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ABSTRACT We propose a novel method that combines the strengths of two popular class activation
mapping techniques, GradCAM++ and ScoreCAM, to improve the interpretability and localization of
convolutional neural networks (CNNs). Our proposed method, called ‘‘Grad++-ScoreCAM’’, first utilizes
the GradCAM++ algorithm to generate a coarse heatmap of an input image, highlighting the regions of
importance for a particular class. Then, we employ the ScoreCAM algorithm to refine the heatmap by
incorporating the localization information from the intermediate layers of the network. By combining these
two techniques, we can generate more accurate and fine-grained heatmaps that highlight the regions of
the input image that are most relevant to the prediction of the CNN. We evaluate our proposed method
on a benchmark dataset and demonstrate its superiority over existing methods in terms of accuracy and
interpretability. Our method has potential applications in various fields, including medical imaging, object
recognition, and natural language processing.

INDEX TERMS Class activation, convolutional neural networks, decision-making, recognition, decision
interpretation.

I. INTRODUCTION
Deep Neural Networks (DNNs) can be made more trans-
parent by providing explanations that make it possible for
people to understand certain aspects of the inferences made
by the model. A common method for attaining this goal
is to visualize a particular object of interest based on the
significance of input attributes or learning weights. As a
convolution neural network (CNN) is an essential part of
cutting-edge models for image as well as language pro-
cessing. Several techniques have concentrated on enhancing
the explanations of convolutions and convolutional neural
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networks. Examples of techniques that are frequently used
include Class Activation Map [1], Perturbation [2], and
Gradient Visualization [3].

Existing class activation map (CAM) based visual inter-
pretation methods still face limitations, notably in accu-
rately capturing intricate decision boundaries and providing
fine-grained insights into the reasoning behind complex
neural network decisions. Additionally, these methods may
struggle with interpretability in certain scenarios, hinder-
ing their effectiveness in fully understanding the nuanced
decision-making processes of convolutional neural networks.

Gradient-based techniques leverage the backpropagation
algorithm to compute the gradient of a target class concerning
the input image. This process aims to identify and emphasize
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regions within the image that have themost significant impact
on the model’s prediction. The Saliency Map approach,
proposed by Simonyan et al. [3], utilizes the derivative of the
target class score as an explanation for the model’s decision.

Various other methods have been developed to enhance
the interpretability of these gradients. For instance,
Adebayo et al. [4], Omeiza et al. [5], Springenberg et al. [6],
Sundararajan et al. [7], and Zeiler et al. [8] propose tech-
niques that manipulate and refine the gradient information
to improve the quality of visualizations. However, it is noted
that the resulting saliency maps can be prone to noise and of
relatively low quality, as reported by Omeiza et al. [5].
In contrast to gradient-based methods, perturbation-

based techniques alter the original input image and
observe the corresponding changes in the model’s predic-
tions. Chang et al. [9], Dabkowski et al. [10], Fong [11],
Petsiuk et al. [12], Ribeiro et al. [2], and Wagner et al. [13]
have proposed such methods. These approaches are partic-
ularly useful for determining the sensitivity of the model to
perturbations in the input data.

It is important to note that perturbation-based methods
often require additional regularization techniques, as high-
lighted by Fong [11], and can be computationally expensive
when aiming to identify minimal regions that significantly
affect the model’s predictions.

The explanations generated by CAM [1] are visual and
focused on a single input. They are created using a linear
weighted combination of activation maps obtained from
convolutional layers. While CAM is effective at producing
localized visual explanations, it requires a global pooling
layer [14] and is sensitive to architecture. Grad-CAM [15] and
its derivatives, including Grad-CAM++ [16], are designed
to generalize CAM for models that lack global pooling
layers. Later, Score-weighted Class Activation Mapping
(Score-CAM) [17] proposed an explainable AI technique
that highlights the most important regions of an image that
contribute to a particular prediction made by a deep learning
model. It does this by computing a class activation map
for the predicted class, which represents the regions of the
image that were most important for the prediction. One of the
drawbacks of Score-CAM is that it relies on the increase in
confidence of the model to determine the important regions
of the image. This means that if the model is already highly
confident in its prediction, Score-CAM may not be very
effective at identifying the most important regions of the
image.

