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Feasibility of artificial intelligence-based decision 
supporting system in tolvaptan prescription for 
autosomal dominant polycystic kidney disease
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Purpose: Total kidney volume (TKV) measurement is crucial for selecting treatment candidates in autosomal dominant polycystic 
kidney disease (ADPKD). We developed and investigated the performance of fully-automated 3D-volumetry model and applied it 
to software as a service (SaaS) for clinical support on tolvaptan prescription in ADPKD patients.
Materials and Methods: Computed tomography scans of ADPKD patients taken between January 2000 and June 2022 were ac-
quired from seven institutions. The quality of the images was manually reviewed in advance. The acquired dataset was split into 
training, validation, and test datasets at a ratio of 8.5:1:0.5. Convolutional, neural network-based automatic segmentation model 
was trained to obtain 3D segment mask for TKV measurement. The algorithm consisted of three steps: data preprocessing, ADPKD 
area extraction, and post-processing. After performance validation with the Dice score, 3D-volumetry model was applied to SaaS 
which is based on Mayo imaging classification for ADPKD.
Results: A total of 753 cases with 95,117 slices were included. The differences between the ground-truth ADPKD kidney mask and 
the predicted ADPKD kidney mask were negligible, with intersection over union >0.95. The post-process filter successfully removed 
false alarms. The test-set performance was homogeneously equal and the Dice score of the model was 0.971; after post-processing, 
it improved to 0.979. The SaaS calculated TKV from uploaded Digital Imaging and Communications in Medicine images and classi-
fied patients according to height-adjusted TKV for age.
Conclusions: Our artificial intelligence-3D volumetry model exhibited effective, feasible, and non-inferior performance compared 
with that of human experts and successfully predicted the rapid ADPKD progressor.

Keywords: Artificial intelligence; Image processing, computer-assisted; Multidetector computed tomography; Polycystic kidney, 
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INTRODUCTION

Autosomal dominant polycystic kidney disease (ADPKD) 
is the most common hereditary and progressive disease with 
an average prevalence of 2.7 in 10,000 people. ADPKD ac-
counts for approximately 10% of end-stage renal disease and 
is characterized by progressive, fluid-filled cyst formation 
originating from 1% to 2% of the nephrons [1]. The kidney 
gradually enlarges due to compensatory hyperfiltration in 
non-cystic nephrons and this renal hypertrophy results in 
pain, a palpable mass, hypertension, hematuria, cyst rupture, 
cyst infection, and ultimately, renal failure [2]. There has 
been no definite treatment for ADPKD until the 2010s, al-
though tolvaptan, a vasopressin V2 receptor antagonist, has 
shown efficacy in reducing the annual increase in total kid-
ney volume (TKV) and renal function deterioration [3]. TKV 
is an important parameter for predicting disease progression 
and has been suggested as a key prognostic factor to identify 
patients who are at risk of rapid progression to renal failure 
[4,5]. 

Traditionally, manual labeling of  kidney contours on 
each computed tomography (CT) scan or magnetic resonance 
image (MRI) has been considered the most accurate TKV 
measurement system [6,7]. However, the entire process is 
laborious, time-consuming, and carries the risk of human 
error and interobserver discrepancy. Consequently, robust 
investigations of  more efficacious and accurate tools for 
TKV calculation have been conducted. Numerous studies 
have reported the functional outcomes of semi-automated 
measurement and deep learning-based artificial intelligence 
(AI) volumetry in various image modalities, including CT, 
MRI, and ultrasound (US) [8]. We had previously developed 
an AI-based volumetry framework for polycystic kidney and 
liver diseases [9]. The performance of our AI was fast and 
accurate with outcomes that are highly comparable to those 
from human specialists. In the present study, we upgraded, 
trained, and applied our deep learning volumetry system to 
larger clinical datasets and investigated its performance on 
ADPKD patients. Next, we applied our AI-based volumetry 
to develop software as a service (SaaS) which is based on 
Mayo imaging classification to identify the ADPKD rapid 
progressors.

MATERIALS AND METHODS

1. Ethics and data availability statement
This study was approved by the Institutional Review 

Board (no. 2022-08-028) of  the Ewha Womans University 
Mokdong Hospital, and informed consent was waived due 

to the retrospective study design. In addition, current study 
was performed according to TRIPOD-AI reporting guide-
line. The reference source cord for GitHub is follows: https://
github.com/Project-MONAI/tutorials/tree/main/modules/dy-
nunet_pipeline.

2. Dataset information and study population
We have established a polycystic kidney CT database, 

which includes both raw data and a hand-labeled, semantic-
segmentation dataset inspected by experts [9]. ADPKD-
related data were sorted from the existing raw data and ad-
ditional CT images of ADPKD cases taken between January 
2000 and June 2022 were acquired from seven hospitals un-
der two medical centers. Patients undergoing dialysis at the 
time of the CT scan and those with any noisy data on CT 
scans were excluded. All images were manually reviewed by 
radiologists in advance. Pooled data from institutions were 
combined to construct a CT-ADPKD database. 

