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ABSTRACT

The potential of advanced tree-based models and optimized deep learning algorithms to predict
fluvial bedload transport was explored, identifying the most flexible and accurate algorithm, and
the optimum set of readily available and reliable inputs. Using 926 datasets for 20 rivers, the perfor-
mance of three groups of models was tested: (1) standalone tree-based models Alternating Model
Tree (AMT) and Dual Perturb and Combine Tree (DPCT); (2) ensemble tree-based models Iterative
Absolute Error Regression (IAER), ensembled with AMT and DPCT; and (3) optimized deep learn-
ing models Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) ensembled with
Grey Wolf Optimizer. Comparison of the predictive performance of the models with that of com-
monly used empirical equations and sensitivity analysis of the driving variables revealed that: (i)
the coarse grain-size percentile Doy was the most effective variable in bedload transport prediction
(where Dy is the xth percentile of the bed surface grain size distribution), followed by Dga, Dsg, flow
discharge, D16, and channel slope and width; (ii) all tree-based models and optimized deep learning
algorithms displayed ‘very good’ or ‘good’ performance, outperforming empirical equations; and (iii)
all algorithms performed best when all input parameters were used. Thus, a range of different input
variable combinations must be considered in the optimization of these models. Overall, ensemble
algorithms provided more accurate predictions of bedload transport than their standalone counter-
part. In particular, the ensemble tree-based model IAER-AMT performed most strongly, displaying
great potential to produce robust predictions of bedload transport in coarse-grained rivers based
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on a few readily available flow and channel variables.

1. Introduction

Bedload transport is the key driver of morphological
change in coarse-grained rivers, exacerbating flooding
(e.g. Nones, 2019) and posing risks to infrastructure (e.g.
Feeney et al., 2022; Li et al,, 2021) and benthic habitats
(e.g. Fisher et al., 1982). Predicting bedload transport
rate accurately is a major challenge due to the vast num-
ber of flow and channel properties that control bedload
transport, its non-linear relationship with these variables,
its stochastic nature, and high complexity in its spatio-
temporal patterns. Influential variables include upstream
source of sediment supply, storage, and delivery (Gao,
2011), river channel characteristics such as slope, wide,
riverbed structure, and roughness (e.g. Zhang et al,

2010), bed material size and its variation (e.g. Recking
et al,, 2023), and river flow properties such as discharge
and bed shear stress (e.g. Gomez and Church, 1989).
Direct measurement of bedload is costly, time-
consuming, and associated with high uncertainty, par-
ticularly during flooding (Graf, 1971). To overcome
these difficulties, a vast array of laboratory flume exper-
iments have been conducted under different flow and
bed material conditions, from which many empirical
equations have been developed, e.g. those reported by
Meyer-Peter and Miiller (1948), Einstein (1950), Bagnold
(1966), Wilcock and Crowe (2003), and Recking (2013).
For example, Poorhosein et al. (2014) developed two
types of empirical/linear equations for bedload transport

CONTACT Khabat Khosravi 8 khabat.khosravi@gmail.com; Changhyun Jun @ cjun@cau.ac.kr
*Present address: Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE, Canada
**Present address: Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, Canada

@ Supplemental data for this article can be accessed online at https://doi.org/10.1080/19942060.2024.2346221.

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted

Manuscript in a repository by the author(s) or with their consent.


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2024.2346221&domain=pdf&date_stamp=2024-05-08
mailto:khabat.khosravi@gmail.com
mailto:cjun@cau.ac.kr{~}
https://doi.org/10.1080/19942060.2024.2346221
http://creativecommons.org/licenses/by/4.0/

2 (&) KKHOSRAVIETAL.

rate prediction, one based on hydraulic parameters and
one based on geometric parameters, and found good
predictive performance for both types. They also identi-
fied Froude number, Shields parameter, and shape factor
as the three most effective hydraulic variables in bedload
transport prediction, while grain size distribution and
water channel slope were the most important and effec-
tive geometric variables (Poorhosein et al., 2014). Using
2600 datasets, Hinton et al. (2018) tested a number of
empirical equations, including those developed by Barry
et al. (2004), Parker (1990; both calibrated and uncali-
brated), Meyer-Peter and Miiller (1948), Wilcock (2001),
Rosgen et al. (2006; ‘Pagosa good condition’), Elhakeem
and Imran (2016), and Recking (2013). Their results
showed that the “Pagosa good condition’ and Barry et al.
equations outperformed the others, while the Meyer-
Peter and Miiller (1948) and uncalibrated Parker (1990)
equations gave the lowest predictive power.

Alternatively, bedload transport can be predicted
using numerical approaches, which attempt to mathe-
matically represent the physics behind the processes of
entrainment, transportation, and deposition. For exam-
ple, Jilani and Hashemi (2013) developed a smoothed
particle hydrodynamic (SPH) model and found it be reli-
able and efficient, while Barzgaran et al. (2019) devel-
oped and implemented a second-order finite volume
method and wave propagation algorithm and found it to
be efficient. Both models have been successfully applied
in later studies, but model implementation is difficult,
they require vast amounts of data for calibration and
validation, and calibration is time-consuming, limiting
their wider application. Various approaches have been
employed to simplify these models, including prediction
of flow variables using a depth-averaged method, the
Manning’s (1891) equation with estimates of the Man-
ning roughness coefficient, and using transport capacity
equations under unlimited sediment supply conditions
(Mustafa et al., 2017; Shahiri et al., 2016; Wainwright
etal., 2015).