The interpretability of deep neural networks is pivotal for
understanding their decision-making processes, particularly
in image classification. While gradient-based techniques
like Grad-CAM++ [16] offer valuable insights into salient
image regions, their slow convergence speed and com-
putational intensity, especially in complex architectures,
hinder real-time applicability. In contrast, Score-CAM [17]
improves localization accuracy but at the cost of increased
computational complexity, making it slower and resource-
intensive. Motivated by these limitations, we propose a novel

interpretation method aiming to combine Grad-CAM++

and Score-CAM strengths while addressing their drawbacks.
By integrating the efficiency of Grad-CAM++ and the
accuracy of Score-CAM, our approach seeks to provide
a comprehensive solution with faster convergence speed
and reduced computational overhead, making it well-suited
for practical applications requiring real-time interpretability.
We assign weights to each pixel of the final convolutional
feature map of a CNN based on its gradient with respect
to a specific spatial position and obtain a gradient-based
confidence score. Our main contributions are listed here:

• Our article presents Grad++ScoreCAM, a visual
explanation method that utilizes pixel-wise gradi-
ents. This innovative approach effectively combines
perturbation-based and CAM-based features, resulting
in an easily understandable weight derivation for
activation maps. Later, we obtain the final result by
taking a linear combination of GRAD++ pixel-wise
confidence scores with activation maps.

• Our study involves a quantitative evaluation of the
saliency maps generated by Grad++ScoreCAM for
recognition tasks, utilizing metrics such as Average
Drop/Average Increase. Our results demonstrate that
Grad++ScoreCAM is more effective at identifying
crucial features.

II. BACKGROUND WORK
A. CAM METHOD
Zhou et al. [1] proposed a class activation mapping method,
which is a deep learning technique that visualizes the regions
of an image that contribute the most to a particular classi-
fication decision. CAM generates a heatmap that highlights
the important regions in the input image that influenced the
classification decision. This technique is commonly used in
computer vision applications such as object detection and
image segmentation.

One of the main limitations of CAM is that it requires a
pre-trained neural network, and the accuracy of the generated
heatmaps depends on the performance of the underlying
model. Furthermore, CAMmay not work well in cases where
the classification decision is based on multiple regions of
the image, as it may only highlight the most salient region.
Finally, CAMmay not be suitable for complex image datasets
where the features of interest are not well-defined or are
distributed throughout the image.

Suppose we have a model f that includes a global pooling
layer, denoted as l, positioned after the last convolution layer,
l − 1, and immediately before the last fully connected layer,
l+1. In the context of a specific class of interest, c, the CAM
explanation is represented as LcCAM , which can be formally
defined as follows:

LcCAM = ReLU
(∑

k

αckA
k
l−1
)

(1)

where l is for the convolutional layer, Akl describes the
activation map of the k-th channel and αck denotes the weight
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of the k− th neuron after pooling connecting two layers l and
l + 1, defined as:

αck = wcl , l + 1
[
k
]

(2)

CAM was developed with the intention of utilizing the
unique spatial information contained within each activation
map, denoted as Akl , that corresponds to different regions of
the input X . The significance of each channel is determined
by the weight assigned to the linear combination of the fully
connected layer that follows the global pooling operation.
However, in the absence of a global pooling layer or
in situations where there are no fully connected layers or
multiple fully connected layers, the CAM technique cannot
be applied as there would be no definition of the weight
coefficient αck .

