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A B S T R A C T   

More accurate sun position estimation could transform the design and operation of solar power 
systems, weather forecasting services, and outdoor augmented reality systems. Although several 
image-based approaches to sun position estimation have been proposed, their performance is 
significantly affected by momentary disruptions in cloud cover because they use only a single 
image as input. This study proposes a deep learning-based sun position estimation system that 
leverages spatial, temporal, and geometric features to accurately regress sun positions even when 
the sun is partially or entirely occluded. In the proposed approach, spatial features are extracted 
from an input image sequence by applying a separate Resnet-based convolution network to each 
frame. To ensure that the temporal changes in the brightness distribution across frames are 
considered, the spatial features are concatenated and passed on to a stack of LSTM layers prior to 
regressing the final sun position. The proposed network is also trained with elliptical (geometric) 
constraints to ensure that predicted sun positions are consistent with the natural elliptical path of 
the sun in the sky. The proposed approach’s performance was evaluated on the Sirta and Laval 
datasets along with a custom dataset, and an R2 Score of 0.98 was achieved, which is at least 0.1 
higher than that of previous approaches. The proposed approach is capable of identifying the 
position of the sun even when occluded and was employed in a novel sky imaging system con-
sisting of only a camera and fisheye lens in place of a complex array of sensors.   

1. Introduction 

Accurate sun position estimation is essential for improving the performance of solar power systems, weather forecasting services, 
and virtual object relighting in outdoor augmented reality (AR) systems. These applications can be widely classified based on whether 
fixed sun-tracking hardware was used [1,2] or not [3,4]. Setting up rigs for sun tracking applications involves cumbersome procedures, 
each of which may introduce errors and accuracies in the final estimated sun positions. Additionally, such systems are associated with 
prohibitive costs as well as extended initial setup and calibration times with every change in location and orientation. This significantly 
restricts their use in highly dynamic use cases. 

Sun position estimation methods may be broadly classified into astronomical and image-based algorithms. First, astronomical 
computation-based approaches can be employed to compute the position of the sun for a specific location at a particular date and time. 
These require a highly accurate initial setup to specify rig location and orientation. They are also unable to distinguish between clear, 
cloudy, or overcast weather conditions. 

* Corresponding author. 
E-mail address: honghk@cau.ac.kr (H. Hong).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e31539 
Received 26 September 2023; Received in revised form 10 May 2024; Accepted 17 May 2024   

mailto:honghk@cau.ac.kr
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e31539
https://doi.org/10.1016/j.heliyon.2024.e31539
https://doi.org/10.1016/j.heliyon.2024.e31539
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e31539

2

Image-based methods are ideal for estimating the position and irradiance of the sun because sky images are a rich source of 
localized information regarding the distribution of brightness in the sky that occurs as a result of the sun’s presence. The proposed 
approach also leverages these image features to reliably estimate the position of the sun even when it is partially or entirely occluded 
by cloud cover. 

The radiance of the sun, as observed from a point on the earth’s surface, varies with changes in time and location because of the 
earth’s rotation, orbit, and axis of inclination [5]. Because images of the sky capture its current and transient state properties, they can 
be used to predict solar occlusion, weather conditions as well as changes to irradiance [6–8]. A wide range of approaches have been 
used to extract features from a single image and predict sun position or solar radiance [1,8–11]. However, atmospheric properties such 
as cloud cover and aerosol content cause ground-level solar irradiance to be highly variable [12]. The variability of these properties 
also affects the performance of sky image-based sun position estimation methods. 

In Chu’s approach [1], normalized color, saturation, and intensity values are merged into a single feature vector by performing 
simple numerical operations and then applying a threshold. The final sun positions are attained by computing the vertical and hor-
izontal means of the values in the feature vector. Since it assumes that the sun can only exist in the brightest regions of an image, this 
approach is unable to reliably identify the position of the sun even when it is slightly occluded by clouds. In Hold-Geoffroy’s approach 
[11], a standard feed-forward CNN with seven convolutional layers is employed in estimating the sun’s position along with the sky and 
camera parameters of the Hošek-Wilkie illumination model [13]. This implies that it is capable of identifying the position of the sun 
even when it is partially occluded. However, since only a single image is used, its performance significantly deteriorates in cases where 
the sun is completely occluded. Its predictions over multiple frames may also be inconsistent with the natural path of the sun. For 
image inputs that contain high-intensity values, Paletta [9] performs sun position estimation by taking the vertical and horizontal 
median of the saturated pixels in an image. In order to obtain sun positions for cases where no high-intensity values exist, the trajectory 
of the sun is interpolated over a day and from previous days using polynomial regression. Although this approach attempts to address 
some of the limitations of Chu’s approach [1], the interpolation operations it uses can only be performed with previously gathered 
data. This implies that it cannot be used for real-time sun position estimation tasks. 

In order to achieve reliable sun position estimation suitable for high-output solar energy systems, spatial and temporal consistency 
needs to be considered. Therefore, this study proposes a sun position estimation system consisting of a real-time imaging system and a 
deep learning approach (with spatial and temporal considerations) for regressing sun positions from sky image sequences. In our real- 
time imaging system, sky images are captured with a fisheye lens and transferred to a computational unit that estimates sun positions 
(elevation and azimuth). Here, a deep learning approach is used to extract spatial features and leverage the temporal changes in the 
brightness distribution over image sequences to regress sun positions. In the proposed approach, multiple Convolution Neural Net-
works (CNNs) based on the Resnet architecture [14] are used to extract solar radiance-related features from a sequence of sky images. 
These features are concatenated and fed into a stack of Long Short-Term Memory (LSTM) layers that estimate the position of the sun 
even when it is partly or entirely occluded. The proposed CNN-LSTM network is trained using a loss term that computes the distance 
between predicted and ground truth points. Additionally, two extra constraint terms (elliptical consistency and elliptical shape 
penalties) are introduced to ensure that the proposed network’s predictions are consistent with the sun’s natural path,. 

The proposed method was trained and evaluated using images from the Laval [15] and Sirta [2] sky image databases, as well as a 
custom dataset (CAU-2). Evaluation results show that the proposed method predicts sun positions more accurately than previous 
methods. The main contributions of this manuscript are highlighted as follows.  

• A real-time imaging system for sun position estimation that can easily be installed because it only requires Global Positioning 
System (GPS) information during its initial setup. Since no additional equipment, such as aero lasers or infrared cameras, is 
necessary, the proposed imaging system is suitable for dynamic use cases.  

• A CNN-LSTM model that extracts spatial features and leverages temporal changes in the brightness distribution across sky image 
sequences to regress sun positions. This implies that the proposed method can reliably estimate sun positions even with significant 
changes in the level of cloud cover over consecutive frames by leveraging features from current and previous frames.  

• Elliptical consistency and shape constraints that ensure that predicted sun positions are more consistent with the natural path of the 
sun over a day. This implies that even when no discernible brightness distribution is present, predicted sun positions are plausible 
(not irregular). 