The use of machine learning (ML) models in hydrol-
ogy and river science, and in many other fields of study,
is now increasing. These models seek to find a robust
relationship between readily available input and output
parameters. The main advantages of ML models are that
they are user-friendly, require only small amounts of data,
are simple and fast to calibrate, are able to handle large
amounts of data, and have a non-linear structure that is
able to replicate complicated environmental behaviour
(e.g. Asheghi & Hosseini, 2020; Hosseiny et al., 2023;
Khosravi et al., 2020; Kisi & Yaseen, 2019; Latif et al.,
2023; Roushangar & Koosheh, 2015).

Artificial Neural Network (ANN) is one of the oldest
and most widely used ML models in hydrology and water

science. Hosseiny et al. (2023) found an ANN model to
be efficient in the prediction of bedload transport based
on 8117 measurements from 134 rivers. However, ANN
algorithms have slow coverage speed during the training
procedure, high errors in the modelling phase, and low
convergence and generalization power (Kisi et al., 2012).
Thus, ANN algorithms have poor predictive power when
the range of the testing dataset is outside the range of the
training data (Kisi et al., 2016; Melesse et al., 2011), and
they require a large dataset to achieve reasonable results.
To overcome this weakness, ANN algorithms have been
ensembled with fuzzy logic algorithms to create Adaptive
Neural Fuzzy Inference System (ANFIS) models. Riahi-
Madvar and Seifi (2018) developed an ANFIS model for
bedload transport prediction and found that it outper-
formed an ANN model. However, in other environmen-
tal fields of study, ANFIS models have been found to be
poor at finding the best weight parameters, heavily influ-
encing the prediction accuracy (Tien Bui et al.,, 2016).
Furthermore, ANFIS algorithms suffer from the need for
a large number of model operators, each of which must
be set accurately, especially the weights of membership
function. Additionally, ANFIS algorithms lack a system-
atic approach in the design of fuzzy rules and in the
choice of membership functions variables (Tien Bui et al.,
2016; Khosravi et al., 2018).

The ANFIS model is neuron-based and several other
algorithms of this type, such as Support Vector Regres-
sion (SVR), have been widely used in river science. For
example, Roushangar and Koosheh (2015) developed a
hybridized model, SVR-GA, by combining SVR with the
Genetic Algorithm (GA) approach, and found that it had
better predictive power than empirical equations of bed-
load transport rate. However, SVR models have many
hyper-parameters, making calibration time-consuming
and model implementation difficult (Ahmad et al., 2018).
Generally, the prediction power of neuron-based mod-
els to are improved when combined with metaheuristic
models such as GA, heap-based optimizer (HBO), polit-
ical optimizer (PO), teaching-learning based optimiza-
tion (TLBO), backtracking search algorithm (BSA) and
jellyfish search optimization (JESO) (Moayedi et al., 2024;
Vakharia et al., 2023).

New types of neuron-based models, called deep learn-
ing (DL) algorithms, have been developed to overcome
the weaknesses of conventional ML models. The two
main advantages of DL models are their greater flexibility,
and their ability to handle large and complex data, both
structured and unstructured. Thus DL have higher pre-
dictive performance (Ghorbanzadeh et al., 2019). Convo-
lutional Neural Network (CNN), Recurrent Neural Net-
works (RNN), and Long Short-Term Memory (LSTM)
networks are among the most popular and widely used



DL approaches, owing to superior performance. For
example, Latif et al. (2023) found that a LSTM model
achieved better performance in prediction of bedload
transport rate than SVR and ANN, while Shakya et al.
(2023) found that a different DL algorithm, Deep Neural
Network (DNN), performed better in prediction of total
sediment load in rivers than SVR, linear regression (LR),
and extreme learning machine (ELM) models.

Another type of ML model which is widely used
in hydrology and water resources, especially for spa-
tial modelling of natural hazards, are tree-based algo-
rithms such as random forest (RF), M5Prime (M5P),
and Reduced Error Pruning Tree (REPT). Khosravi
et al. (2018) applied several tree-based models, includ-
ing Logistic Model Trees (LMT), REPT, Naive Bayes
Trees (NBT), and Alternating Decision Trees (ADT), in
flood susceptibility mapping in Iran and found that all
models achieved very good performance, although ADT
outperformed the other models. Rahmati et al. (2019)
applied numerous tree-based models, including Rule-
Based Decision Tree (RBDT), Boosted Regression Trees
(BRT), Classification And Regression Tree (CART), and
a RF model in land subsidence susceptibility mapping
and found that the RF model achieved the best per-
formance. Hussain and Khan (2020) developed a RF
model for monthly river flow forecasting and found that
it achieved around 18% and 34% higher performance
(based on root mean square error, RMSE) than MLP and
SVM, respectively. However, there is a significant knowl-
edge gap regarding the potential of DL algorithms for
bedload transport prediction. Thus the challenge lies in
establishing the most flexible and accurate algorithm for
this purpose, and identifying readily available, reliable,
and optimum inputs.