B. GRAD-CAM METHOD
To overcome the aforementioned issue, Grad-CAM [15]
introduces an extension to the definition of αck by using
the gradient of the class confidence Y c with respect to the
activation map Al . This leads to the following definition for
Grad-CAM:

LcGrad−CAM = ReLU
(∑

k

αckA
k
l−1
)

(3)

where

αck = GP
(∂Y c
∂Akl

)
(4)

where GP is a global pooling operation. Without requiring
any retraining or architectural modification, Grad-CAM can
work with any deep CNN where the activation maps αck are
differentiable functions of the final Y c.
Gradient-weighted Class Activation Mapping (GradCAM)

is an extension of CAM that highlights the regions of
an image that are important for a particular classification
decision, using the gradients of the target class with respect
to the feature maps of the last convolutional layer.

GradCAM overcomes some of the limitations of CAM by
providing more precise and localized heatmaps. It can also
be used with any CNN model and is not limited to pre-
trained networks. Furthermore, GradCAM can be used for
a wider range of tasks, including object detection, image
segmentation, and visual question answering.

One of the shortcomings of Grad-CAM is that it struggles
to accurately identify the location of objects in an image
that contains multiple instances of the same class. This is
a critical issue as multiple instances of the same object in
an image are frequently encountered in real-world situations.
Furthermore, because the approach employs an unweighted
average of partial derivatives, the localization can often only
correspond to bits and pieces of the object, rather than the
entire object. As a result, the user’s confidence in the model
can be undermined, and Grad-CAM’s aim of increasing
transparency in deep CNNs can be hindered.

C. GRAD-CAM++ METHOD
This method introduces a new and improved explanation
algorithm for CNN architecture called Grad-CAM++ [16].
GradCAM++ is an improved version of GradCAM that
provides more accurate and fine-grained visual explanations
of deep neural network predictions. GradCAM++ generates
visual explanations by computing weighted combinations of
the final convolutional layer’s feature maps. These weights
are derived from the gradient information flowing into the
convolutional layer. By computing the first-order and second-
order gradients of the target class, GradCAM++ can capture
more fine-grained localization information and produce more
precise heatmaps.

This method proposed a solution to the issues discussed
earlier and calculated a weighted average of the pixel-wise
gradients. The proposed formulation of this method is defined
as:

LcGrad−CAM++
=

∑
k

αck .relu
(∂Y c
∂Akl

)
(5)

where

αck =
(∂Y c
∂Akl

)
(6)

In this context, the αck values represent the coefficients used to
weight the pixel-wise gradients for class c and convolutional
feature map Akl . By utilizing these coefficients, all feature
maps receive equal emphasis in identifying the presence
of objects. The formulation for Grad-CAM is a subset of
GradCAM++. As a result, GradCAM++ can be thought
of as a generalized version of Grad-CAM, as implied by its
name.

While GradCAM++ has improved on the limitations of
the original GradCAM, it still has some limitations of its
own. It may struggle with identifying objects or features that
are small or occluded, and it may produce heatmaps that are
difficult to interpret or contain false positives.

D. SCORE-CAM METHOD
Unlike earlier approaches [15], [16], that rely on the
gradient information from the last convolutional layer to
indicate the significance of each activation map, Score-
CAM [17] considers the Increase of Confidence as the
measure of importance. ScoreCAMgenerates aweightmatrix
by computing the channel-wise scores of the intermediate
activation maps. It then multiplies this weight matrix with the
activation maps to obtain a class-discriminative localization
map. This map highlights the regions that are important for
the classification decision.

