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Purpose: Volumetry is used in polycystic kidney and liver diseases (PKLDs), including autosomal dominant polycystic kidney dis-
ease (ADPKD), to assess disease progression and drug efficiency. However, since no rapid and accurate method for volumetry has 
been developed, volumetry has not yet been established in clinical practice, hindering the development of therapies for PKLD. This 
study presents an artificial intelligence (AI)-based volumetry method for PKLD.
Materials and Methods: The performance of AI was first evaluated in comparison with ground-truth (GT). We trained a V-net-
based convolutional neural network on 175 ADPKD computed tomography (CT) segmentations, which served as the GT and were 
agreed upon by 3 experts using images from 214 patients analyzed with volumetry. The dice similarity coefficient (DSC), interob-
server correlation coefficient (ICC), and Bland–Altman plots of 39 GT and AI segmentations in the validation set were compared. 
Next, the performance of AI on the segmentation of 50 random CT images was compared with that of 11 PKLD specialists based on 
the resulting DSC and ICC.
Results: The DSC and ICC of the AI were 0.961 and 0.999729, respectively. The error rate was within 3% for approximately 95% of 
the CT scans (error<1%, 46.2%; 1%≤error<3%, 48.7%). Compared with the specialists, AI showed moderate performance. Further-
more, an outlier in our results confirmed that even PKLD specialists can make mistakes in volumetry.
Conclusions: PKLD volumetry using AI was fast and accurate. AI performed comparably to human specialists, suggesting its use 
may be practical in clinical settings.
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INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD) 
is the most common life-threatening hereditary kidney dis-
ease, and 50% of ADPKD patients aged 60 years or older 
progress to end-stage renal disease [1,2]. Furthermore, up to 
94% of ADPKD patients aged over 35 years present with 
multiple liver cysts. As patients age, kidney and liver vol-
ume steadily increase, causing not only a decline of renal 
function, but also associated symptoms and complications 
that severely impair quality of life (such as pain, infection, 
and malnutrition [3-5]). 

Volumetry of the kidneys and liver is one of the most 
important biomarkers for quantifying the severity of disease 
and the effectiveness of treatments [6-8]. Recently, various 
clinical trials have been conducted to evaluate disease-modi-
fying agents. However, the major “rate-limiting factor” is the 
inefficient process of measuring volume. Two-dimensional 
stereology has been used for volumetry [9]; this method is 
based on multiple tomographic images, obtained through 

modalities such as computed tomography (CT) and magnetic 
resonance imaging (MRI), and requires the manual annota-
tion of the kidney and liver regions in each image slice.

Since volumetry is a laborious operation, data acquisi-
tion inhibits reproducibility and the degree to which volum-
etry can be used productively. Although we need adequate 
amounts of reproducible data for academic advances in the 
understanding of this important condition, the difficulties 
in acquiring volumetric data lead to other problems. First, 
if  volumetry is the most important biomarker of disease 
severity, we must determine whether the measurements are 
mathematically rigorous. In this field, paradoxically, since 
volumetric data are so precious, even if the measurements 
might not be mathematically perfect, we have had no choice 
but to match measurements statistically by minimizing in-
ter- or intraobserver variability to overcome human error. 
Although efforts have been made to supplement accuracy 
and reproducibility, it is still difficult to verify each vol-
ume measurement. Furthermore, it is unclear whether the 
intraobserver variability and interobserver variability are 
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Fig. 1. Sequential experiments to evaluate the performance of our framework for automatic segmentation and volumetry. (A) The first phase illus-
trates the process of multiorgan segmentation. The volumetric performance of our framework on 39 CT scans (3,302 image slices) in the valida-
tion set is analyzed in Fig. 3. (B) In the second phase of the experiment, the performance of our framework on 50 randomly selected PKLD image 
slices was compared to that of 11 PKLD experts. The results of the comparative analysis are illustrated in Fig. 3 and Fig. 4. CT, computed tomogra-
phy; GT, ground-truth; ICC, interobserver correlation coefficient; AI, artificial intelligence; PKLD, polycystic kidney and liver disease.
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evaluated for each volume measurement. Second, because 
acquiring moderate to severe liver volumetry is especially 
difficult, the level of academic knowledge regarding volume 
progression and treatment of polycystic liver disease (PLD) 
remains limited. 