The aim of this study was to address this challenge
through comparing the performance of empirical mod-
els, standalone and ensemble tree-based models, and
optimized DL models in prediction of bedload transport
rate in coarse-grained rivers. Specific objectives were to
establish, using 926 datasets for 20 rivers: (1) the poten-
tial of tree-based and DL algorithms to provide accurate
predictions using a few readily available and measurable
river properties, such as channel size (width and slope),
flow discharge, and sediment size; (2) the most effective
variable in bedload transport prediction; (3) the most
effective input variable combination in optimizing pre-
dictive power; and (4) the effect of hybridization and
ensemble-based approaches on prediction accuracy. This
study is the first to apply a wide range of tree-based and
DL models in prediction of bedload transport and offers
new insights into the potential of these algorithms to pro-
vide simple, fast, accurate, and efficient predictions of
bedload transport.
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2, Methodology
2.1. Data

The data used in the analysis comprised 926 sets of bed-
load transport rate for 20 rivers, compiled from Bedload-
Web (http://en.bedloadweb.com) (Recking, 2019) and
(Hosseiny et al., 2023; https://doi.org/10.5281/zenodo.76
41313). In addition to measured bedload sediment trans-
port rate per unit width (gp; g/m/s), the data included
river bed slope (S; m/m), river discharge (Q, m3/s), river
width (w; m), and bed surface sediment sizes (D1g, D50,
Dg4, and Dgg, where Dy is the xth percentile of the bed
surface grain size distribution in m). Summary statistics
on the dataset are presented in Table 1.

The datasets were split in two in a ratio of 70:30,
with 633 datasets used for model development, calibra-
tion, and training (training data), and the remaining
293 datasets used for model validation and performance
comparison (testing data). There is no consensus on how
best to split data for training and testing, but a 70:30 split
is the most widely used approach in spatial (e.g. Khos-
ravi et al., 2018) and time series (e.g. Kouadio et al,
2018; Samadianfard et al., 2019) modelling by ML/DP.
Although the training and testing datasets were selected
randomly, a manual check was performed to ensure that
they were separated correctly in terms of representing a
range of g;, values.

Three main approaches were used to construct dif-
ferent input data scenarios: a manual approach and two
feature selection ML-based models, CfsSubsetEval (CSE)
and Principal Component Analysis (PCA). These are the
most common approaches among feature ranking meth-
ods, such as Fisher score, ReliefF, Wilcoxon rank, Gain
ratio and Memetic feature (Vakharia et al., 2016).

2.1.1. Manual approach

Eight different data input scenarios were constructed and
explored to find the most effective input combination
(Table 2). First, the parameter/variable with the high-
est correlation coeflicient was selected as the first input
scenario to explore whether the most correlated param-
eter/variable was efficient in predicting g;, individually.
Then other variables with the second, third, fourth, etc.
highest correlation coefficient were added step-by-step to
construct the eight different input combinations.

2.1.2. Cfssubseteval approach

CfsSubsetEval is a correlation-based feature subset selec-
tion and multivariate filter evaluator approach that
embraces the worth of a subset of attributes by consid-
ering the individual predictive ability of each feature and
the degree of redundancy between features (Hall, 1999).
Subsets of features that are highly correlated with the
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Table 1. Summary statistics on the training/testing data.

Phase Variable/parameter’ Maximum Minimum Mean StD
Training data w (m) 128.02 0.70 9.32 13.05
S (m/m) 0.07 0.00 0.03 0.02
Q(m3/s) 382.28 0.01 8.79 30.13
D6 (M) 0.03 0.00 0.01 0.01
D5 (m) 0.16 0.00 0.06 0.04
Dgs (m) 0.45 0.01 0.14 0.08
Dgp (m) 0.52 0.03 0.19 0.10
gp (9/m/s) 50.00 0.11 6.77 10.08
Testing data w (m) 128.02 0.70 8.93 11.72
S (m/m) 0.07 0.00 0.03 0.02
Q (m3/s) 419.09 0.01 8.14 28.48
D16 (M) 0.03 0.00 0.01 0.01
Dsg (m) 0.16 0.00 0.06 0.04
Dga (m) 0.45 0.01 0.14 0.08
Dgp (m) 0.52 0.03 0.19 0.10
qp (g/m/s) 47.50 0.11 6.79 10.12

TRiver width (w), river bed slope (S), river discharge (Q), bed surface sediment sizes (D1¢, Dso, Dga, and Dgg), bedload sediment transport rate per unit width (gp).2.2.

Input/output scenarios.

Table 2. Input combination scenarios.