Consider a function Y = f (X ) that accepts an input vector
X = [x0, x1, . . . , xn]T and returns a scalar Y. The contribution
ci of xi where i ∈ [0, n− 1] towards Y can be determined by
replacing the i-th entry in the known baseline input Xb with
xi and observing the resulting change in the output. This can
be expressed formally as:

ci = f
(
Xb ◦ Hi

)
− f

(
Xb
)

(7)
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where we define the vector Hi as having the same shape
as Xb. For Each entry hj in Hi, hj = I[i = j]. Finally, the
Hadamard product is denoted by ◦. Defining Channel-wise
Increase of Confidence as a metric, this method quantifies the
significance of each activation map by utilizing it to enhance
the confidence level. This idea is defined as follows:

We have a CNN model, represented as Y = f (X ),
which accepts an input X and generates a scalar output
Y . To calculate the contribution of a specific convolutional
layer l and its corresponding activation A, we select the
k-th channel of Al as Akl . Given a known baseline input Xb,
we define the contribution of Akl towards Y as follows:

C(Akl ) = f
(
X ◦ H k

l
)
− f

(
Xb
)

(8)

where

H k
l = s

(
Up(Akl )

)
(9)

We use Up(·) to represent the process of upsampling
Akl to match the input size. Furthermore, s() denotes a
normalization function that maps each element of the input
matrix to a value within the range of [0, 1].

Finally, referring to the notations used earlier, if we
focus on a specific class of interest denoted by c, and a
convolutional layer l within themodel f , then the Score-CAM
LcScore−CAM can be defined as follows:

LcScore−CAM = ReLU
(∑

k

αckA
k
l−1
)

(10)

where

αck = C
(
Akl
)

(11)

In the previously defined expression for Score-CAM
LcScore−CAM , the function C() represents the CIC score for the
activation map Akl .

III. FORMULATING ENHANCED VISUAL EXPLANATIONS
OF DEEP CONVOLUTIONAL NETWORKS USING
INCREMENTED GRADIENT AND SCORE-WEIGHTED
METHODS
The proposed method involves combining two techniques,
Grad++ [16] and Score-CAM [17], to generate a heatmap
that highlights the most important regions of an input image
with respect to a particular class. Grad++ is a technique used
to compute the gradients of the class score Y c with respect to
the input image. This provides information about the areas of
the image that contribute most to the classification decision.

Score-CAM, in contrast, generates a class-discriminative
localization map by weighting the activation maps of a
convolutional layer based on the class score. This technique
allows for the identification of the regions of the image that
are most important for the prediction of a particular class.

By combining Grad++ and Score-CAM, the proposed
method generates a heatmap that highlights the most
important regions of an input image for a particular class.

Algorithm 1 Grad++ScoreCAM
Require:

Image X
CNN model f
Class of interest c
Baseline input Xb

Ensure:
Normalized heatmap matrix H ′

Smoother masks H k
L

1: Compute the gradients of the class score Yc with respect
to the input image.

2: Select an internal convolutional layer l within f and
obtain the corresponding gradient activation Al .

3: for each k-th channel of Al do
4: Compute the contribution C(Akl ):

C(Akl ) = f (X ⊗ H k
l ) − f (Xb)

5: Compute normalized activation maps H k
L using the

min-max normalization function s():

H k
L = s(Akl ) =

Akl − min(Akl )

max(Akl ) − min(Akl )

6: end for
7: Calculate Grad++ScoreCAM for the convolutional layer
l and class of interest c:

LGrad++ScoreCAMc = ReLU

(∑
k

(ωck · Akl−1)

)
8: Resize the original input image to match the size of

activation weights.
9: Perturb the resized input image with the gradient

activation maps and evaluate the significance of each
activation map:

Target Score = f (X ⊗ H k
l )

10: Normalize the resulting heatmap matrix H using the
min-max normalization function s():
h′
ij =

hij−min(H )
max(H )−min(H ) .

The Grad++ technique provides information about the
importance of individual pixels, while the Score-CAM
method captures the importance of features at a higher level.
Together, these two techniques provide a more comprehen-
sive understanding of the image features that contribute to a
specific classification decision. Fig 1 depicts the sequence of
steps in detail.