The clinical applications of  deep learning algorithms 
are rapidly increasing. In particular, the level of research in 
the field of medical image segmentation has dramatically 
improved. However, owing to the morphological complex-
ity of the kidneys and liver, automatic segmentation of the 
polycystic states of these organs remains one of the most 
challenging aspects of medical image processing. Herein, we 
present results showing the powerful performance of our 
framework for multiorgan segmentation of polycystic kid-
ney and liver disease (PKLD).

MATERIALS AND METHODS

1. Two phases of experiments
 In the initial experiment (Fig. 1), volumetry was pro-

duced, which was trained with 175 cases. Table 1 presents 
information on the training data. The five participating hos-
pitals utilized seven different types of CT scanners, which 
collected data in various formats. The first experiment was 
conducted to determine the accuracy of the liver and kidney 
volumes derived from 39 sets of test data (Fig. 1A). To illus-
trate the agreement between the ground-truth (GT), which 
was determined by human specialists, and the calculated 
volume based on deep-learning-based automatic segmenta-
tion, Bland–Altman analysis and interobserver correlation 
coefficients (ICCs) were used (Fig. 2A, B). The level of data 
acceptability in terms of error was evaluated in accordance 
with the clinical features of PKLD (Fig. 2C).

The second experiment was designed to compare the 
segmentation performance of our framework with that of 
11 human PKLD experts (Fig. 1B). This experiment was con-
ducted to evaluate whether our framework could overcome 
the disadvantages of humans and show stable performance 
in randomized conditions. We randomly selected 50 image 
slices from the test data. The sample size was calculated us-
ing G*Power 3.1.5 (Franz Faul, Universität Kiel, Kiel, Ger-
many). A simulation showed that the standard deviation 
of difference could be assumed to be 70. Using a power (1-b 
error probability) of 0.95, an assumed effect size of 0.5, and a 
significance level of 0.05, the size of the sample was calculat-
ed to be 45 cases or more. Receiver operating characteristic 
(ROC) curves (Fig. 3A) were used to compare performance, 
and heatmap visualizations were developed (Fig. 4B) based 
on the ICC and the dice similarity coefficient (DSC) to com-Ta
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pare the correlations between the specialists. 

2. Datasets
Axial CT images were acquired from 214 patients with 

a diagnosis of ADPKD. In the entire group, 206 cases (96.3%) 
had liver cysts, and 39 cases (18.2%) had moderate to severe 
PLD. We used a training set of roughly 80% of the dataset 
(175 cases) and a validation set of roughly 20%. Each case 
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had a different number of slices, ranging from 29 to 256. The 
training and test data were sourced from seven CT scanners 
used in the past two decades at five hospitals to ensure a 
representative diversity of image formats and characteris-
tics. In the model training process, we sought to improve the 
quality of the data by working with three PKLD specialists 
to conduct at least five rounds for data refinement per case 
to reduce the ambiguity of the labels. The total number of 
images was 12,040, and the number of images with the tar-
get organs was 3,302. Analyzing the error rate for test data, 
95% confidence intervals and mean bias were 0.47 and 0.70. 
The ratios of noncontrast and contrast data in the training 
and test datasets were 87.4:12.6 and 74.4:25.6, respectively.