Input’ combination scenario Output?
1 S b
2 S, Dg4 Qb
3 S, Dsp = CSE method b
4 S, Dga, Dsg ab
5 S, Ds4, Dsp, Q = PCA method b
6 S, Dga, Dso, Q, Doo av
7 S, Dga, Dsp, Q, Do, w ab
8 S, Dg4, Dso, Q, Dgg, w, D16 av

TRiver bed slope (S), river width (w), river discharge (Q), bed surface sediment
sizes (D16, Dso, Dg4, Doo).
2Bedload sediment transport rate per unit width (g,).2.3. Model hyperparam-
eter tuning

class, but have low intercorrelation, are preferred. CSE is
calculated as (Qiao et al., 2022):

CSE = max | —— L IR T

sk k+2(rf1f2+...—+—rﬁﬁ+...
+rfkfk—1)

(1)

where sk is feature subset S consisting of k features, refi
is correlation between input features and the output tar-
get, and rg; is intercorrelation between input features.
This, along with the PCA approach, was implemented in
Waikato Environment for Knowledge Analysis (WEKA)
3.9 software. The CSE approach produced input No. 3 in
Table 2.

2.1.3. Principal component analysis approach

Principal Component Analysis is a popular linear fea-
ture extractor used for unsupervised feature selection
based on eigenvector analysis to identify critical origi-
nal features for principal components. PCA is a statis-
tical method applied to decrease the dimensionality of
a dataset through linearly transforming the data into a

new coordinate system where (most of) the variation in
the data can be described with fewer dimensions than the
initial data. The PCA approach produced input No. 5 in
Table 2. All eight input combinations were implemented,
and the resulting RMSE was calculated to assess the most
efficient input combination.

Metaheuristic algorithms were applied for determi-
nation of the most effective and optimum values of DL
model hyperparameters, using MATLAB programming
software. In this approach, the Grey Wolf Optimizer
(GWO) algorithm was combined with DL algorithms
to identify optimum hyperparameter values automati-
cally. For tree-based models, which were implemented in
WEKA software, the most common and basic trial and
error approaches were utilized for tuning model hyperpa-
rameters. This approach involved calculating the RMSE
for the default values, and then considering higher and
lower values, to identify the most effective values (see
Table A and B in supplementary material).

2.2. Model description

2.2.1. Dual perturb and combine tree (DPCT)

A DPCT model is a regression and classification tree-
based model. Perturb and combine algorithms (PC algo-
rithms) are used to develop and construct different subset
models from the training dataset. All predicted values
are then combined to generate the final target value
(Breiman, 1998). Geurts and Wehenkel (2005) showed
that the PC model is reliable, and delivers high accu-
racy. The DPCT model is a more advanced kind of
PC model that only generates one model for predic-
tion through delays to the prediction stage for genera-
tion of multiple prediction. This delay is produced by
perturbing the attribute vector corresponding to a test
case.



2.2.2. Alternating model tree (AMT)

Introduced by Frank et al. (2015), AMT is a type of
regression tree-based model that uses forward addi-
tive regression (AR) and a cross-validation approach
to build the tree model. This type of ensemble
model benefits from numerous advanced algorithms for
development and growing. AMT models grow based
on two nodes; splitter node (divides the quantitative
attributes at the median value) and predictor node (fore-
casts the system’s response through linear regression)
(Gao et al., 2019).

2.2.3. Iterative absolute error regression (IAER)

IAER iteratively fits a regression model by attempting to
minimize absolute error, using a base learner that mini-
mizes weighted squared error. Weights are bounded from
below by 1.0 / Utils.SMALL. The algorithm re-samples
data based on weights if the base learner is not a Weighted
Instances Handler. More information can be found in
Schlossmacher (1973).

2.2.4. Recurrent neural network (RNN)

The RNN model is a popular and robust DL model for
sequential data modelling and prediction, and is a form
of advanced bi-directional ANN model (i.e. it feeds back
the output from some nodes to affect subsequent input
to the same nodes). This process has a significant impact
on the learning ability of the model. In other words, for
each new input, the output is identified and then fed
back as the modified input to the modelling process. This
operation is continued until a constant output has been
attained. RNN uses the same weights for each element of
the sequence, decreasing the number of parameters and
allowing the model to generalize to sequences of varying
lengths.

2.2.5. Long short-term memory (LSTM)

LSTM is a type of RNN model which is capable of learn-
ing long-term dependencies, especially in time series
problems or in processing sequential data (Hochreiter
& Schmidhuber, 1997). LSTM is composed of memory
blocks. These blocks are memory cells that are capable of
storing or remembering sequential dataset/information
through units called gates (Azzouni & Pujolle, 2017).
Input gates, forget gates, and output gates are the three
main gates in the LSTM network, and they control the
flow of incoming information, amount of information
retained from the previous memory, and flow of outgoing
information, respectively (Vu et al.,, 2021). When net-
works in a LSTM model forget a previous hidden state,
they are capable of combining memory blocks to cause
the networks to learn.
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2.2.6. Grey wolfoptimizer (GWO)

