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ABSTRACT
Purpose: This study developed and evaluated a deep learning ensemble method to automatically grade 
the stages of glaucoma depending on its severity.
Materials and Methods: After cross-validation of three glaucoma specialists, the final dataset comprised 
of 3,460 fundus photographs taken from 2,204 patients were divided into three classes: unaffected 
controls, early-stage glaucoma, and late-stage glaucoma. The mean deviation value of standard auto-
mated perimetry was used to classify the glaucoma cases. We modeled 56 convolutional neural networks 
(CNN) with different characteristics and developed an ensemble system to derive the best performance by 
combining several modeling results.
Results: The proposed method with an accuracy of 88.1% and an average area under the receiver 
operating characteristic of 0.975 demonstrates significantly better performance to classify glaucoma 
stages compared to the best single CNN model that has an accuracy of 85.2% and an average area 
under the receiver operating characteristic of 0.950. The false negative is the least adjacent misprediction, 
and it is less in the proposed method than in the best single CNN model.
Conclusions: The method of averaging multiple CNN models can better classify glaucoma stages by using 
fundus photographs than a single CNN model. The ensemble method would be useful as a clinical 
decision support system in glaucoma screening for primary care because it provides high and stable 
performance with a relatively small amount of data.
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Introduction

Glaucoma is one of the leading causes of blindness, is found in 
approximately 3.54% of the global adult population, or 
approximately 64.3 million people. This is expected to have 
increased to 76 million by 2020.1 According to a global report 
in 2010, glaucoma may be related to blindness in 2.1 million 
people and the severe loss of visual acuity in 4.2 million 
people.2 From an economic viewpoint, the disease results in 
substantial financial costs on both individuals and society, and 
these burdens increases as disease severity increases.3

Due to its chronic and irreversible nature, early detection of 
glaucoma is important, so early management can slow the 
progression. Treatment is relatively good in the early stages, 
whereas advanced glaucoma often has a poor prognosis.4 

Glaucoma screening has its limitations, including the cost 
and the motivating factor of subjective symptoms that most 
patients lack until later stages of the disease.5 The cost factor 
comes from the need for advanced expertise and experience in 
reading the relatively inexpensive and accessible fundus photo-
graphs, or it comes from the expensive optical coherence 
tomography (OCT) and standard automated perimetry.

There are fundamental shortcomings of fundus photogra-
phy and standard automated perimetry in glaucoma screening 
beyond the economic aspects. The interpretation of disc photo-
graphs is inherently subjective because of the broad range of 
normal optic nerve appearance and its overlap with pathologi-
cal findings.6 Furthermore, the major difficulty in detecting 
glaucoma, classifying stage and identifying progression of dis-
ease comes from the high variability and low disease signal in 
standard automated perimetry7,8 and there have been several 
attempts to integrate of retinal structure and visual 
function.9,10 Although combining structural and functional 
assessments have been shown to provide improved sensitivity 
and specificity than either modality alone,11 it is impossible to 
undertake as many tests as clinicians would like within 
a reasonable period of time in glaucoma screening. To over-
come these limitations, several studies suggest that deep learn-
ing algorithms based on clinical image data show potential for 
being used in early screening.12–17

Since Xiangyu et al.12 have demonstrated a method to clas-
sify glaucoma and normal groups automatically by combining 
the fundus photographs and convolutional neural networks 
(CNN), review of fundus photographs using CNN, one of the 
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deep learning technologies that is prominent in image pattern 
recognition field could be useful in glaucoma screening. Liu 
et al.18 have established a large-scale database of fundus images 
(241,032) for glaucoma diagnosis and developed from the 
fundus images glaucoma diagnosis with CNN, as an advanced 
deep learning system would be used in different settings with 
images of varying quality, patient ethnicity, and population 
sources. An et al.19 have built a machine learning classification 
model that combines the information of color fundus images 
and OCT data to classify glaucomatous and healthy eyes and 
this system should help to improve the diagnostic accuracy of 
detecting early glaucoma.

However, most previous studies have focused their deep learning 
techniques on either fundus photographs12,15–19 or OCT scans13,19 

and presented their results in terms of whether or not glaucoma was 
present, omitting the stage of the disease. The assessment of glaucoma 
needs to include the structural and functional changes in the eye as the 
disease progresses. The purpose of this study is to propose and 
evaluate the performance of a new cost-effective glaucoma screening 
test for primary care using a deep learning ensemble method with 
fundus photographs and CNN, considering various stages and struc-
ture-function correlations of the disease.