2. Theory 

2.1. Sun position estimation using astronomical methods 

The position of the sun in the sky, as seen from a given point on the Earth’s surface at a specific date and time, can be estimated by 
employing various astronomical algorithms. Walraven [16] simplified the high-precision calculations used to generate the American 
ephemeris and nautical almanac solar tables by reckoning time from a closer date. In this approach, the earth was considered to be at 
the center of a celestial sphere, with celestial objects like the sun orbiting it. Michalsky’s Almanac algorithm employed a more 
straightforward form of Walvaren’s approach with adjusted angular ranges for the coordinate system [17]. It achieved higher accuracy 
by also considering variations in the length of a solar day, refraction in the atmosphere, as well as the angular extent of the sun at 
sunrise and sunset in addition. A key limitation of these approaches is that they are inaccurate, with their validity ranging from 15 to 
100 years. 

Meeus used the French planetary theory (Variations Sèculaires des Orbites Planètaires Theory: VSOP87) to accurately model 
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planetary motion, extending the computed sun position’s validity to 8000 years (2000 BC to 6000 AD) by considering planetary 
perturbations and gravitational interactions [18]. Grena’s sun pose algorithm (SPA) [19] was a refinement of the complicated steps 
described in Meeus’ SPA [18], with a focus on the sun and not the planets or stars. A key limitation of these approaches is that they rely 
heavily on the orientation of sun position estimation rigs and the accuracy of GPS sensors. This implies that even minor errors in the 
orientation or location of the rig translate to significant errors in the computed sun position. Additionally, they are not suitable for 
relighting or irradiance applications because they are unable to distinguish between clear, cloudy, or overcast weather conditions. 

2.2. Image-based sun position estimation 

Sky images are a rich source of localized information regarding the overall state (brightness distribution as a result of the sun’s 
presence) and transient characteristics of a visible sky. In Lalonde’s approach [20], an input image is segmented into ground, vertical 
surface, and sky pixels based on visual cues such as color, texture, and perspective distortions. A normal probability distribution 
indicating sky luminance is generated from the segmented sky pixels by regressing the parameters of the Perez sky model [21] for clear, 
partially cloudy as well as entirely overcast scenes. Because the sun is the primary light source in outdoor scenes, the position and 
orientation of shadows on the ground plane were used to determine the position of the sun. A major drawback of this approach is that it 
requires accurate shadow lines and well-segmented scene elements (ground, vertical surface, and sky regions). 

In Chu’s approach [1], a binary feature map was generated from the RGB and HSV color spaces of an input image. Here, the average 
of an input image’s hue and saturation channels was subtracted from that of its primary (RGB), intensity, and value channels. Then, a 
thresholding operation was performed, resulting in a binary feature map. In order to identify the position of the sun, the vertical and 
horizontal means of the generated feature map were computed. Multilayer Perceptrons (MLPs) were used to forecast direct normal 
irradiance values. A significant shortcoming of these approaches is that they are unable to handle complex real-world scenes with 
cloudy and overcast weather conditions. 

In order to facilitate the realistic placement of virtual objects in real-world outdoor scenes, Hold-Geoffroy proposed a CNN-based 
technique to estimate the parameters of an outdoor illumination model from a single panorama image [12]. Here, seven CNN layers 
followed by a fully connected layer feed two separate heads: one for estimating the position of the sun and the other for estimating the 
sky and camera parameters of the Hošek-Wilkie illumination model [13], which was modified to account for sky radiance. The sun 
position head outputs a probability distribution with a likelihood value indicating the presence of the sun in each of the 160 bins that 
were used to represent the entire sky hemisphere. A reconstruction error is computed using ground truth and predicted turbidity, 
exposure, and sun position values. However, the turbidity parameter of the sky model used restricts this approach’s representational 
accuracy to only clear skies. This implies that its accuracy degrades as cloud cover increases. 

In Rahim’s approach [22], the Hough gradient method is used to identify the circles (sun-like regions) in an image. Here, circle 
candidates are generated by voting in the Hough parameter space and then selecting local maxima in an accumulator matrix. A major 
limitation of this approach is that several false circles or even no circles may be detected as a result of partial or entire occlusion of the 
sun by cloud cover. In Paletta’s approach [9], the visible sun regions in an input image are localized by considering the brightness of 
pixels relative to surrounding pixels. In cases where the sun is not visible, the sun’s trajectory is determined by interpolating over past 
observations taken at the same time on previous days and through observations made from the start of the current day. The maximum 
pixel value in an image is used to determine whether the sun was visible in the image. A fundamental limitation of this approach is that 
it requires observations to be continually stored, which significantly increases the setup time and memory required. Additionally, 
observations missing due to an extended period of cloudy days may affect the quality of estimation results. 

2.3. Solar irradiance estimation and forecasting methods 

The solar irradiance incident on a surface largely depends on cloud cover and estimating it from sky images is currently an active 
area in solar energy-related studies. Zhao used a 3D CNN to extract textural and temporal cloud features from a sequence of cloud 
images [10]. These features were then fed into a linear autoregressive model and a nonlinear MLP, capable of generating accurate solar 
radiance forecasts up to 10 min ahead. In Feng’s study on solar irradiance forecasts, several frames from a sky image sequence were 
stacked vertically and horizontally into a single 2D image [7]. Visual Geometry Group (VGG) based models were then used to regress 
highly accurate solar irradiance forecasts from the 2D image. In the proposed CNN, features were extracted using five feature learning 
blocks. Each feature learning block had two or three convolution layers and a max pooling layer. The extracted features were then 
passed to a stack of fully connected layers that generated solar output predictions. Siddiqui achieved solar irradiance forecasts of up to 
4 h ahead by employing dilated convolutions, as well as auxiliary data such as air temperature, wind speed, relative humidity, and 
barometric pressure [8]. Here, features were extracted from multiple sky video frames using dilated convolutions. A two-tier LSTM 
network was then used to generate solar output predictions from the extracted features. 

2.4. Relighting virtual objects in outdoor AR scenes 

Realistic lighting is essential for maintaining visual consistency when virtual objects are integrated into real-world scenes. The sun 
is the primary light source in outdoor scenes, so detecting its position is necessary for relighting virtual objects. In order to realistically 
light virtual objects, Chen used intrinsic properties extracted from a single image to estimate the parameters of a ray-based illumi-
nation model [23]. Here, regression-based coarse scene understanding models were used to decompose an input image into its shading, 
geometry, reflectance, and semantic components. After applying RANdom-Sample Consensus (RANSAC) refinement to an aggregation 
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of these components, the Levenberg Marquardt algorithm was used to estimate the intensity of a fixed number of light sources modeled 
in the sparse radiance map. Hold-Geoffroy proposed a method to recover plausible illumination from a single outdoor image with a 
limited field of view g. In this study, an auto-encoder-based architecture was trained on datasets consisting of sky and scene images. 
Then, the auto-encoder was used to convert a Low Dynamic Range (LDR) panorama dataset to a High Dynamic Range (HDR) one. Two 
image encoders were trained to map ground scenes to their corresponding skies with sun positions. These mappings were then used to 
generate the lighting information for visually realistic virtual object synthesis. 