GWO is one of the most flexible, popular, strong, and effi-
cient meteoritic algorithms that can be applied for ML
model optimization, mimicking the leadership hierarchy
and hunting mechanism of grey wolves in nature (Mir-
jalili, Mirjalili, & Lewis, 2014). The model structure is
similar to a pyramid with four levels, of alpha (a), beta
(), delta (), and omega (w) wolves. Alpha wolves are
located at the top of the pyramid and are the optimal
and efficient solutions that wolf leaders make. Beta and
delta wolves at the second and third level are responsi-
ble for sub-optimal decisions or are subservient wolves
in decision-making (Li et al., 2021). Omega wolves at the
bottom of the pyramid play the role of scapegoat. GWO
achieves an efficient solution by updating the positions
of other wolves according to the positions of a, 5, and 0
wolves.

2.2.7. Einstein (1950) equation

The Einstein (1950) equation considers bedload trans-
port as a probabilistic phenomenon, relating the flow
intensity to the bedload transport rate:

gBed =1 — —= / _tdt=—q*
(0.413/7%)—2 1+43.5q

)

where 7* is Shields stress, ¢ is an integral parameter,

and g* is the Einstein bedload number. More informa-
tion about the Einstein (1950) equation can be found in
Hosseiny et al. (2023).

2.2.8. Recking (2013) bedload equation

Recking (2013) developed a bedload transport equation
based on 6319 field observations and 1317 flume mea-
surements:

GBed = 147477 /11 + (2. /750)"] (3)

where 7, is non-dimensional mobility Shields stress
related to transition from partial to full mobility, and zg,
is non-dimensional Shields stress related to bed surface
sediment size Dgq.

2.3. Model evaluation

A number of quantitative and qualitative/visual
approaches were used for model evaluation and compari-
son. The quantitative group included coefficient of deter-
mination (R?), RMSE, Nash-Sutcliffe efficiency (NSE),
percent bias (PBIAS), and ratio of RMSE to standard devi-
ation of measured data (RSR). These error metrics were
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calculated as follows:

Z?:l (dedM - dedM)(dedp - éBedp)

Z?zl (dedM - dedM)z
X Z?:l (dedp - ‘_1Bedp)2

R* =

0 < R* < 10ptimum = 1 (4)

1 n
RMSE = \/; Zi=1 (dedp - ‘ZBedM)Z
0 < RMSE < 4000ptimum = 0 (5)
21 edp — Gpedy)”

Z?=1 (dedp - Z]Bedp)z
< NSE < 10ptimum = 1 (6)

Z?:l (anedM - dedp))* 100
D i1 9Bedy
— 00 < PBIAS < 4+000ptimum =0 (7)

RSR = \/%?:1 (dedp - dedM)2 0

NSE=1—

o0

PBIAS = (

= 2
;’1:1 (dedM - dedM)

< RSR < 4-o00Optimum = 0 (8)

where gged,, and gpeq, is measured and predicted bed-
load transport rate, respectively, Gped,, and gped,, is mean
measured and predicted g, value, respectively, and # is
number of data points.

The qualitative/visual approaches used in the com-
parison of model performance were scatter plots,
line-variation graphs, Taylor diagrams, and violin plots,
allowing the model fit to be seen across the full range
of bedload transport values, particularly at the extreme
end of the range. One distinct advantage of the Taylor
diagram is that it benefits from the use of two common

(@) w

(b)

correlation statistics: correlation and standard deviation
(SD) (Taylor, 2001).. The measured data point in the Tay-
lor diagram is considered the reference point. The closer
the predicted value to this reference value in terms of R?
and SD, the higher the prediction capability.

The Freidman test was applied for the different model
outputs. If the test was significant, then an additional
posthoc Nemenyi test was carried out to check for sta-
tistically significant differences between the models. The
null hypothesis was that there was a statistically sig-
nificant difference between the models at & = 0.05. At
p-value < 0.05 the null hypothesis was rejected.

3. Results
3.1. Variable importance

The effectiveness and importance of each potential input
variable in q; prediction was explored through a cor-
relation coefficient and relief attribute evaluator (RAE)
approach (Figure 1). RAE evaluates the worth of an
attribute by repeatedly sampling an instance and con-
sidering the value of the given attribute for the nearest
instance of the same and different class.

According to the correlation coefficient, presented in
terms of a radar-chart (Figure la), river bed slope (S)
had the largest impact on gq; prediction, followed by
Dgy, Dsg, Dyg, D16, w, and Q. The results from the RAE
approach broadly agreed, with Dgy shown as the most
effective variable, followed by Dg4, D5, Q, D15, S, and w
(Figure 1b).