Materials and methods

This study employed a retrospective case-control design. 
Subjects from the Glaucoma Clinic of Konyang University 
Hospital and Kim’s Eye Hospital were enrolled between 
March 2016 and June 2018. The study followed the tenets of 
the World Medical Association’s Declaration of Helsinki. The 
Institutional Review Board of the Konyang University Hospital 
and Kim’s Eye Hospital reviewed and approved the study 
protocol and exempted informed consent for this study.

The fundus images were acquired by color imaging with 
a digital fundus camera (Nonmyd 7, Kowa Optimed, Tokyo, 
Japan) without pupil dilation. Glaucomatous structural changes 
were defined as images with any of the following conditions: 
enlargement of the cup-to-disc ratio of 0.7 or greater, cup-to-disc 
ratio asymmetry of >0.2 between fellow eyes, neuroretinal rim 
thinning, notching or excavation, disc hemorrhages, and RNFL 
defects in red-free images with edges being present at the optic 
nerve head margin. Subjects with the following conditions were 
excluded from this study: astigmatism with cylinder correction 
< – 3.0 D or > + 3.0 D, poor-quality conditions of fundus images 
that could interfere with glaucoma evaluation such as media 
opacities and motion artifacts, other optic neuropathies induced 
via inflammatory, ischemic, compressive, and hereditary factors, 
and other retinal pathologies such as retinal detachment, age- 
related macular degeneration, myopic chorioretinal atrophy, dia-
betic retinopathy, macular hole, retinal vascular obstruction, and 
epiretinal membrane.

Standard automated perimetry using the Swedish interactive 
thresholding algorithm (SITA-Standard) of central 24–2 perimetry 
(Humphrey field analyzer II, Carl Zeiss Meditec, Dublin, CA, 
USA) was performed from each subject with selected fundus 
photographs. A visual field (VF) was considered to be reliable 
when the fixation loss was less than 20% and the false positive 
was less than 33%. Only reliable VF data were included in the 
analysis, and test data were conducted on fundus photographs that 

were less than six months old. A glaucomatous VF defect was 
defined as the threshold of three or more adjacent points in the 
pattern deviation chart, that have a deviation with less than 5% 
probability of being due to chance with at least one point less than 
1%, or that the pattern standard deviation index is less than 5%.

Cross-sectional data of each eye from 2,801 subjects including 
all fundus photographs (1 to 13) and single field analysis of VF 
tests (1 to 7) between March 2016 and June 2018 were distributed 
to four glaucoma specialists (The Korean Glaucoma Society 
members). Only one fundus image per eye, a total of 4,445 fundus 
photographs were selected that were compatible with the ophthal-
mologic criteria of the CNN model. Reliable VF data within 
6 months in which the selected fundus photo was acquired were 
split into folds at the eye level. In cases wherein both eyes of 
glaucoma or unaffected control subject were eligible for the study, 
data from both eyes were chosen for inclusion. Based on the 
results of the structural and VF testing, the fundus photographs 
were labeled preliminarily according to the following five stages: 
unaffected control, preperimetric, mild, moderate, and severe 
glaucoma. Unaffected controls did not have any glaucomatous 
structural change or any VF defect. The preperimetric grade was 
defined as a definite structural glaucomatous change without any 
VF defects, and perimetric glaucoma was defined as a definite 
structural glaucomatous change with a corresponding VF defect. 
Perimetric glaucoma was graded on the MD value from the VF 
testing according to the Hodapp-Parrish-Anderson classification 
system.20 The mild group had a MD value greater than or equal 
to – 6 dB, the moderate group had an MD value of – 6 to – 12 dB, 
and the severe group had an MD value of less than – 12 dB.

Cross-validation of the preliminary label classifications was 
performed to maximize the efficiency of the CNN models. The 
pairing of fundus photograph and VF test results of each eye 
was reviewed by three other glaucoma specialists who did not 
participate in preliminary labeling. Each specialist labeled fun-
dus photographs according to the previous structural and 
functional criteria without the results of preliminary label 
classification. The results of the cross-validation were added 
to the data collection. Finally, each photograph for which all 
glaucoma specialists agreed upon was included in a final data-
set. The resolutions of the final dataset consisted of the average 
pixel of 2,270 (SD; 391, 95% CI; 2,257–2,283) in the height and 
3,412 (SD; 596, 95% CI; 2,144–3,432) in the width.