3. Convolutional neural network architecture
In a deep learning network, complex mathematical op-

erations are performed to achieve a specific goal based on 
the input data. In other words, the network learns millions 
of weights (parameters) to reach its intended aim. A suitable 
deep learning method for image learning is the convolu-
tional neural network (CNN), which is composed of several 
layers that learn hierarchical features without relying on 
handcrafted features. Taking images as input, to imple-
ment tasks such as segmentation, it is necessary to acquire 
a pixel-wise classification from the CNN. As shown in Fig. 
5, we applied a network based on a V-net (SYN-PCK-AN. 

v1.0.0; Synergy A.I. Co. Ltd., Chuncheon, Korea) for ADPKD 
segmentation to use information from successive frames 
[10]. However, unlike the original V-net, our model used 16 
image slices of three-dimensional CT image chunks as the 
input and a pixel-wise sigmoid operation, instead of softmax, 
as the output for the binary classification. To achieve stable 
and fast learning, batch normalization was used to properly 
initialize every convolution layer.

4. The training process of our model
To alleviate overfitting and to achieve good generaliza-

tions, we applied three different augmentation methods to 
the training set: the random crop method, the random scaled 
method, and cutout augmentation [11,12] with 80% probabil-
ity. We applied a random-position zero mask to images with 
sizes ranging from L/5 to L/4, where L is the length of the 
image. Each input was 16 sequential slices selected from the 
training cases. We used a sampling size of 8 (batch-size) for 
each iteration, binary cross entropy loss as our cost function, 
and the Adam optimizer for weight updating. All experi-
ments were performed using the Pytorch framework. 

The output of prediction consisted of foreground pixels 
(kidneys and liver) and background pixels, where pixels with 
a probability higher than the threshold were regarded as 
foreground pixels. The selected threshold was based on the 
analysis of the ROC space. We also computed the precision, 
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recall, and dice scores.

5. Total kidney volume computation
All CT datasets were manually segmented by two clini-

cal experts and one trained staff member to obtain GT an-
notations of the kidneys and liver. The total volume of the 
kidney and liver was computed as the product of the num-
ber of foreground pixels multiplied by the pixel spacing in 
the x and y directions and the corresponding slice thickness. 

6. Statistical analyses 
To evaluate the performance of our automated segmen-

tation method, the DSC was used as a statistical validation 
metric to assess the accuracy of spatial overlap between the 
predicted and true manual segmentation labels. The ICC 
was used to evaluate the reliability and reproducibility of 
the automated method with respect to the standard manual 
method. Furthermore, Bland–Altman analysis was used to 
assess the agreement between the values estimated from the 
automated segmentation method and those obtained from 
the corresponding manual segmentation. Both absolute and 
relative differences were computed using Bland–Altman 
plots.

7. Ethical approval
This study was approved by the Institutional Review 

Board of Chuncheon Sacred Heart Hospital (IRB approval 
number: 2017-11-106). All research was performed in accor-
dance with relevant guidelines/regulations, and informed 
consent was obtained from all participants.

RESULTS

1. Phase I: volume calculation accuracy
Fig. 2A depicts the scatter plot between the volume based 

on GT and the volume based on the automatic segmentation 
of our framework. The accuracy of the volume calculations 
in our framework was demonstrated by a DSC of 0.961 and 
an ICC of 0.999729 (Fig. 2A, p<0.00001). In the Bland–Alt-
man analysis (Fig. 2B), the differences between the GT-based 
volume and the inference-based volume were converted to 
percentage values. In terms of the level of acceptability, an 
unacceptable case was defined as 0% (Fig. 2C). In our first 
experiment, 94.9% of the volume measurements made using 
our framework showed ‘perfectly acceptable’ or ‘acceptable’ 
accuracy, confirming the powerful promise of this frame-
work to ensure data integrity through a simple review and 
modification process by experts. Table 2 shows the fair accu-
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ing volumetric convolutions. Conv., convolutional.
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racy of volume calculation by artificial intelligence (AI). 