Unlike earlier approaches [15], [16], that rely on the gradi-
ent information from the last convolutional layer to indicate
the significance of each activation map, Grad++ScoreCAM
also relies on gradient-based weights. The proposed method,
however, considers gradient weights as a measure of impor-
tance based on their ability to increase confidence in the
classification decision. Consider a CNN model Y = f (X )
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that takes an input X and produces a scalar Y as the output.
Let us select an internal convolutional layer l within f and
the corresponding gradient activation A. We can denote the
k-th channel of Al as Akl . Given a known baseline input Xb,
we define the contribution of Akl towards Y as follows:

C(Akl ) = f
(
X ◦ H k

l
)
− f

(
Xb
)

(12)

where

H k
l = s

(
Akl
)

(13)

s() denotes a normalization function that maps each element
of the input matrix to a value within the range [0, 1].

Finally, assuming the notation presented in earlier sections,
let us define Grad++-ScoreCAM LGrad++ScoreCAM as fol-
lows for a convolutional layer l within a model f and a given
class of interest c.

LcGrad++Score−CAM = ReLU
(∑

k

αckA
k
l−1

)
(14)

where

αck = C
(
wck
)

(15)

where the function C() represents the score for the
weights wck .
Unlike Score-Cam [17] we downsize the original input

image corresponding to the size of activation weights we get.
Subsequently, we perturb the resized input with the gradient
activation maps. The significance of this activation map is
obtained by evaluating the target score of the perturbed input.
In this way, each activation map not only indicates the spatial
locations that are most relevant to an internal activation map
but can also directly act as a mask to perturb the input image.

When using Increase of Confidence, a binary mask Hi is
created on top of the input, preserving only the feature of
interest in the input. However, this binary mask may not be
appropriate if we are interested in a specific region of the
input image rather than a single pixel. Therefore, to generate
a smoother mask H k

L for an activation map, we normalize
the raw activation values in each activation map to a range
of [0, 1]. Instead of assigning binary values to all elements,
we use the normalization function as:

s(Akl ) =
Akl − minAkl
maxAkl −minA

k
l

(16)

A comprehensive account of the implementation can be found
in the Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed explanation method’s effectiveness is assessed
through experiments in this section. Our approach is first
evaluated qualitatively using visualization on ImageNet.
In the following experiments, the Resnet, VGG16 and
AlexNet pretrained models are used as the base models.
Moreover, we use the publicly available object classification
dataset, ILSVRC2012 [18] for our experiments. The input
images are resized to (224 × 224 × 3), transformed to the

range [0, 1], and normalized using the mean vector [0.485,
0.456, 0.406] and standard deviation vector [0.229, 0.224,
0.225].

Moreover, during the computation phase of Score-CAM,
we employ a different approach to handle the activation
maps. Rather than enlarging the activation maps to match
the resolution of the input image, we choose to reduce the
input image to the resolution of the activation maps. This
technique effectively minimizes the computational workload
and, consequently, reduces the overall time complexity
involved.

The study involves a qualitative comparison of saliency
maps produced using five state-of-the-art methods: gradient-
based, perturbation, and CAM-based. The proposed method
generates saliency maps that are visually more understand-
able and contain fewer random noises. Fig 2 illustrates
the results of the proposed idea based on the pre-trained
Resnet model and compared to CAM [1], GradCAM [15],
GradCAM++ [16], ScoreCAM [17] and SmoothGrad-
CAM [5]. The results demonstrate that our approach produces
fewer random noises. Furthermore, our approach creates
smoother saliency maps.

As the class activation map is model-agnostic, we sought
to evaluate the generalizability of our proposed method by
conducting experiments using other pre-trained deep neural
network models, namely VGG16 and Alexnet, as illustrated
in Figure 3 and Figure 4. Our visual analysis demonstrates
that the proposed method exhibits exceptional performance,
meeting or exceeding current state-of-the-art techniques.