The flow of the image processing in the current study is 
shown in Figure 1. Image preprocessing was undertaken to 
clean-up the photographs of marks that do not affect the read-
ing, such as words, patient numbers, and the black area around 
the edges of the photograph. Red-free channel from the original 
color fundus image was taken to obtain a high-resolution image 
for RNFL. Data augmentation was performed to reduce over-
fitting and to maximize the training effect of the CNN models. 
The preprocessed images were rotated (90°, 180°, 270°) and 
enlarged by 25% with centering on the mid-points of the 
original image. Finally, the image resolution of each photo-
graph was converted to 299 × 299 × 3 (R × G × B) to input into 
the CNN architecture after filtering and resizing of the image. 
To optimize the parameters of the CNN architectures, the 
processed fundus photographs were passed through various 
image filters (bilateral, Gaussian, histogram equalization, med-
ian, and sharpening), and the results were used as input.
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Figure 2 shows a total of 56 CNN models comprised of the 
combined two color types of the fundus photograph (original and 
red-free images), seven types of image filters including a bypass and 
filter with all the rest, and four types of CNN architectures. For 
increasing the diversity of the CNN models, we simulated archi-
tectures with one or three fully connected layers of InceptionNet- 
V321 conversion (ICFC1 or ICFC3) and InceptionResNet-V222 

(IRFC1 or IRFC3). The final output stage of a total of four types 
of CNN architectures was composed of a softmax layer with three 
output nodes. The details of CNN architectures used in this study 
can be found in Supplementary Fig. S1. A graphic processing unit 
that supports TensorFlow 1.8, CUDA 9.0, and 5,120 CUDA cores 
was used in the process of training the 56 CNN models. The 
computer language used for system development was Python ver-
sion 3.5. OpenCV version 3.1 was used for the image processing of 
the fundus photographs. As this study applied 10-fold cross- 
validation, 90% of the whole dataset was used for training on 
CNN models and the rest was allocated for validation.

The final decision on the grading of the fundus photographs 
was performed by averaging the probabilities of each class, which 
became the output of 56 CNN models. The class with the highest 
probability was selected as a grade. The ensembled output for 
each class is calculated using the equation: 

PF Ck¼0;1;2
� �

¼
XN

i¼1
Ps ið Þ Ck¼0;1;2

� �
 !,

N 

where PF(Ck) is the final probability of Ck, k is class identifier, 
Ps(Ck) is the output from, a single CNN model, which is the 

probability of Ck on its model. N is the number of models used 
in the ensemble method.

The accuracy and the area under the receiver operating char-
acteristic (AUROC) were used to compare the diagnostic perfor-
mance between the best single CNN model, which showed the best 
performance out of 56 models and the ensemble method, and the 
AUROC for each of the three classes (C0, C1, and C2) were 
evaluated as a performance index to classify the stage of glaucoma.

The performance of the best single CNN model and the 
system combination of 56 CNN models were assessed and com-
pared using the Shapiro-Wilk test and the paired t-test. The 
algorithms were run a total of 10 times to evaluate the perfor-
mance using 10-fold cross-validation and the test number was 
less than 30, the Shapiro-Wilk test was performed to verify the 
normality in the data distribution. If the data satisfied normal 
distribution, then the paired t-test was used to compare the 
model performance, otherwise, the Mann-Whitney U test was 
performed. Data were recorded and analyzed using R version 
3.4.1 (R Foundation for Statistical Computing, Vienna, Austria), 
based upon a 5% probability of statistical significance.

Availability of materials and data

The datasets generated during and/or analyzed during the 
current study are not publicly available due to the research 
employs a retrospective case-control design with a waiver of 
informed consent, but are available from the corresponding 
author on reasonable request and with permission of The 

Figure 1. An overview of the image processing flow in the current study. The final image for convolutional neural network architecture of each photograph was 
prepared by image preprocessing, red-free channel extraction, data augmentation, filtering, and resizing process.
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Institutional Review Board of the Konyang University 
Hospital. Some representative fundus images in the current 
study can be found in Supplementary Fig. S2.