3. Materials and methods 

This study introduces a deep learning-based sun position estimation system that uses sky image sequences. In the proposed 
approach spatial, temporal, and geometric features are considered in regressing sun positions from image sequences. Multiple 
convolution networks extract spatial features from image sequences, and a stack of LSTM layers identifies the temporal changes in the 
brightness distribution across frames to regress sun positions. Since the sun takes an elliptical path in the sky, the proposed network is 
trained with elliptical (geometric) constraints that ensure that predicted sun positions are consistent with the sun’s natural path. In 
order to facilitate the use of the proposed approach in dynamic use cases, a novel sky imaging system, consisting of only a camera and 
fisheye lens, is also presented. Fig. 1 shows our real-time imaging system and the proposed network. Estimated sun positions are 
transmitted to client devices (solar power systems, sun trackers, and mobile devices) using the Hypertext Transfer Protocol (HTTP). 

3.1. Sky imaging system 

In Chu’s approach [1], a multi-filter rotating shadow band radiometer, two fisheye cameras, and an automatic solar tracker were 
used to identify the sun’s position and monitor solar radiance. However, this setup is impractical for dynamic scenarios with frequent 
movement because it is relatively expensive and cumbersome. In contrast, our imaging system captures sky images with a Canon EOS 
C70 camera and a Canon EF zoom lens, both of which are commercially available. Here, the neutral density filter was set to 8, and a 
focal length of 8 mm was used. More specifically, the Canon EOS C70’s wide 4K 35 mm DGO imaging sensor and its ND filters allow it 
to deliver reasonable sky image quality under a wide range of illumination conditions. This makes it ideal for dynamic use cases. The 
Canon EF zoom lens provides a 180◦ field of view, making it capable of capturing fish-eye images of the entire sky. 

The real-time imaging system passes frames to a control unit using a Vention 8K fiber optic High-Definition Multimedia Interface 
(HDMI) cable connected to a Universal Serial Bus (USB) HDMI capture cable. The AP-HDC4K capture cable receives a YUV format 4K 
video signal through an HDMI cable via the transition minimized differential signaling (TDMS) protocol and retransmits it as packets 
via USB to the control unit at 60 frames per second. 

Our sky imaging system has a simple setup consisting of a single commercially available omnidirectional camera with a fish-eye 
lens and a panoramic tripod head. During the initial setup, GPS information is used to align the primary axes of the proposed im-
aging system’s coordinate system with those of Earth’s spherical coordinate system. This makes the proposed approach ideal for 
dynamic outdoor applications where rig position and orientation may be frequently altered, such as light source estimation for solar 
power and augmented reality systems, as well as localized weather forecasting and building orientation optimization. As shown in 
Fig. 1, this makes computing and transmitting real-time light-rendering information to client devices feasible. 

3.2. Sun position estimation using CNN-LSTM 

The barrel distortion effects associated with images captured using fisheye lenses significantly affect the performance of CNNs as 
well as other 2D image-based feature extraction approaches [24,25]. In order to address this limitation, Bourke’s approach [26] was 
used to convert the fisheye images provided in the datasets into their equirectangular form prior to training and inference. More 

Fig. 1. Sun position estimation system architecture with an HTTP-based data transmission setup.  
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specifically, a precomputed look-up table, which maps each pixel in the fisheye image to a corresponding pixel in the equirectangular 
image space, was generated. This facilitated real-time (about 10 ms) fisheye to equirectangular conversions. 

In the proposed CNN-LSTM architecture, the ResNet50V2 [14] network was extended and used to extract solar radiance-related 
features from each frame of the input image sequence, as shown in Fig. 2. This was because its vast generalization power, as 
demonstrated in several studies [14,27], could be excellent for extracting the local spatial relationships between the clouds and the 
radiance distribution created by the sun. It consists of a single convolutional layer (Conv) and four convolution blocks (Conv Block). 
The number of convolutional layers in the original architecture and their corresponding convolution filter sizes, strides, and paddings 
are preserved, but batch normalization, max pooling, and fully connected layers are appended to the end of the network. This ar-
chitecture was employed for 96 × 386 and 128 × 512 sized image inputs in our experiments. A 3 × 13 × 2048 sized output is flattened 
into a 79,872-length vector for 96 × 386 image inputs, while a 4 × 16 × 2048 sized output is flattened into a 131,072-length vector for 
128 × 512 image inputs. Then, an FCN layer generates the final vector embedding of length k from each frame in the input sequence. In 
our experiments, setting k to 64 for smaller images and 128 for larger images was found to be sufficient for generating robust image 
features. 

In order to model the temporal relationships between the frames, the generated encodings are concatenated to form a shape of 64 ×
N and fed into a stack of 3 LSTM layers. N represents the number of input frames. LSTM models have been used in several sequence 
modeling tasks, such as inter-language translation [28,29], voice activity modeling [30,31], and identifying disaster-related posts on 
social media [32], because they are capable of effectively capturing long temporal dependencies without suffering from vanishing 
gradients. Hochreiter’s LSTM [33] employs an efficient gradient-based algorithm to train an architecture (Fig. 3) that enforces constant 
error flow. In Eq. (1) to Eq. (3), Wi, Wc, and Wf represent the weight matrices used in computing the input cell’s output (it), the new 
candidate values (Ct), and the forget gate’s output (ft), respectively. bi, bc, and bf represent the bias values added to the products of the 
weight matrices (Wi, Wc and Wf ) and the cell’s previous hidden state (ht− 1) as well as the current input value, xt in the weight update 
function (Wi · [ht− 1,xi] + bc) for Eq. (1). In order to decide the values to be updated in the input gate (Eq. (1)) and forget gate (Eq. (3)), 
the output of the weight update function is fed into a sigmoid function, σ (), in each case. In Eq. (2), a vector of new candidate values is 
generated using a hypertangent layer, tanh(). In order to obtain the new cell state (Ct), the previous cell state (Ct− 1) is multiplied by the 
output of the forget gate and added to the product of the input gate’s output and the new candidate values, as shown in Eq. (4). This is 
passed to the output gate, which protects other units from perturbation by ensuring that only relevant memory contents are stored in 
the central unit. Since vanilla LSTMs have been shown to perform reasonably well on various tasks [34], the extracted features are 
concatenated and passed to three vanilla LSTM layer configurations that estimate sun positions, even when partly or entirely occluded. 

it = σ(Wi[ht− 1, xt ]+bi). (1)  

C̃t = tanh(Wc · [ht− 1, xt ] + bc). (2)  

ft = σ
(
Wf • [ht− 1, xt ] + bf

)
(3)  

Ct = ft × Ct− 1 + it × C̃t .
(4) 

Since the Earth rotates on its axis and takes on an elliptical path around the sun, the sun follows a consistent path in the sky, as 
observed from a point on the Earth’s surface. LSTM layers are well suited for identifying and leveraging the temporal changes in the 

Fig. 2. Architecture of the sun position estimation network with each CNN model encoding a single image and a stack of LSTM layers, max pooling, 
and fully connected layers predicting sun positions. 
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brightness distribution over consecutive frames. 
After performing a max pooling operation, an FCN layer at the very end of the network (Fig. 2) regresses the final sun positions 

(elevation and azimuth) of shape, 2 × N. Here, N represents the number of input frames. 