A. EVALUATING FAITHFULNESS USING IMAGE
RECOGNITION
To evaluate the faithfulness of the explanations generated
by the proposed method for object recognition, we follow
the approach described in [16]. This involves masking the
original input with saliency maps and observing the resulting
score change on the target class. We use the same metrics
as [16] to measure the quality of the results. The Average
Drop is computed as

∑N
i=1

max(0,Y ci −Oci )
Y ci

X100. Likewise, the
Increase in Confidence (also known as Average Increase) is
expressed as

∑N
i=1

Sign(Y ci <Oci )
N . In this context, Y ci represents

the predicted score for class c for a given image i, while
Oci refers to the predicted score for class c obtained when
the explanation map region is used as input where Sign
returns 1 if the input is true. We conduct the experiment
on the ImageNet ILSVRC2012 [18] validation set, randomly
selecting 1000 images. Our results are presented in Table1.

Table1 demonstrates that the proposed method achieves
an average drop of 32.6 percent and an average increase of
31.4 percent. These results are vastly superior to those of
other state-of-the-art existing methods. The recognition task
performance indicates that the proposed approach can iden-
tify the most distinctive region of the target object, instead
of relying on subjective human judgment. We have also
compared the results with those of gradient-based methods
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FIGURE 2. Visualization of CAM [1], GradCAM [15], GradCAM++ [16], ScoreCAM [17], SmoothGradCAM [5] and proposed method using pre-trained
Resnet model over ILSVRC2012 [18] dataset.

FIGURE 3. Visualization of CAM [1], GradCAM [15], GradCAM++ [16], ScoreCAM [17], SmoothGradCAM [5] and proposed method using pre-trained
VGG16 model over ILSVRC2012 [18] dataset.

TABLE 1. Experimental conditions.

owing to their similar visual characteristics. The recognition
task findings suggest that the proposed method provides a

more accurate representation of the decision-making process
of the original CNNmodel compared to previous approaches.
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FIGURE 4. Visualization of CAM [1], GradCAM [15], GradCAM++ [16], ScoreCAM [17], SmoothGradCAM [5] and proposed method using pre-trained
Alexnet model over ILSVRC2012 [18] dataset.

FIGURE 5. Multi object Visualization of CAM [1], GradCAM [15], GradCAM++ [16], ScoreCAM [17], SmoothGradCAM [5] and Proposed methods using
pre-trained Alexnet model over ILSVRC2012 [18] dataset.

B. MULTI-OBJECT VISUALIZATION
Not only is the proposed method adept at accurately
localizing a single object, it also surpasses prior techniques in
detecting multiple objects of the same class, as demonstrated
in the results presented in Figure 5. While CAM and
Grad-CAM typically only identify a single object in an
image, both Grad-CAM++ and Score-CAM are capable of
locating multiple objects. However, the proposed approach
and ScoreCAM excel in generating saliency maps that are
highly focused, surpassing those of previous methods. This
is attributed to the fact that the weight of each activation map
in the proposed work is determined by its gradient score on
the target class, allowing for independent focus on each target
object with high confidence. As a result, all relevant pieces
of evidence related to the target class can be identified and
combined via a linear combination.

V. CONCLUSION
We obtain the initial localization map, which is then passed
to the second phase of ScoreCAM to generate the final

saliency map. We found that our model outperformed
GradCAM++ as well as ScoreCAM in terms of accuracy and
robustness when evaluated using various network models on
the Imagenet dataset.

By leveraging the complementary strengths of
GradCAM++ and ScoreCAM, our GRADScoreCAM++

model was able to produce more accurate saliency maps,
particularly in cases where multiple objects of the same class
are present in an image. This was achieved by incorporating
the ability of ScoreCAM to locate multiple objects while
maintaining the high-resolution and focused saliency maps
of GradCAM++. Our evaluation results demonstrate that
the proposed GRADScoreCAM++ model is not only
effective but also robust, as it consistently outperformed
both GradCAM++ and ScoreCAM across diverse network
models. These findings suggest that our approach can be
generalized to other visual explanation methods to develop
more accurate and robust models for a wide range of
applications. This model has been evaluated on the ImageNet
dataset and has shown promising results, demonstrating
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the potential of our approach for a wide range of
applications.
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