Results

The final dataset consists of 3,460 fundus photographs from 
2,204 subjects. The distribution and quantity per grade of the 
datasets before and after the data cross-validation are shown in 
Table 1. The number of images among some of the subgroups, 
which consisted of the five glaucoma grades, was insufficient to 
optimize CNN models, and the final dataset was reclassified 
into three classes. Three classes were the unaffected controls 
(C0), the early-stage glaucoma (the merged grades of preperi-
metric and mild grade; C1), and late-stage glaucoma (C2). As 
described in Table 2, in each experiment, the data were 

randomly sampled so that the training dataset and the valida-
tion dataset were equally distributed for each class, and the 
ratio of training to validation was 9:1.

The performance evaluation results of the all 56 CNN models 
and the ensemble method are documented in supplementary 
Tables S1-5 and box plots are plotted in supplementary Fig. S3-7. 
The best single CNN model was different depending on the 
performance index and classification. The model that used 
a single InceptionResNet-V2 and sharpening filter 
(S_C_IRFC1) was the best in accuracy and AUROC of C0, and 
the model that used a single InceptionResNet-V2 and all filters 
(A_C_IRFC1) was the best in AUROC of average, C1, and C2.

As shown in Table 3 and Figure 3, the ensemble results of 56 
models had higher mean scores of accuracy and AUROC, and 
lower variance of AUROC compared to the best single model. 
The average accuracy and AUROC value of the all classes were 
0.852 (95% CI, 0.835–0.869) and 0.950 (95% CI, 0.940–0.961) in 
the best single model and 0.881 (95% CI, 0.856–0.907) and 0.975 
(95% CI, 0.967–0.984) in the ensemble method, respectively. The 
AUROC and curves for the best single model and the ensemble 
method according to the glaucoma stages are reported in Table 4 
and Figure 4. The AUROC of C1 has remarkably increased from 
0.905 (95% CI, 0.888–0.922) in the best single model to 0.951 
(95% CI, 0.937–0.965) in the ensemble method. The analysis 
results of the performance of both methods were confirmed to 
have statistically significant differences (P < .05) in accuracy and 
AUROC. For a demonstration of the variance in performance, 

Figure 2. Concept diagram of ensemble method to combine 56 convolutional neural network models. The combination of two color channels of the fundus photograph, 
seven types of image filters, and four types of CNN architectures resulted in a total of 56 CNN models. The probability of each model was averaged for the final decision 
on the grading of the fundus photographs. CNN: Convolutional neural networks, ICFC1: InceptionNet-V3 with one fully connected layer, ICFC3: InceptionNet-V3 with 
three fully connected layers, IRFC1: InceptionResNet-V3 with one fully connected layer, IRFC3: InceptionResNet-V3 with three fully connected layers

Table 1. Demographic of the dataset.

Data cross validation

Group Before After Proportion (%) of remaining

Unaffected control 1,848 1,259 68.1
Preperimetric glaucoma 284 185 65.1
Mild glaucoma 1,045 784 75.0
Moderate glaucoma 570 563 98.8
Severe glaucoma 698 669 95.8
Total images 4,445 3,460 77.8
Number of patients 2,801 2,204 78.7
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receiver operating characteristic curves of individual folds are 
presented in supplementary Fig. S8-11.

The agreement between the predicted class by the algo-
rithms and the final dataset is summarized in Table 5. In 
most misprediction cases, the algorithms predicted the 
adjacent class such as C1 was incorrectly predicted as 
C2, followed by C2 as C1, C0 as C1, and C1 as C0 by 

the best single CNN model (S_C_IRFC1) and the ensem-
ble method, respectively. In comparison of the two algo-
rithms, the ensemble method had higher proportions in all 
correct prediction cases and lower proportions in mispre-
diction cases, except only one case that C2 was incorrectly 
predicted as C0 (0.2% in the best single CNN model and 
0.4% in the ensemble method).

Table 2. Distribution of the final dataset.