3.3. Losses and elliptical constraints 

While training the proposed CNN-LSTM network, the mean absolute error (em) between predicted and ground truth sun positions is 
computed as an L1 norm. In order to amplify the impact of small and medium-sized errors, Feng’s piece-wise Wing loss [35] was used 
as the primary loss function. As shown in Eq. (5), a log function is applied when the mean absolute error (MAE) computed is smaller 
than the threshold, r [35]. Otherwise, the MAE is used in its plain form. The impact of various error ranges on gradient descent can be 
described by a V-like shape, with higher error values having larger impacts than lower ones. Eq. (5) increases the curvature of the 
V-like shape to emphasize small and medium error ranges. 

Lw =

⎧
⎪⎪⎨

⎪⎪⎩

rln
(

1 +
|em|

ϵ

)

if |em| < r

|em| − c, otherwise
, (5)  

where r determines the range of loss values covered by the non-linear part of the V-like shape, ϵ controls its curvature and c =

r − rln
(

1+w
ϵ

)
is a constant that smoothens the transition between linear and non-linear parts. 

As shown in Fig. 4, although the path of the sun in the sky over a given day may vary in length and orientation, it always takes on an 
elliptical form. This path can, therefore, be expressed using the quadratic equation for F(x, y) in Eq. (6), which describes the position 
and orientation of an ellipse in 2D space [36]. Here, x and y represent an ellipse’s horizontal and vertical components. The ellipse 
coefficients are a, b, c, d, e, and f. In order to ensure that the proposed network’s predictions are consistent with the natural path of the 
sun, two extra constraint terms (elliptical consistency and elliptical shape penalties) that penalize non-elliptical sun positions have 
been added to the primary loss computation to form the final loss in our training procedure. 

First, the elliptical consistency penalty (Cc) is computed by comparing the geometric properties (center, width, height, and 
orientation) of the ellipses of best fit generated from ground truth and predicted sun positions. Larger Cc values imply that the ellipse 
generated with predicted points dramatically differs from that generated with ground truth points. We were thus able to examine the 

Fig. 3. Architecture of single cell used in vanilla LSTM networks [33].  

Fig. 4. Isometric drawing showing the elliptical path of the sun in the sky on various days in the year.  
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differences between the elliptic geometries of predicted and ground truth points. 

F(x, y) = − ax2 + bxy + cy2 + dc + ey + f . (6) 

Because Flusser’s method [36] is numerically stable and guarantees ellipse-specific solutions even with noisy data, it was used to 
estimate the ellipse coefficients in Eq. (6) for a given sequence of predicted values. To simplify the process of finding an ellipse’s center, 
width, and height from its equation coefficients, the numerator (Vn) and denominator (Vd1 ,Vd2 ) values are precomputed with Eq. (7), 
Eq. (8), and Eq. (9) [36]. 

Vn = af2 + cd2 + eb2 − 2bdf − ace. (7)  

Vd1 =
(
b2 − ac

)
×
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4b2 + a2 − 2ac − c2
√

− (a + c)
)
. (8)  

Vd2 =
(
b2 − ac

)
×
(
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4b2 + a2 − 2ac − c2

√
− (a + c)

)
. (9) 

The height (h), width (w), and center (x0,y0) of the ellipse can then be computed using Eq. (10) and Eq. (11). The orientation (θ) of 
the ellipse is calculated using Eq. (12) [36]. 

h =

̅̅̅̅̅̅̅̅
2Vn

Vd2

√

,w =

̅̅̅̅̅̅̅̅
2Vn

Vd1

√

. (10)  

x0 =
cd − bf
b2 − ac

, y0 =
af − bd
b2 − ac

. (11)  

θ =
1
2

tan− 1
(

2|b|
|a| − |c|

)

. (12) 

The center, width, height, and orientation of an ellipse are placed in an ellipse property vector, E→ =
[
x0, y0,w, h, θ

]T. The elliptical 
consistency constraint (Cc) is then calculated using Eq. (13). The squared distance between the centers, heights, and widths of the 
predicted and ground truth ellipses is computed. The square distance and angular differences are normalized using the maximum 
distance and maximum value in the angular distance space, respectively, and then combined as shown in Eq. (13). 

Cc =
∑5

i=1

(
EGTi − EPredi

)2
. (13) 

Second, the elliptical shape penalty (Cs) is a measure of how close predicted points are to their ellipse of best fit. In other words, it is 
intended to ensure that predicted points are as close as possible to their ellipse of best fit. If a Cs value of zero is achieved, then all 
predicted values lie along the edge of their ellipse of best fit. Determining how close predicted points are to an ellipse of arbitrary 
position and orientation is very computationally intensive. In order to address this, the ellipse that best fits predicted points is shifted to 
the origin, and the rotation matrix (R) is used to align its major and minor axes as well as its corresponding points with the vertical and 
horizontal axis [37]. Here θ represents the orientation of the ellipse of best fit, which is computed using Eq. (14). 

R =

(
cos θ − sin θ

sin θ cos θ

)

. (14) 

Eq. (15) computes the distance between an arbitrary point, E(Ex,Ey) on the axis aligned ellipse of best fit and a predicted point, P(Px,

Py) rotated about the same angle [38]. Eq. (16) is computed iteratively and minimized using the Newton-Raphson optimization method 
[38] until a value with acceptable tolerance is found. Here , mn+1 is the distance between a predicted point and its corresponding 
ellipse of best fit at the (n+1)th step, starting with an initial guess (m0). In this optimization process, the accuracy of the final estimate is 
largely dependent on the initial guess (m0). In order to ensure that the optimization converges on a global solution even when points 
are inside the ellipse, the initial value (m0) is set using polygon vertices generated around the ellipse. 

D =

(
Px cos θ

Py sin θ

)

−

(
Ex cos θ − Ey sin θ

Ey sin θ + Ey cos θ

)

. (15)  

mn+1 = mn −

(
dD2

dm
÷

d2D2

dm2

)

. (16) 

The final loss (L) of the proposed CNN-LSTM model is computed by summing the Wing loss (Lw), which is an extension of the mean 
absolute error, the elliptical consistency penalty (Cc), and the elliptical shape penalty (Cs) as shown in Eq. (17). Here, λ1, λ2, and λ3 are 
set to 0.65, 0.175, and 0.175, respectively, as guided by previous experiments. 

