Attention Scores
utilized in generating these outcomes are transformed into
an Attention Map, allowing for a visual representation that
confirms the model’s performance. This map effectively
dissects the attention associated with each predicted object’s
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FIGURE 8. Detection results produced by the proposed method.

bounding box. While the figure underscores the efficacy of
the proposed model in object detection, it is notable that the
model’s performance diminishes for objects at the boundary
of the local window, attributable to the operating mechanism
inherent in the Swin Transformer [24].

Meanwhile, [Figure 7] provides a visual representation of
the Self-Attention Map, correlating with the model’s patch
placement. Circular markers denote attention scores at the
centre of patches. High attention scores are illustrated in
vivid hues, whereas low attention scores are depicted in
darker shades. This visualization unveils the correspondence
between each patch and its associated object, offering insights
into the relationships that underlie the objects’ composition.

Although the experimental results may appear compara-
tively underwhelming against traditional CNN-based object
detectors, it’s important to note that the model proposed in
this paper intentionally adopts a pure transformer architec-
ture. This design choice not only demonstrates the potential
to enhance performance in object detection based on ViT [7],
but also opens avenues for diverse applications of existing
transformer models, shedding light on the trajectory of
research for generating high-performance models. [Figure 8]
shows some more results that our method generated on
images from the MS COCO dataset.

V. DISCUSSION RELATED TO ATTENTION MECHANISM IN
PROPOSED METHOD

In our proposed method, the integration of the Swin-
Transformer encoder introduces crucial enhancements to
object detection accuracy. The attention mechanism dynami-
cally allocates resources to relevant image patches, fostering
object-attention relationships pivotal for precise detection
amidst varying backgrounds. This mechanism also enables
contextual comprehension, aiding in disambiguating objects
with similar appearances. Additionally, the patch merging
process within the Swin-Transformer encoder enhances
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Visualization of performance comaparison of
different object detection models.
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FIGURE 9. Visual illustration of tabular data in Table 4.

feature representation by aggregating information from
smaller patches into larger ones. This facilitates the capture of
global context and long-range dependencies within the input
image, crucial for accurate localization. Hierarchical patch
merging further enables the extraction of multi-scale features,
essential for handling diverse datasets. By elucidating these
technical aspects, we aim to provide readers with a deeper
understanding of the mechanisms driving our approach and
its potential for advancing object detection in real-world
applications.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a recent study that delves into enhancing
object detection performance within the Vision Trans-
former [7] framework. Specifically, the investigation is
centered around a novel first-stage detector, which seamlessly
combines feature extraction and bounding box prediction
using a transformer block. This deviates from the prevalent
approach of employing a two-stage detector rooted in CNN
architectures.
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The proposed model leverages the Swin-Transformer [24]
as its backbone, systematically amalgamating it with the
existing Vision Transformer [2] structure. The process
involves segmenting input images into patches of predeter-
mined dimensions and calculating attention scores between
each patch. This technique is augmented by setting regional
windows to grasp inter-patch spatial dynamics. Repeatedly,
the regional window is readjusted through patch merging,
leading to superior performance compared to the conven-
tional ViT [7] model. As evidenced by this outcome, this
paper outlines the construction of a Swin-Transformer-based
encoder [24] as the foundation of our proposed first-stage
detector. By benchmarking against the existing ViT [7] model
and YOLOS [11], a substantial performance improvement of
5.59% to 30.2% is observed in the object detection domain.

The implications of this achievement extend to steering
the trajectory of transformer-based first-stage detectors. Such
models exhibit potential as real-time object detectors that
surpass the object detection speed of established transformer-
based two-stage detectors. This, in turn, could serve as a
bedrock for future research in the domain of real-time object
detection models.

Looking ahead, our research avenue contemplates diversi-
fying into various fields. Beyond elevating object detection
rates, we aspire to explore methodologies applicable to
diverse domains, including area detection. Additionally, our
interests extend to investigating models tailored for object
tracking, an endeavor parallel to object detection in image-
based datasets. We will incorporate this model into our future
research for video anomaly detection to localize objects
that cause anomalies in given frames. This multifaceted
exploration promises to contribute to the ongoing evolution
of computer vision research.
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