2. Phase II: comparison of segmentation perfor-
mance with human experts
All 11 human experts had more than 3 years of profes-

sional experience and were designated to perform manual 
annotations on 50 randomly selected image slices. We placed 
no time limitations, and requested them to review the re-
sults that they produced. Notable findings are shown in 
Fig. 4A. Except for N06, the DSCs and ICCs of 10 specialists 
and our framework had a fairly close match to GT, ranging 
from 0.957 to 0.975 and from 0.966 to 0.999, respectively. The 
performance of our framework roughly corresponded to the 
average performance of the 10 specialists, with a DSC and 
ICC of 0.962 and 0.992, respectively. However, the perfor-
mance of N06 was a significant outlier, as shown in Fig. 4B. 
In this case, some of the annotated photographs were mixed 
and badly processed, resulting in accidental errors. Although 
N06 is a specialist in ADPDK with 9 years of experience, 
the results of N06 showed a DSC of 0.930 and an ICC of 0.897 
compared to GT, whereas the mean DSC and ICC of the 
others were 0.992 and 0.964, respectively. This is an excel-
lent example illustrating the human errors that can occur 
when creating and analyzing clinical cohorts, and it is one 
reason thorough censorship is required. Fig. 3A illustrates 
the segmentation accuracy of our framework through an 
ROC curve, which indicates the noninferiority of its perfor-
mance compared to the manual annotation of other PKLD 
specialists. In addition to its expert-level performance, the 
productivity of our framework was 8,333.3 image slices/hour, 
which is over 500 times the experts’ average of 15.9 image 
slices/hour (Fig. 3B). Assuming an average of 60 image slices 
per patient, our framework showed a overwhelming speed 
advantage of 21.6 slices/patient, compared to 12,960 slices/pa-
tient by the human doctors.

DISCUSSION

Recently, several techniques for automated segmentation 
have been proposed to overcome the limitations of manual 
annotation, including stereology and semi-automatic seg-

mentation [13-18]. Due to marked anatomical variations, the 
automatic segmentation results of PKLD in previous research 
have left much to be desired. About a decade ago, when there 
were no expectations for deep-learning-based automatic seg-
mentation, a prospective cohort of volumetry (CRISP) was 
launched to evaluate ADPKD progression and to pursue 
objective volume measurements by a number of clinicians. 
To minimize the human factors in the cohort, the proportion 
of true values was calculated on the basis of comparisons 
with the GT (the volume of phantom kidneys), and inter- and 
intraclass reliability coefficients (Pearson correlations) were 
reported. The other clinical trials of ADPKD, including ALA-
DIN, DIPAK 1, ELATE, and PREVENT-ADPKD [19-22], struc-
tured their study designs to minimize unavoidable human 
factors in volume measurements of target organs. However, 
we could find no detailed protocols for minimizing human 
factors in calculating volumetry in a large-scale cohort [23] or 
the major clinical trials [6,24-26]. 

If deep-learning-based automatic segmentation can guar-
antee a certain level of performance, we could utilize the 
consistent output of deep-learning-based automatic segmen-
tation based on a fixed algorithm and explore its potential 
to overcome human factors. Technically, for deep-learning-
based automatic segmentation, the intra- and interobserver 
variabilities are zero for a given algorithm. As such, the 
statistical assessment of the agreement of results would no 
longer be necessary, biomarkers would be estimated with 
mathematical rigor, and researchers could concentrate on 
the effectiveness of various management strategies based on 
objective output. 

This AI-assisted segmentation platform, which showed 
expert-level segmentation accuracy, has the advantage of 
minimizing intra- and interobserver variability, especially 
when comparing volumes before and after drug treatment. 
This automatic system will dramatically increase the pro-
duction of reliable data with mathematical rigor, and will 
significantly contribute to the evaluation and development 
of appropriate therapeutic agents for this intractable dis-
ease. 