L = λ1Lw + λ2Cc + λ3Cs. (17) 
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4. Results and analysis 

4.1. Dataset 

The proposed sun position estimation network was trained and tested using the Laval [15] and Sirta [2] datasets as well as a custom 
dataset (CAU-2). Table 1 details the number of images, resolutions, and ground truth labels available in each dataset. The year when 
images were captured is also indicated for each dataset. In the Laval and Sirta datasets, the sky was captured under a wide range of 
weather conditions, including clear, partially cloudy, and overcast skies with varying levels of rainfall. The CAU-2 dataset contains 
images of overcast skies but no scenes of heavy rainfall. 

The Sirta dataset consists of 253,431 fisheye sky images captured in 2017 at the Sirta observatory in Paris, France. The images were 
captured using a CMS Ing. Dr. Schreder Gmbh cloud cam II with an exposure time of January 2000 s, an aperture value of f/8.0, a 
shutter speed of January 2000 s, and a focal length of 5.8 mm. Images of two exposures are provided, but only the lower-exposure 
images were used in our experiments to avoid severe over-exposure effects. Because no sun position labels are provided with the 
Sirta dataset, ground truth sun positions were generated from the camera location and image metadata using Meeus’ SPA algorithm 
[18]. Aside from the focal length, none of the intrinsic fisheye camera parameters that describe the nature and extent of the radial 
distortion were provided in this dataset. Equi-rectangular images were generated by adapting the spherical projection model to the 
geometry of the fisheye camera, which results in slight camera distortions in regions near the edge of fisheye images. Since the sun 
usually appears at the edge of the fisheye image captured at sunset and sunrise, only images with a time stamp between 9 a.m. and 3 p. 
m. were used in our training and testing. This also addresses the occlusion of the sun by surrounding buildings, structures, and trees in 
the early morning as well as late evening. Colorfulness [39] and perceived luminance [40] measures were used to identify unusable 
images. Days with a high proportion of unusable images were excluded. 

The Laval dataset consists of HDR sky dome panoramic maps with a resolution of 1024 × 2048 and corresponding sun positions 
(zenith and azimuth angles). Since panoramic images were provided, there was no need to consider the camera model or its intrinsic 
properties. The CAU-2 dataset comprises 1777 fisheye images captured at Chung-Ang University in Seoul, South Korea, using the 
imaging system described in subsection 2.1. A 6.0 mm focal length and f3.2 aperture were used. The ISO was set to 200, and the ND 
Filter to 8. Shutter speeds of 1/30 and 1/60 were used. Ground truth labels were generated using an approach similar to that used for 
the Sirta dataset. In order to obtain the fisheye camera parameters, Kannala’s method [41] was used for calibration. Each dataset was 
split into training, validation, and test batches using a split of 65 %, 25 %, and 10 %, respectively. Due to the limited memory and 
processing power available, images were resized using bilinear interpolation. 

4.2. Performance of the sun position estimation networks 

In order to evaluate the performance of the proposed method under various input and model configurations, experiments were 
conducted on a computer running TensorFlow 2.8 and equipped with an Intel® Core™ i9-10920X CPU and an Nvidia RTX 3090 
graphics processing unit. 

First, the BGR format input image, received by the control unit, is converted to RGB format. In cases where a gradient map is used, 
pixel values are averaged across the three channels to form a grayscale image. A Gaussian blur operation with its standard deviation set 
to 1.5 is then performed on the grayscale image prior to vertical and horizontal gradient computations. The frames are stacked up to a 
particular frame length, with the last frame at the top. In order to normalize pixel values and ensure their intensity is between 0 and 1, 
all pixel values are then divided by 255. 

As shown in Table 2, the impact of using gradient maps as additional inputs to both CNN and CNN-LSTM models was examined 
using images from the CAU-2 dataset. For all CNN-LSTM-related experiments conducted in this study, each LSTM layer is initialized 
with a Glorot normal distribution and has a sigmoid activation applied at the recurrent step and a tanh activation applied to its output. 
The number of units used at each LSTM layer varies with the number of layers used. In the first case, a CNN network regresses sun 
positions from a single RGB image with a resolution of 128 × 512. In the second row of Table 2, an input image’s gradient map with 
magnitude and orientation is also considered. The gradient is computed by applying Sobel operators [42] vertically and horizontally 
for each RGB channel. The gradient maps are stacked, resulting in a 9-channel input (3 RGB image channels, three gradient magnitude 
channels, and three gradient orientation channels). Since the sun is responsible for the overall brightness distribution and accounts for 
sharp changes, image gradient maps can be used to guide the localization of the sun in images. Therefore, gradient maps were 
generated from input image sequences and provided as additional input to the CNN-LSTM network. 

Table 1 
Specifications of the CAU-2, Laval, and Sirta datasets.  

Dataset Laval Sirta CAU-2 

Original resolution Fisheye 1024× 102 2160× 3840 768× 1024 
Equi-rectangular 512× 2048 1327× 4980 363× 1452 

Number of images used in training and testing 27,103 37,877 1711 
Period (Years) 2023~2016 2017 2023 
Sun Information Elevation, Azimuth Provided Provided N/A 

Irradiance N/A N/A Provided  
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In the second case, the proposed CNN-LSTM network has one LSTM layer and predicts sun positions from an image sequence with 
three frames at an inter-frame interval of 5 min. The last row of Table 2 shows the performance of a version of the CNN-LSTM modified 
to support gradient vector maps as additional inputs. The Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2 score 
were computed from predicted and ground truth sun positions. MAE is computed as the sum of the absolute difference between 
predicted and ground truth data, and RMSE is their quadratic mean. The R2 score measures how much an input variable accounts for 
the variance in predictions and has a range of 0–1. Higher R2 scores imply a higher similarity between ground truth and predicted 
values. The equirectangular coordinate outputs of the model are converted to degrees using Bourke’s approach [26] prior to loss 
computation. In Bourke’s approach, normalized equirectangular image coordinates are transformed into 2D fisheye image coordinates 
represented as azimuth and elevation values. Since gradient maps represent the variations in brightness that occur as a result of the 
sun’s presence in the sky, using them ensures that predicted sun positions are restricted to plausible regions of the sky. This is why the 
CNN with a single image and gradient map as input achieves a higher R2 score than the CNN-LSTM with multiple input images, as 
shown in Table 2. Using the CNN-LSTM with multiple input images achieves better MAE and RMSE values because spatial and 
temporal features are both leveraged to achieve higher accuracy predictions. Table 2 shows that using gradient maps improves the 
performance of both the CNN and CNN-LSTM models. It can also be noted that using multiple frames offers significantly better per-
formance than using a single image, whether or not gradient maps are used. The CNN-LSTM with gradient map inputs offers the best 
performance. Gradient maps were not used in other experiments because of the limited memory available. 

In order to more accurately analyze the distribution of errors in Table 2, six whisker (box) plots were generated using the root of 
square distances between ground truth values and those predicted by three different networks (CNN, CNN-LSTM, and CNN-LSTM with 
gradient map inputs) as shown in Fig. 5. Only a single image was used for the CNN in Fig. 5 (a). Three frames at 5-min intervals were 
used for both CNN-LSTM networks to account for the brightness distribution features in each image as well as the temporal changes in 
them over consecutive frames. Image frames were resized to 128 × 512. 