Class Name
Class 
Code Subgroup

Number of 
training set

Proportion in training 
dataset (%)

Number of vali-
dation set

Proportion in valida-
tion dataset (%)

Unaffected control C0 Unaffected Control 2,448 33.3 272 33.3
Early-stage glaucoma C1 Preperimetric 

glaucoma
1,224 16.7 136 16.7

Mild glaucoma 1,224 16.7 136 16.7
Subtotal 2,448 33.3 272 33.3

Late-stage glaucoma C2 Moderate glaucoma 1,224 16.7 136 16.7
Severe glaucoma 1,224 16.7 136 16.7
Subtotal 2,448 33.3 272 33.3

Total 7,344 100.0 816 100.0

Table 3. Comparison of diagnostic performance between the best single CNN model and the ensemble method.

Metrics Group
Mean 

(Standard deviation)
95% Confidence Interval 
(Minimum to maximum)

Shapiro-Wilk normality 
test (P) Paired t-test (P)

Accuracy (%) Best single CNN (S_C_IRFC1) 85.2 83.5–86.9 0.888 0.021
(0.023) (80.4–88.2)

Ensemble method 88.1 85.6–90.7
(0.034) (84.3–94.1)

AUROC Best single CNN (A_C_IRFC1) 0.950 0.940–0.961 0.508 < 0.001
(0.014) (0.923–0.967)

Ensemble method 0.975 0.967–0.984
(0.011) (0.958–0.994)

AUROC = Area under the response operating characteristic

Figure 3. Comparison of diagnostic performance between the best single CNN model and the ensemble method. The red and green box indicate the best single CNN 
model in accuracy and average AUROC, respectively, and the blue box indicates the ensemble method.
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Discussion

In this study, we investigated the performance of a newly devel-
oped deep learning ensemble method to classify glaucoma stages 
using fundus photographs and CNN. The ensemble method 
demonstrated significantly better performance and accuracy 
than the baseline model. Using this approach, the AUROC 
value of the early-stage glaucoma (0.951) suggested the promising 
potential for glaucoma screening in primary care.

Traditionally, fundus photograph is an essential tool for glau-
coma evaluation, because of convenience, affordability, and the 

clinical impact that has proven useful for documentation of the 
nerve’s appearance at a given time, allowing more detailed scrutiny 
then, and later comparison for change.6 Glaucoma screening by 
using fundus photography has not been recommended to the 
general population23,24 in part due to the fact that the optic nerve 
head has inter-individual variability and due to the detection of 
structural change at its early stages is usually dependent on sub-
jective interpretation.25,26 However, computer-aided diagnosis of 
fundus images has shown promise in the diagnosis of glaucoma 
which can overcome the inter-intra variability. Raghavendra et al.27 

have achieved the highest accuracy of 98.13% using only 18 layers 

Table 4. Comparison of the AUROC between the best single CNN model and the ensemble method according to the glaucoma stages.

Class 
(Class code) Group

Mean 
(Standard deviation)

95% Confidence Interval  
(Minimum to maximum)

Shapiro-Wilk 
normality test (P) P

Unaffected control (C0) Best single CNN (S_C_IRFC1) 0.980 0.972–0.987 0.043 0.014*
(0.010) (0.958–0.994)

Ensemble method 0.990 0.985–0.994
(0.006) (0.983–1.000)

Early-stage glaucoma (C1) Best single CNN (A_C_IRFC1) 0.905 0.888–0.922 0.966 <0.001**
(0.023) (0.869–0.939)

Ensemble method 0.951 0.937–0.965
(0.019) (0.920–0.989)

Late-stage glaucoma (C2) Best single CNN (A_C_IRFC1) 0.948 0.932–0.965 0.313 <0.001**
(0.022) (0.901–0.975)

Ensemble method 0.970 0.956–0.984
(0.818) (0.942–0.992)

* Mann-Whitney U test 
** Paired t-test 
AUROC = Area under the response operating characteristic

Figure 4. Receiver operating characteristic curves for the best single CNN model and the ensemble method according to the glaucoma stages. The red and blue line 
indicate receiver operating characteristic curves for the best single CNN model and the ensemble method, in the unaffected controls (a), the early-stage glaucoma (b), 
and the late-stage glaucoma (c). The ensemble method achieved significantly higher area under the receiver operating characteristic compared to the baseline model in 
all glaucoma stages, especially in the early-stage glaucoma (B).

Table 5. Proportion of the predicted class according to the algorithms compared to the final dataset.