3.2. Bestinput combination

On adding more input variables to the input combi-
nation, the prediction accuracy of the different models

Figure 1. Radar-chart of variable importance, determined by (a) correlation coefficient and (b) relief attribute evaluator (RAE). Variables:
River bed slope (S), river width (w), river discharge (Q), bed surface sediment size (D14, Dso, Dga, Dog).
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Figure 2. Change in model performance with input combination scenarios for (a) training data and (b) testing data (dashed red boxes

show the best input scenario).

increased (Figure 2). According to IAER-AMT (the most
reliable model), the best input combination gave 32.9%
and 39.3% higher performance (lower RMSE) during the
training and testing phase, respectively, than the worst
performing model. The best input scenario (generated
manually) had around 28% and 29% higher predictive
power than the scenarios proposed by CSE and PCA ML-
based methods, respectively, in terms of RMSE during the
training phase. In the testing this phase, this equated to
30% and 4% higher predictive power, respectively. These
RMSE values were only used to explore the best input
combination, and model hyperparameter tuning for tree-
based models was not implemented in this step; tuning
should only occur once the most efficient input scenario
has been determined.

3.3. Model performance evaluation

The scatter plots and R? values showed that the new
ensemble tree-based algorithm IAER-AMT had the
highest prediction capability (R*> = 0.80), with the data
points being more closely distributed around the line
of equality across a fuller range of g, values (Figure
3). The second best performer was also a new ensem-
ble tree-based model, IAER-DPCT (R? = 0.76), fol-
lowed by AMT (R? = 0.73), DPCT (R? = 0.72), LSTM-
GWO (R* = 0.69), and RNN-GWO (R* = 0.67). The
two lowest performing models by some margin were
the empirical equations, Einstein (1950) (R* = 0.09) and
Recking (2013) (R? = 0.08). According to the R? values,
TAER-AMT, TAER-DPCT, LSTM-GWO, RNN-GWO,
AMT, and DPCT all achieved ‘very good’ performance
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(2013) ‘unsatisfactory’ performance (R* < 0.5).
According to the line-variation graphs (Figure 4), all
tree-based models were able to predict g, values well.
In particular, the ensemble tree-based models predicted
extreme values more accurately than the other mod- , :.
els, while the empirical models overestimated the higher 0 E 10'5' Tes‘i:;;m; o "
range of g;, values (Figure 4).
The Taylor diagram (Figure 5) revealed that the IAER-  Figure 4. Line variation graph of measured and predicted bed-

AMT model had the highest correlation, =~ 0.90, with  load sediment transport rate per unit width (g,) within the testing
phase for different modelling approaches.

q, (g/m/s)
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Table 3. Summary statistics on predicted bedload sediment transport rate per unit width (qp,).

Statistic AMT DPCT IAER-AMT IAER-DPCT LSTM-GWO RNN-GWO Einstein (1950) Recking (2013) Measured
Minimum —3.58 0.20 —2.08 0.15 —3.53 —4.03 0.00 0.00 0.1
Q1 1.51 0.94 1.23 0.90 1.87 2.50 0.00 1.20 0.82
median 3.29 2.33 2.66 2.06 3.93 493 0.00 4.89 2.19
Q3 8.07 9.22 8.11 8.17 6.13 7.3 0.10 26.05 737
maximum 40.28 42.47 39.95 41.40 40.19 37.47 974.73 456.08 47.50

the predicted standard deviation in g; being closest to
the standard deviation of the observed data, followed
by IAER-DPCT. The empirical equations had the low-
est performance and higher standard deviation than the
measured data. Although IAER-DPCT showed lower
performance than IAER-AMT, the model produced a
standard deviation closer to the measured value.

An examination of summary statistics of predicted
gprevealed that JAER-DPCT predicted the minimum,
first quartile, and median g, most accurately (Table 3).
The LSTM-GWO model performed most strongly in
predicting the third quartile and the DPCT model in
predicting the maximum value.

All quantitative error metrics showed that the IAER-
AMT model had the highest predictive power (Table
4), followed by IAER-DPCT, AMT, DPCT, LSTM-
GWO, RNN-GWO, Einstein (1950), and Recking (2013).
According to the NSE values, the JAER-AMT and IAER-
DPCT models had ‘very good performance’ (0.75 <
NSE < 1), LSTM-GWO, RNN-GWO, AMT, and DPCT
had ‘good’ performance (0.65 < NSE < 0.75), and the
empirical equations had ‘unsatisfactory’ performance
(NSE < 0.5). These differences in performance were
statistically significant in most comparisons under the

Table 4. Comparison of performance of the different models,
based on root mean square error (RMSE), Nash-Sutcliffe efficiency
(NSE), percent bias (PBIAS), and ratio of RMSE to standard deviation
of measured data (RSR)

Model RMSE NSE PBIAS RSR

IAER-AMT 4.48 0.80 —0.39 0.44
IAER-DPCT 493 0.76 1.08 0.49
AMT 523 0.73 —2.20 0.51
DPCT 5.30 0.72 —0.84 0.52
LSTM-GWO 5.58 0.69 3.51 0.55
RNN-GWO 5.78 0.67 —6.66 0.57
Einstein (1950) 81.37 —63.87 —173.80 8.05
Recking (2013) 83.30 —67.00 —454.00 8.24

Freidman (Chi-Square statistic = 453; p-value < 0.001)
and Nemenyi tests (and 5) Table 5.