Only a single whisker plot is shown for the CNN network (a) because it has the largest variation in error values. Two pairs of plots 
((b) and (c)) showing the same errors at different scales were generated for the two versions of the CNN-LSTM network. More spe-
cifically, the left plot for each of the two configurations ranges from 0 to 70◦ (same scale) to facilitate more straightforward comparison 
between error ranges. The right plot for Fig. 5 (b) and (c), however, ranges from 0 to the maximum error computed for each network’s 
predictions (different scales) to provide a better highlight of their respective distributions. The maximum and minimum error values 
are represented by top and bottom horizontal strokes (whiskers). The box in each plot represents the first (bottom) as well as the third 
(top) quartiles, and the horizontal orange line in the box is the median error. Values outside the whiskers are considered to be extreme 
outliers. Fig. 5 (b) shows that using multiple frames instead of a single image as input drastically improves performance. Using gradient 
maps as additional inputs further improves performance, as shown in Fig. 5 (c). 

The impact of the number of LSTM layers on the overall performance of the proposed method was examined. Model configurations 
with 1, 2, and 3 LSTM layers are shown in Fig. 6. Image sequences from the Sirta dataset with resolutions of 96 × 386 (8 frames) and 
128 × 512 (3 frames) were used. Here, three frames were used for the input configuration with a larger resolution (128 × 512) because 
of the limited GPU memory available. Features are extracted from each input frame using a CNN model. The extracted features are 
passed to LSTM layers, which identify temporal changes in brightness distributions within them and predict sun positions. In Fig. 6, 

Table 2 
Performance of the proposed method on the CAU dataset under two configurations (with and without gradient maps).  

Input images Models MAE (◦) RMSE (◦) R2 Score 

Single CNN 2.0150 3.4396 0.9390 
CNN with a gradient map 1.2465 2.6666 0.9630 

Multiple CNN-LSTM 0.9999 1.2765 0.9455 
CNN-LSTM with gradient maps 0.6263 0.7801 0.9973  

Fig. 5. Box plots generated from the root of squared distances between ground truth values and those predicted by three different networks: (a) 
CNN, (b) CNN-LSTM, and (c) CNN-LSTM with gradient map inputs. 
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“LSTM 00” indicates that the number of LSTM units used in the LSTM layer is “00”. Intermediate LSTMs have an orange border, 
indicating that a vector representation is returned for each time step. LSTM layers with no orange border return a single vector 
representation for all time steps. “Dropout 0.5” indicates that a dropout layer, intended to prevent overfitting, randomly excludes the 
representations generated by “50 %” of the nodes in the previous LSTM layer. “Dense 6” indicates that a fully connected layer regresses 
an elevation and azimuth prediction for each of the three input frames from the representations generated by the previous layer. For 
instance, a “Dense 16” layer is used when the network input is an image sequence with eight frames. 

The results of the experiments performed are detailed in Table 3. Image sequences with an inter-frame interval of 5 min were 
generated from the Sirta dataset. Experiment results showed that the performance of the proposed method improves as the number of 
LSTM layers increases. Table 3 also shows that increasing the number of frames, even with lower-resolution images, improves the 
performance of models more than increasing the resolution of input images. 

We conducted experiments to examine how the resolution and number of frames in an input image sequence affect the performance 
of the proposed network. Here, image sequences from the Sirta dataset with 3, 5, and 8 frames at 5-min inter-frame intervals and 
dimensions of 64 × 256, 96 × 384, and 128 × 512 were used, as shown in Table 4. The model configuration with three LSTM layers was 
used because it demonstrated the best performance in earlier experiments (Table 3). Experiment results show that performance im-
proves as the number of frames increases. This is because temporal changes in spatial information from previous frames can be 
leveraged to ensure coherent predictions. More specifically, the LSTM layers are capable of identifying and leveraging the temporal 

Fig. 6. Structures of LSTM stacks used in experiments.  

Table 3 
Performance of the proposed method under model configurations with 1, 2, and 3 LSTM layers for image sequences with frames of two sizes (96 × 386 
and 128 × 512).  

Image Sequences 96 × 386 (8 Frames) 128 × 512 (3 Frames) 

No. of LSTM Layers MAE (◦) RMSE (◦) R2 Score MAE (◦) RMSE (◦) R2 Score 

1 2.49806 3.85345 0.96582 2.57435 3.81025 0.96620 
2 2.42364 4.04518 0.96242 2.46051 3.98191 0.96356 
3 2.21028 3.04331 0.97969 2.86992 4.29837 0.95914  
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changes in the brightness distributions of current and previous frames to estimate the position of the sun in the current frame, even 
when it is partly or entirely occluded. Additionally, training the proposed model with elliptical constraints ensures that predicted sun 
positions are consistent with the natural path of the sun. 

The resolution of frames determines the precision with which the position of the sun is estimated. For instance, doubling frame 
resolution results in twice the number of samples over the same range of elevation and azimuth values. Experiment results show that 
increasing image resolution does not always improve model performance because larger image resolutions are associated with higher 
sensitivity to outliers (in weather conditions and sun positions), particularly with the RMSE measure. In order to address the sensitivity 
to outliers, more training data samples are required when higher-resolution images are used. Tables 3 and 4 demonstrate that, given 
the same dataset and hardware configuration, increasing the number of frames shall improve model performance more than increasing 
the image resolution. 

To examine the impact of the ellipse consistency penalty (ECP) and elliptical shape penalty (ESP) on the performance of the 
proposed method, a CNN-LSTM model with one LSTM layer was trained with three different loss configurations (Table 5). Here, “Wing 
loss” is the primary loss term in all three configurations. As described in subsection 2.1, it is computed as an L1 loss for large values, but 
a log function is applied to small values. Each input image sequence from the Sirta dataset contains three frames (128 × 512) at 15-min 
intervals. 

Additionally, a CNN-LSTM network was trained with and without the elliptical consistency and shape constraints. Fig. 7 shows the 
overall training and test losses computed at each epoch for both scenarios. As shown in Fig. 7, the test loss for the model trained 
without elliptical constraints is prone to random spikes even when its training loss drops consistently as training progresses. Exper-
iment results in both Table 5 and Fig. 7 show that using the shape and consistency elliptical constraints, in addition to the primary loss 
function, offers the best performance. 

In Table 6, the performance of two versions of the proposed method is compared to that of previous methods. In contrast to previous 
approaches where a single image was used as input, the proposed network predicts sun positions from an image sequence containing 
three frames at an inter-frame interval of 5 min. Here, “Sirta” indicates that the model was only trained on the Sirta dataset and 
evaluated with the same dataset. “Laval + Sirta” indicates that the model was first pre-trained using the Laval dataset and then fine- 
tuned on the Sirta dataset. These configurations were then evaluated on a segment of the Sirta dataset. In Sohag’s method [4], an input 
image is converted to grayscale and blurred using a Gaussian filter before applying binary thresholding. Moments of the saliently 
bright regions detected by the binary threshold are then computed vertically and horizontally to identify sun positions. For these 
experiments, the method was re-implemented with adjustments made to account for distortions that may occur as a result of con-
verting the fisheye images of the Sirta dataset into their equirectangular form. Under Sohag’s approach, no values are provided under 
the “Laval + Sirta” section because no deep-learning networks were used, meaning pre-training was unnecessary. 