Final dataset

Unaffected control Early-stage glaucoma Late-stage glaucoma

Predicted unaffected control (SD) Best single CNN (S_C_IRFC1) 31.2% 2.0% 0.2%
(1.3) (1.4) (0.4)

Ensemble method 32.0% 1.0% 0.4%
(0.8) (0.9) (0.5)

Predicted early-stage glaucoma (SD) Best single CNN (S_C_IRFC1) 2.7% 26.8% 3.8%
(1.5) (1.6) (1.1)

Ensemble method 2.4% 28.0% 2.9%
(1.4) (2.6) (1.4)

Predicted late-stage glaucoma (SD) Best single CNN (S_C_IRFC1) 0.9% 5.2% 27.3%
(1.0) (1.4) (1.9)

Ensemble method 0.4% 4.8% 28.1%
(0.7) (1.8) (2.2)
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of CNN. Rogers et al.28 have evaluated the performance of a deep 
learning-based artificial intelligence software for detection of glau-
coma from stereoscopic optic disc photographs in the European 
Optic Disc Assessment Study, and the system has obtained 
a diagnostic performance and repeatability comparable to that of 
a large cohort of ophthalmologists and optometrists. Shibata et al.16 

have validated the diagnostic ability of the deep residual learning 
algorithm in highly myopic eyes which makes the detection of 
glaucoma a challenging task because of the morphological differ-
ence from those of non-highly myopic eyes. Kim et al.29 have 
developed a publicly available prototype web application for com-
puter-aided diagnosis and localization of glaucoma in fundus 
images, integrating their predictive model.12–19,27–29

Although most of recent studies have been suggested numer-
ous potential and vision in this field, various stages and struc-
ture-function correlations of the glaucoma have received little 
attention. The results of our study show agree with those found 
in earlier investigations with an accuracy of 83.4–98.1%13,17,27–29 

and an AUROC of 0.887–0.996,12,14–19 and moreover this study 
enhanced the research by applying a third classification grade to 
the glaucoma severity based on functional tests. That third level 
of diagnostics can provide primary care with greater detail at an 
earlier stage improving the disease management, reducing the 
chances of blindness, and ultimately reducing the overall med-
ical costs to the patient. Binary classification, such as normal 
versus glaucoma suspect or normal versus glaucoma is not 
suitable for a screening test of glaucoma, since the disease is 
irreversible and shows different structural changes at the early 
and advanced stages. Even though the current study adopted the 
ternary (C0, C1, C2) approach to classify the severity of glau-
coma, the performance (the averaged AUROC, 0.975) was equal 
to, or superior to the results of previous studies that adopted 
binary classification.12,13,15,16,18,19 As a screening tool, the fatal 
false negatives are the least adjacent mispredictions, and even 
that are less in the ensemble method than in the best single CNN 
model in the current study (Table 5). The AUROC of C1 (0.951) 
in our study may have particular implications for the combina-
tion of deep learning technique and fundus photographs in 
glaucoma screening test.

Weak coordination between structure and function is 
another limitation of previous studies. Clinical data is often 
labeled by focusing only on structural tests including fundus 
photographs12,15–19,27–29and OCT scans,13,19 although, glau-
coma is a chronic progressive optic neuropathy with corre-
sponding glaucomatous VF defects. In addition, the results of 
the current study were not inferior to an attempt to use deep 
learning for analysis of functional test (AUROC 0.926) that 
preperimetric glaucomatous VF could be distinguished from 
normal controls.30 Datasets reviewed by the combination of the 
fundus photographs, which is the most accessible test, and the 
Humphrey VF test, which is a functional test mainly used for 
the diagnosis of glaucoma and grading of stages will enhance 
the performance of a deep learning model.

The second main feature of this study is using the ensemble 
method. Major of the previous studies used one CNN 
model.12,15–19,27 The experiments of this study confirmed that 
the performance in individual CNN models such as InceptionNet- 
V3 and InceptionResNet-V2 was not significantly different (sup-
plementary Tables S1-5). On the other hand, the results obtained 

by assembling the learning of multiple CNN models by diversify-
ing the conditions and characteristics of model learning were 
found to be more advanced than when using only one CNN 
model in all aspects of bias and variance of the performance 
evaluation results (Figure 3 and Fig. S3-7). In fact, the single 
CNN model that used all filters showed higher AUROC of average, 
C1, and C2 than that of a single filter, but were not superior to the 
ensemble method (supplementary Tables S1-5). By verifying each 
model that used the processed fundus photographs, we found that 
the readings of some fundus photographs were different than 
others. We hypothesized these readings could be improved by 
combining several CNN models with diversity, and that were 
supposed to advantages of the ensemble method despite its archi-
tectural complexity.