4. Discussion

4.1. Comparison of prediction performance
achieved by empirical equations, tree-based models,
and optimized deep learning algorithms

A large dataset of bedload transport measurements col-
lected from various field-based studies was used to
investigate model efficiency. The empirical equations
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Table 5. The p-values of a Nemenyi test of model performance difference (yellow cells show a statistically significant difference between
models at the 0.05 significance level, while green cells show there is no statistically significant difference)

DPCT IAER-AMT IAER-DPCT LSTM-GWO RNN-GWO Einstein (1950) Recking (2013)
AMT 0.01 0.27 0.00 0.07 0.02 0.00 0.01
DPCT 0.90 0.90 0.90 0.00 0.00 0.00
IAER-AMT 0.36 0.90 0.00 0.00 0.00
IAER-DPCT 0.71 0.00 0.00 0.00
LSTM-GWO 0.00 0.00 0.00
RNN-GWO 0.00 0.00

Einstein (1950)

0.00

performed poorly, particularly for higher rates of bedload
transport in which accurate prediction is most required
for understanding morphological change and forecast-
ing erosion hazards (Feeney et al., 2022; Li et al., 2021).
This result indicates that these equations should be used
with due caution when applied outside the conditions for
which they were developed. The high degree of uncer-
tainty associated with empirical equations when applied
to field-based studies is because most have been devel-
oped based on flume experiments involving simplified
flow and bed conditions, such as steady and uniform
flow (Mao, 2012), equilibrium sediment transport con-
ditions (Wainwright et al., 2015), and non water-water
gravel beds (Cooper & Tait, 2009). Problems then arise
in trying to scale flow and sediment properties correctly,
and the magnitude of transport that can be reproduced
is limited (Kleinhans et al., 2014). Therefore producing
an estimate of bedload transport rate for a field setting
that is within the same order of magnitude as a measured
value is often considered ‘reasonable’ prediction for an
empirical equation, and no single empirical formula can
be applied to all datasets (Gomez & Church, 1989). This
flaw is because most empirical equations are linear and
unable to capture non-linearity in input and output data.

In contrast, all tree-based models and optimized DL
algorithms tested displayed ‘very good’ or ‘good’ perfor-
mance. Among the standalone models, the tree-based
models outperformed the optimized DL models for a
number of reasons: (1) tree-based models have higher
accuracy on tabular data (Shwartz-Ziv & Armon, 2022),
because they require less tuning and processing effort;
(2) DL models are biased to overly smooth solutions
(Grinsztajn et al, 2022) and fit low-frequency func-
tions (Rahaman et al,, 2019), and thus they struggle
to fit irregular target functions, such as those within
the bedload datasets, compared with tree-based mod-
els; (3) tree-based models can handle data that are not
normally distributed and therefore do not require scal-
ing or normalization; and (4) tree-based models require
little data preparation. The best performing standalone
tree-based model was AMT, because the algorithm
uses step-wise forward cumulative regression (statisti-
cal boosting version) and cross-validation techniques to

reduce square error and limit tree development (Moayedi
et al., 2020).

In all cases, the ensemble algorithms outperformed
their standalone counterpart. This enhancement of per-
formance occurred because hybridization produces a
coupled model with higher flexibility that is better trained
and has a non-linear structure (De’ath & Fabricius, 2000).
High flexibility and non-linear structure are particu-
larly important in the prediction of bedload transport
rate because of the non-linearity between variables, the
low correlation between individual variables and bedload
transport rate, and the general complexity of bedload
transport.

4.2. Effect of input variables on model prediction
performance

The combination of input variables used in the mod-
els had a strong effect on predictive power, confirm-
ing that determination of the optimum combination of
input variables is one of the most significant steps in
producing accurate ML and DL models. Manual devel-
opment of input variable combinations led to a more
efficient and practical input scenario than the use of intel-
ligent approaches (CSE and PCA). This advantage largely
stemmed from being able to test the efficiency of numer-
ous input combinations and the impact of adding each
parameter on model performance. Thus, through this
manual approach it was possible to determine the most
sensitive hyperparameters and understand the hyper-
parameter reaction and trend of a model. When using
this approach, inclusion of all input variables resulted
in the highest performance. The intelligent approaches
proposed an input scenario based only on the param-
eters that were most highly correlated with gq; (S, Dsg,
Dgy, and Q), while ignoring parameters with a low degree
of correlation (Dyg, Dgg, and w). As a result, the intelli-
gence approaches produced models with a RMSE value
in the testing phase that was 30% (CSE) and 4% (PCA)
higher than the optimal input combination identified in
the manual approach. This aspect further highlights the
complex, non-linear nature of the interaction of bedload
transport with flow mechanics and channel conditions,
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and the requirement for multiple input parameters to
represent this interaction, even when some might have
a low degree of correlation.4.3 Applying ensemble tree-
based models to predict bedload transport rate in rivers.