As described in subsection 3.2, Hold-Geoffroy’s approach [12] uses seven convolution layers and two fully connected layers to 
predict sun positions from a single input image. In our evaluations, the CNN network proposed was re-implemented, but only the sun 
position estimation head was retained. The sun’s position was regressed directly rather than through bins to facilitate higher-resolution 
inputs. Additionally, the mean squared error was used in place of the Kullback–Leibler divergence used in Hold-Geoffroy’s method 
[12]. Rahim’s approach [22] was re-implemented for this evaluation. In Rahim’s approach, the average values are computed across 
color channels, and an adaptive thresholding operation is performed. Cases in which no circle was detected were excluded from the 
final error computation. As shown in Table 6, the proposed method more accurately predicts sun positions than previous methods. 

Fig. 8 shows estimated sun positions under various levels of cloud cover. The blue and red circles represent ground truth (Gt) and 
predicted (pred) sun positions, respectively. The squared distance (Dist) between predicted and ground truth sun positions is also 
indicated in degrees. The model configuration with three LSTM layers was used to predict sun positions from input image sequences 
with three frames at an inter-frame interval of 5 min. Each frame in the sequence had a resolution of 96 × 386. One of the more difficult 
cases is the 9th image (last column of the last row) of Fig. 8. The first row of Fig. 9 shows the two previous frames used to predict the 
position of the sun in this case. This implies that the last frame in the first row of Fig. 9 is the 9th image in Fig. 8. Although the sun is 

Table 4 
Performance of the proposed model under various input configurations: image sequences with 3, 5, and 8 frames at three resolutions (64 × 128, 96 ×
386, and 128 × 512).  

No. of Frames 64 × 128 96 × 386 128 × 512 

MAE (◦) RMSE (◦) MAE (◦) RMSE (◦) MAE (◦) RMSE (◦) 

3 6.72762 9.71191 2.77751 4.20234 2.72402 4.85665 
5 4.53153 6.62348 2.70903 4.24188 2.69836 4.81317 
8 2.96346 5.20833 2.21028 3.04331 2.21372 3.73632  

Table 5 
Performance of the proposed model under three loss configurations: combinations of the primary loss, ESP, and ECP constraints.  

Loss Terms Used MAE (◦) RMSE (◦) R2 Score 

Wing loss + ESP 2.7632 7.2623 0.9773 
Wing loss + ECP 2.1504 6.2273 0.9821 
Wing loss + ESP + ECP 2.0977 6.2394 0.9805  
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entirely occluded by thick clouds in the current frame, the LSTM layers extract and leverage the temporal changes between features 
generated from previous frames. This is why the sun’s position can be precisely estimated for this case for this and similar cases. In the 
second row of Fig. 9, the sun is also occluded in both the current and previous frames. Accurate sun position estimation is possible in 
this case because the proposed CNN-LSTM network is capable of adequately extracting the spatial features and the temporal changes in 
the brightness distribution necessary for sun position estimation, and the elliptical penalties ensure that predictions are consistent with 
the natural path of the sun. 

The impact of the elliptical consistency and elliptical shape penalties on the performance of the proposed method was examined 
using scatter plots (Fig. 10). Here, a CNN-LSTM network with one LSTM layer was used to predict sun positions from image sequences 
(Laval dataset) with three frames, each with dimensions of 128 × 512. In Fig. 10 (a), ground truth points were plotted against those 
predicted by a CNN-LSTM network trained with only the primary loss term. Fig. 10 (b) shows predictions made using a CNN-LSTM 
network trained with both elliptical consistency and shape constraints. The red and green dots represent predicted and ground 

Fig. 7. Line plot showing the total training and test losses computed at various epochs during training for two configurations for the proposed CNN- 
LSTM network. 

Table 6 
Comparison of previous methods against two configurations of the proposed network.  

No. of Input 
Images 

Methods Sirta Laval + Sirta 

MAE (◦) RMSE (◦) R2 Score MAE (◦) RMSE (◦) R2 Score 

Single Sohag [4] 9.7480 24.8761 0.4656 – – – 
Hold-Geoffroy [12] 8.1071 10.9272 0.8655 7.1411 10.2836 0.8835 
Rahim [22] 6.7649 16.2021 0.6843 – – – 
Proposed (CNN) 3.7833 6.4054 0.9546 2.5509 6.2931 0.9541 

Multiple Proposed (CNN-LSTM) 2.4605 3.9819 0.9635 2.1839 4.5687 0.9762  

Fig. 8. Sun positions estimated using the proposed method under various levels of cloud cover.  

Fig. 9. Sun positions estimated from two image sequences, each with three frames.  
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truth sun positions. As shown in Fig. 10 (b), using the constraints based on elliptical geometric properties can ensure that predictions 
are plausible, even when clouds partly or entirely occlude the sun. The predictions shown in Fig. 10 (b) are more consistent with the 
sun’s natural path than those shown in Fig. 10 (a). 

In order to compare the inference time of the proposed approach against that of previous approaches, 4031 images from the Sirta 
dataset were resized to dimensions of 128 × 512 and fed as input to each of the methods listed in Table 7. In order to consider the 
temporal changes in the brightness distribution over multiple frames, the CNN-LSTM networks are fed multiple (three) image frames as 
input. The average execution time in milliseconds is computed over all the input images. It can be noted that for a single frame, the two 
deep learning approaches, Hold-Geoffroy [12] and the proposed CNN, offer significantly better performance than Sohag [4] and 
Rahim’s [22] non-deep learning methods while maintaining fast inference times of under 4 ms. In order to consider the temporal 
changes in the brightness distribution over multiple frames, the CNN-LSTM networks are fed multiple (three) image frames as input. 
The proposed CNN has slightly longer inference times than Hold-Geoffroy’s approach because it has significantly more convolution 
layers that allow it to improve accuracy. The CNN-LSTM and CNN-LSTM with gradient map inputs have longer inference times because 
they process three times as much data. This implies that the inference time per frame is 7.83 ms and 7.86 ms for the CNN-LSTM and 
CNN-LSTM with gradient map, respectively. Since the elliptical constraints are only employed during training, using them does not 
increase inference time. 

5. Discussion 

In the proposed approach, spatial, temporal, and geometric features are considered while regressing sun positions from image 
sequences. More specifically, a CNN-LSTM model extracts spatial features and leverages temporal changes in the brightness distri-
bution across sky image sequences to regress sun positions. Also, elliptical (geometric) constraints are added to the loss computation, 
ensuring that sun position predictions are consistent with the sun’s natural path. 