Christopher et al.14 recently published their results of the per-
formance of deep learning architectures and transfer learning for 
detecting glaucomatous optic neuropathy in fundus photographs. 
They stratified glaucomatous optic neuropathy by the degree of 
functional loss into two groups: a mild group with a VF mean 
deviation (MD) better than or equal to – 6 dB and moderate-to- 
severe group with a VF MD worse than – 6 dB. Their deep learning 
model achieved an AUROC of 0.89 in identifying glaucomatous 
optic neuropathy with mild functional loss. It is difficult to directly 
compare the diagnostic performance of the present CNN algo-
rithm with those in Christopher et al. because their dataset con-
tains a greater number of fundus photographs (n = 14,822) from 
a racially and ethnically diverse group of individuals than the 
current study. However, our ensemble method may help account 
for better diagnostic accuracy in identifying the mild-stage glau-
coma (C1).

The third major feature of this study is the superior 
quality of the fundus photographs used in the CNN model. 
Li et al.15 used the dataset contained approximately 40,000 
fundus photographs in identifying glaucomatous optic neu-
ropathy, and their AUROC was 0.986. Interestingly, the 
proposed ensemble method with less than 10% of the dataset 
achieved an AUROC of 0.990 in distinguishing unaffected 
control (C0) from glaucoma cases. As stated previously, 
classifying the stage of glaucoma was conducted by review-
ing the fundus photographs with reliable VF test data, and 
the final dataset was decided by the glaucoma specialists 
unanimously. Actually the model using the dataset after 
the cross-validation revealed an excellent performance com-
pared to before the cross-validation, even though the data 
size of total fundus images decreased from 4,445 to 3,460 
(77.8%) after the cross-validation. Although the detailed 
data were not shown, this was probably because ambiguous 
cases in the assessment of glaucoma such as retinal changes 
due to high myopia, fundus photographs unrelated to VF 
tests, and vice versa were excluded after the cross-validation.

Nonetheless, this study has some limitations that need to be 
considered. First, the findings were obtained from a highly popu-
lation-specific (Korean) subjects. Furthermore, good classifying 
performance using the entire area in fundus images, not limited 
to the optic disc area may be related to the that the RNFL defect is 
much easier to be identified in Asians, who have more pigment in 
the retinal pigment epithelium layer, as compared to Caucasians.31 

However, additional data acquisition and verification in different 
racial groups will be needed for a more generalizable model. 
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Second, it is necessary to investigate the CNN models that can 
classify the grade of glaucoma in more detail. In particular, patients 
with glaucoma may be co-morbid for many conditions of exclu-
sion criteria in our study such as high myopia and discrepancy 
between structure and function test. Although it may be difficult to 
approach fundamentally, further research on the challenging cases 
is expected to provide more information and generalizability to 
help in real clinical practice. Third, extra studies for comparing the 
performance of the deep learning ensemble system against a panel 
of practicing fundus photographs including glaucoma specialists, 
general ophthalmologist, residents in ophthalmology, and non- 
ophthalmological physicians may clarify its necessity and clinical 
effectiveness in primary care. Fourth, in order to collect enough 
fundus images, the cut-off value for the false-positive rate (33%) in 
this study is higher than the standard cut-off value (20%) in other 
studies. The proportion of the false-positive rate exceed 20% are 
higher in unaffected control and preperimetric glaucoma groups, 
and that may be related to a retrospective study design. Finally, 
additional studies on the image processing and the optimization of 
the ensemble method considering whether to average or to add 
weighted values per individual model are needed for enhancing 
the performance.

In conclusion, this study demonstrated a newly developed deep 
learning ensemble method and confirmed the possibility of classi-
fying the severity of glaucoma using fundus photographs. It is 
suggested that the key to high performance may be improving the 
quality of the dataset and combining multiple CNN models. The 
CNN ensemble method proposed in this study can be used as 
a tool for a clinical decision support system to screen the early 
stages and to monitor the progression of glaucoma.
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