Overall, the results showed that ensemble tree-based
models have great potential to produce robust pre-
dictions of bedload transport in coarse-grained rivers.
Unlike empirical equations, these models performed well
over a range of flow and channel conditions, while also
remaining simple, and easy and inexpensive to build and
run, unlike theoretical and numerical models. Although
other parameters, such as Shields stress and turbulent
kinetic energy, have a significant impact on bedload
transport rates, the aim was to find a model that could
produce high-accuracy estimates of bedload transport
based on a few readily available and measurable river
properties, such as channel size (width and slope), flow
discharge, and sediment size. Given that inclusion of
all input variables produced the highest performance,
addition of more variables can be expected to further
improve performance. However, while a model with a
high degree of complexity might be able to capture more
of the variation in the data (reduce the training error),
it will be more difficult to train and more prone to
overfitting (model fitting to the noise in the data rather
than the underlying pattern). Overfitting can be a sig-
nificant issue for bedload prediction because measured
data are noisy due to the stochastic behaviour of bedload
entrainment and transport, the difficulty in obtaining
representative samples, and the highly non-linear rela-
tionship of bedload with river properties. Thus, a higher-
complexity model could perform poorly when applied
to new and unseen data, causing loss of model general-
ization. With these considerations in mind and noting
the very good performance of the ensemble tree-based
models using readily available parameters, the mod-
els developed in this study appear to strike the correct
balance between model complexity, generalization, and
performance.

The major disadvantages of the types of model devel-
oped here are two-fold. First, like all statistical methods,
they only relate directly to the rivers considered, and their
application to other rivers may prove inappropriate. The
input parameter range will also likely be wider than the
range examined in this paper, despite using datasets com-
posed from a large variety of sources. Thus, future studies
should develop and apply ensemble tree-based model to
rivers with differing flow and channel conditions, to test
their wider applicability. Second, due to their ‘black-box’
structure, these models provide poor explanatory power,
and are thus unable to improve understanding of the
physical processes that determine bedload entrainment
and transport.

This study has shown that incorporating just seven
controlling parameters (channel slope, channel width,
flow discharge, and four key bed surface grain size per-
centiles) can produce very good predictions of bed-
load transport rate. Future studies should examine the
potential of other tree-based models, such as Random
Forest and M5 model tree, as well as models that com-
bine ML methods with the seasonal adjustment method
(Li & Yang, 2022). Where data are available, future
studies should assess how other factors affect the per-
formance of these models, such as grain-size sorting
(e.g. Recking et al, 2023) and grain shelter-exposure
(armour ratio Dy/Dsp; Fu et al., 2023), whilst trying to
not make the developed model overly complex, and con-
tinuing to use readily available and easily measured data.
Such an approach would help determine the most influ-
ential parameters in bedload transport and why they
vary between rivers with differing flow and channel
properties.

5. Conclusions

The morphodynamics of coarse-grained rivers depend
predominantly on bedload transport rate. Due to
the non-linear interactions between channel and flow
mechanics, tree-based models and optimized deep learn-
ing algorithms have great potential to produce accurate
predictions of flow velocity. Using 926 datasets from 20
rivers, this study explored this potential by examining
the predictive power of (1) standalone tree-based mod-
els (alternating model tree (AMT) and Dual Perturb and
Combine Tree (DPCT)); (2) ensemble tree-based mod-
els Iterative Absolute Error Regression (IAET) ensembled
with AMT and DPCT (IAER-AMT and IAER-DPCT);
and (3) optimized deep learning models Long Short-
Term Memory (LSTM) and Recurrent Neural Network
(RNN), ensembled with Grey Wolf Optimizer (LSTM-
GWO and RNN-GWO). Their performance was bench-
marked against two commonly used empirical equations.
The main findings were as follows:

(1) Sensitivity analysis identified Dgg as the most effec-
tive variable in bedload transport prediction, fol-
lowed by Ds4, D5, Q, D16, S, and w.

(2) All algorithms tested performed best when all input
parameters were used in building the model. Vari-
ables with low correlation coeflicient with bedload
transport rate enhanced the predictive power. Thus
arange of different input variable combinations must
be considered in the optimization of tree-based and
optimized deep learning models.

(3) Assessment of model performance showed that all
tree-based models and optimized deep learning
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algorithms displayed ‘very good’ or ‘good’ per-
formance and outperformed empirical equations,
which had ‘unsatisfactory’ performance. The tree-
based algorithms were more efficient and reliable
than the deep learning models.

(4) Inall cases, ensemble algorithms outperformed their
standalone counterpart, with the ensemble tree-
based model IAER-AMT being the best performing
model overall.

Together, these findings reveal that ensemble tree-
based models have great potential for predicting bed-
load transport rates based on a few readily available
and easily measured flow and channel variables. These
algorithms could play a particularly important role in
predicting morphological change and assessing erosion
hazards in coarse-grained rivers where an understand-
ing of the physical processes may be lacking. Thus,
investigating the potential of other tree-based models
across a wide range of different flow and channel con-
ditions can be an important future research direction
for river scientists. In addition, the results obtained in
the present study indicate that tree-based models can
be a promising tool for decision makers and benefi-
cial for stakeholders that manage the impacts of river
erosion.
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