Table 2 shows that leveraging temporal features in addition to spatial features achieves significantly better performance than only 
using the spatial features of a single frame. Table 3 shows that increasing the number of LSTM layers and the number of frames, even 
with lower-resolution images, improves the performance of models. However, because of the limited processing power available, 
experiments were only conducted with up to three LSTM layers. Table 4 demonstrates that increasing the number of frames improves 
model performance more than increasing the image resolution. 

The improvement in performance is associated with two key factors. First, changes in spatial image features over more frames are 
sufficiently considered. This implies that considering a more extensive temporal context improves performance. Secondly, more sun 
positions are used in computing and enforcing the elliptical constraints, resulting in more plausible predictions. More specifically, 
increasing the number of frames that support the estimated elliptical equation improves overall performance. Table 5 shows the 
performance of the proposed model under three loss configurations: combinations of the primary loss, elliptical consistency constraint 
(ECC), and elliptical shape constraints (ESC). The ECC ensures that the properties of the ellipse of best fit through a sequence of sun 
positions are consistent with those occurring in ground truth data. However, with the ECC alone, it is possible to have a plausible 
ellipse of best fit with no points lying on it. The ESC ensures that predicted sun positions lie on their ellipse of best fit. Table 5 shows 
that considering both the elliptical consistency and elliptical shape constraints achieves the best performance. 

In Table 6, the performance of the proposed method is compared to that of previous methods in which a single image was used as 
input. Although Hold Geoffroy’s convolutional approach outperforms the algorithmic methods proposed by Rahim [22] and Sohag [4], 
the single image-based version of the proposed approach achieves better performance, as shown in Table 6. The proposed CNN-LSTM 
achieved the best performance because it considers spatial as well as temporal features in identifying the position of the sun. In 
addition, Paletta’s approach [9] leverages multiple observations to estimate the position of an occluded sun. This is achieved by 
performing interpolation over past observations taken at the same time on previous days and interpolating through observations made 
from the start of the current day. A major limitation of this approach is that it requires that sky images be captured at a single location 
at regular intervals over an extended period of time, resulting in increased setup time and memory requirements. This makes it un-
suitable for dynamic use cases that may require the rig to be moved or reoriented in contrast to the proposed approach. An error of 4.7 

Fig. 10. Scatter plots of ground truth sun positions (green) as well as values (red) predicted by two configurations of the CNN-LSTM network. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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pixels (0.91 % of the image size) was reported in Ref. [9]. The mean average error in degrees of the proposed CNN-LSTM, shown in 
Table 6, was recomputed in pixels to 4.5 pixels (0.88 % of the image size). 

Although the proposed sun position estimation approach accurately identifies the sun’s position under a wide range of weather and 
illumination conditions, some challenges still need to be addressed, as highlighted below. 

In sky imaging, Neutral Density (ND) filters are often used to reduce the intensity of light incident on camera lenses. However, an 
inappropriate ND filter level may result in highly overexposed images of clear skies or under-exposed images of heavy cloud cover. In 
cases such as these, where pixel values do not sufficiently represent the brightness distribution of the sun, image-based methods, 
including the proposed approach, are unable to make plausible predictions. Therefore, in future works, an exposure selection module 
that ensures a rich brightness distribution in input frames is to be implemented. In order to recover brightness distributions from under 
or overexposed images, we also intend to explore exposure correction techniques. 

The CNN-LSTM architecture used in the proposed approach requires that a fixed number of frames is used for training and 
inference. In order to support longer context lengths with a variable number or size of image frames, the proposed approach requires 
modifications to its architecture. 

In order to achieve robust sun position estimation across a range of scenes, models need to be trained using multiple large datasets. 
However, the computational requirements of the CNN-LSTM architecture used in the proposed approach limit its ability to scale to 
extremely large datasets. Here, an attention-based architecture, such as the vision transformer [43] could be employed in place of the 
CNN components. 

The proposed CNN-LSTM network, which leverages spatial, temporal, and geometric features is capable of regressing sun positions 
from a sequence of images even when the sun is partly or entirely occluded. It can, therefore, be leveraged to design and develop more 
accurate solar energy forecasting systems. The proposed omnidirectional imaging system comprises a commercially available camera, 
fish-eye lens, and panoramic tripod head. This implies that it could be adapted to create portable lighting rigs for augmented reality 
applications. 

6. Conclusion 

This study proposed a real-time sky imaging system and a CNN-LSTM network that regresses sun positions from an input image 
sequence. The proposed CNN-LSTM network is capable of reliably estimating the position of the sun because it considers both spatial 
and temporal features. In the proposed approach, spatial features are extracted from each frame in the input image sequence using a 
Resnet-based CNN architecture. In order to consider the temporal changes in the brightness distribution over multiple frames, the 
output of the CNN networks is concatenated and passed to a stack of LSTM layers. In addition to the primary loss term computed as the 
MAE between predicted and target sun positions, elliptical shape and consistency constraints are included in the training loss 
computation to ensure that the sun positions predicted by our CNN-LSTM network are consistent with the sun’s natural path. In other 
words, training the proposed CNN-LSTM network with elliptical constraints minimizes the abrupt variations in estimations that may 
occur as a result of extremely heavy cloud cover. In order to evaluate the performance of the proposed approach, experiments were 
conducted using the Sirta and Laval datasets as well as a custom dataset (CAU dataset). The proposed approach achieved an R2 Score of 
0.98 on the CAU dataset. This is at least 0.1 higher than previous approaches. Because the proposed approach only consists of a single 
commercially available omnidirectional camera with a fish-eye lens and a panoramic tripod head, it is ideal for dynamic outdoor 
applications where the position and orientation of rigs may be frequently altered. These include light source estimation for solar power 
and augmented reality systems, as well as localized weather forecasting and building orientation optimization. In order to facilitate 
robust training with multiple large datasets, attention-based architectures such as the vision transformer could be employed in place of 
the computationally intensive CNN and LSTM components used in the proposed approach. In order to facilitate robust training with 
multiple large datasets, attention-based architectures such as the vision transformer could be employed in place of the computationally 
intensive CNN and LSTM components used in the proposed approach. In order to address the under or over-exposure challenges 
associated with using a fixed ND-Filter value, we intend to implement a network that dynamically identifies the most appropriate 
exposure for a given scene. In order to recover brightness distributions from under or over-exposed sky images, exposure correction 
techniques that leverage the relationship between frames shall also be explored. 

Availability of data and materials 

The implementation of the proposed method and the CAU-2 dataset are available at https://github.com/markompab/CNN-LSTM- 
Models-using-Elliptical-Constraints-for-Temporally-Consistent-Sun-Position-Estimation. 

Table 7 
Comparison of the proposed method’s inference times in milliseconds (ms) against those of previous approaches.  

No. of Input Images Single Multiple 

Method Sohag [4] Rahim [22] Hold 
-Geoffroy [12] 

Proposed 
CNN 

Proposed 
CNN-LSTM 

Proposed 
CNN-LSTM (Grad) 

Sun Position 
Estimation Time (ms) 

0.80 4.50 2.74 3.64 23.50 27.22  
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