For a total of 214 cases, 3,302 images were produced by 
the ADPKD specialists. These images were divided into 175 

Table 2. Comparative analysis of PKLD volume calculations between ground-truth and AI-driven volumetry

 Manual (ground-truth) AI-driven p-value by t-test
Volumetry Training data Test data Training data Test data Training data Test data
TKV (mL) 3,596.4±456.7 4,562.7±547.2 3,524.5±463.2 4,555.5±539.6 <0.001 <0.001
htTKV (mL/m) 2,247.7±367.3 2,887.8±385.5 2,245.6±352.2 2,897.1±374.2 <0.001 <0.001

Values are presented as mean±standard deviation.
PKLD, polycystic kidney and liver disease; AI, artificial intelligence; TKV, total kidney volume; htTKV, height-adjusted total kidney volume.
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training data and 39 test data, the AI was trained using the 
training data, and the model performance was evaluated 
through internal validation. Then, the objective performance 
of the model was evaluated using the test data, which was a 
completely independent dataset. In a previous paper, the AI 
was trained using 244 CT cases [19,27]. 

The significance of using the combined volume of the 
liver and the kidneys (total abdominal volume, or TAV) is 
shown in the current paper. This combined volume is known 
to be associated with malnutrition and abdominal symptoms. 
For example, Suwabe et al. [28] showed that height-adjusted 
total kidney volume (htTAV) is correlated with abdominal 
distension. In addition, Ryu et al. [5] reported a significant 
relationship between htTAV and malnutrition. In the case 
of drugs (e.g., somatostatin analogues) that affect both total 
liver volume and TKV (total kidney volume), the combined 
volume can be used as an effective biomarker [21].

Although a previous study on volumetry in a large-scale 
ADPKD cohort using MRI has recently been reported, we 
chose to use CT data to develop our segmentation frame-
work. In fact, the use of MRI is not straightforward in many 
countries, including Korea. MRI has several disadvantages 
that make it unsuitable for volumetry studies. First, MRI is 
expensive and image acquisition takes too long. Particularly 
for patients with severe organomegaly, volumetry is rou-
tinely required in clinical practice. However, because of the 
symptoms of mass effects (e.g., dyspnea and pain), patients 
often have difficulties maintaining a supine position for a 
long time and cannot hold their breath for the length requr-
ied for routine MRI settings. MRI data acquired under these 
circumstances have fundamental drawbacks that make ac-
curate volume measurements impossible. Second, MR images 
from various institutions are difficult to collect in a consis-
tent format. Data inconsistency is the predominant reason 
for which a considerable amount of data is discarded, and 
this issue complicates multicenter study protocols. 

There are a few limitations to the current study. We had 
to follow the traditional way of setting the GT, using train-
ing data refinement to reduce the ambiguity of the labels at 
least five times per case with three PKLD specialists. Still, 
there is no innovative way for identifying the ‘real’ GT ex-
cept by making calculations after organ resection. A further 
limitation is that we only analyzed CT images; however, 
considering the high expense and difficulties in the clini-
cal utization of MRI discussed above, CT imaging could be 
a reasonable solution for volumetry. CT is also more useful 
than MRI for observing complications of ADPKD, such as 
stones and calcifications. CT scans often require the injection 
of contrast medium, which may have nephrotoxic effects, 

because manual tracing of the kidney and liver is particu-
larly challenging in CT data acquired without the injection 
of contrast medium. However, more than 85% of our cases 
(182/214) had noncontrast imaging, and our AI model showed 
a very high performance for these cases. This finding un-
derscores the potential value of this technique, as it does not 
require the use of contrast. Noncontrast CT provides a rela-
tively good image compared with an MR image. 

In addition to the potential of this approach for research 
purposes, rapid communication of volumetric information to 
patients can promote democratization of information in the 
clinical setting, in which information asymmetry is a severe 
problem. We believe that the remarkable outcomes of the 
current study will be an important milestone on the path 
toward the full-scale application of AI in our clinical field. 

CONCLUSIONS

In PKLD, volumetry using AI showed overwhelming 
speed compared with humans. Moreoever, AI was not infe-
rior to human specialists in terms of accurary and perfor-
mance. Considering that even PKLD specialists can make 
mistakes, AI might be used effectively in clinical practice.
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