3. Overview of the training process
The TKV calculation algorithm of our study extracts the 

ADPKD area by first analyzing the abdominopelvic CT im-
ages based on the well-trained, semantic-segmentation model 
named “3D Dynamic U-Net”, a type of convolutional neural 
network-based segmentation model. The AI segmentation 
model first undergoes a process of learning large amounts of 
data to transform and distinguish functional relationships 
of data consisting of pairs of a 3D CT array and a correct-
3D CT Mask array. The overall workflow of the algorithm 
consists of  three steps: data preprocessing, ADPKD area 
extraction, and post-processing. After going through all the 
processes of the algorithm, a 3D segment mask is obtained 
and TKV is calculated.

4. Preprocessing 
The range of Hounsfield Unit values considered mean-

ingful were clipped and converted to a float32 data type in 
the range of 0.0 to 1.0 so that the graphic process unit could 
accelerate it. Next, missing values were input, noisy data 
were smoothed, identified outliers were removed, and solvent 
data inconsistency was checked. The process of handling 
noisy data was replaced with an image preview by radiolo-
gists. In the case of patients with duplicated process IDs, 
only samples with non-overlapping series were included in 
the dataset.

5. ADPKD area extraction
We applied a network based on a 3D Dynamic U-Net 

for ADPKD segmentation. The model was provided by the 

https://github.com/Project-MONAI/tutorials/tree/main/modules/dynunet_pipeline
https://github.com/Project-MONAI/tutorials/tree/main/modules/dynunet_pipeline
https://github.com/Project-MONAI/tutorials/tree/main/modules/dynunet_pipeline


257Investig Clin Urol 2023;64:255-264. www.icurology.org

Artificial intelligence for kidney volumetry

MONAI Project, which is an open-source project for the lat-
est model baseline codes associated with medical AI (e.g., 3D 
Dynamic U-Net, 2D/3D Residual U-Net, and 3D UNetR). Ei-
ther 2D or 3D arrays were input to 3D Dynamic U-Net, and 
residual block and deep supervision were applied for learn-
ing. Deep supervision calculates the final loss by multiplying 
each loss term by weight after calculating the loss between 
all featured maps and the ground-truth mask images (Fig. 1).

In addition, instance normalization was robustly applied 
to learn the heavy model, even in small batch sizes. To pre-
vent 3D input data from causing out-of-memory problems, 
we split the input data into small 3D patches. In this process, 
3D patches were extracted in a sliding window to prevent 
the occurrence of grid pattern artifacts in the segmentation 
mask inferred by the model. The batch size was set to 1 (one 
case), and the learning rate was set to decay according to 
(1-epoch/max_epochs)×0.9, and training was performed for 
220 epochs. Data augmentation was applied with the follow-
ing settings:

- Random zoom: min_zoom 0.9, max_zoom 1.2 (15%)
- Random Gaussian noise: std 0.01 (15%)
- Random vertical flip (50%)

6. Post-processing
Area extractions performed by AI sometimes contain 

false-alarm cases with holes between slices. Although these 
false-alarm cases might not be a major problem in the TKV 
calculation, they should be removed during post-processing 

as they negatively impact the overall quality of  the 3D 
reconstruction. As the kidney should maintain a constant 
shape without breaking, the slice with a false alarm was 
interpolated and filled. The pseudo-code of the false-alarm 
removal algorithm was executed on both kidneys, and im-
ages were merged to obtain a 3D mask of the kidney with 
complete connectivity. 

7. TKV calculation
The 3D mask volume was constructed using the inferred 

segmentation masks after completion of all the mentioned 
processes. TKV was calculated by applying the 3D volume to 
the volume calculation equation:

TKV (mm3)=pixel spacing (width, height)×slice thickness 
(depth)×total number of voxel

The full flow chart of our algorithm is graphically sum-
marized in Fig. 2.

8. Development of SaaS from AI-based kidney 
volumetry
After validation of our AI-based kidney volumetry, we 

developed SaaS (SYN-IGN-AN, IgniteTM, Synergy A.I. Co. 
Ltd.) to identify the rapid progressors among ADPKD pa-
tients. Mayo imaging classification is currently the best pre-
diction model for selecting rapid progressors among ADPKD 
patients and is also a good predictor for Korean ADPKD 
population [10]. The SaaS included uploading of Digital Im-
aging and Communications in Medicine (DICOM) images for 

Input
(512,512,256)

Skip connection

Conv module

Pooling

Add
Encoder Decoder Deep supervision

Prediction
(512,512,256)

Scale attention

GT

Fig. 1. Dynamic 3D U-net architecture. The model architecture used for 3D segmentation mask inference for autosomal dominant polycystic kid-
ney disease total kidney volume calculation. Conv, convolutional; GT, ground-truth mask.
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TKV measurement, and other variables including age, sex, 
race, height, serum creatinine, and genotype.

9. Statistical analysis
The acquired dataset was split into training, validation, 

and test data at a ratio of 8.5:1:0.5 to investigate the perfor-
mance of the model. The pixel array shape of each DICOM 
file was 512×512×S(n). To calibrate the discrepancy in the 
number of slices for each sample, padding filled with zeros 
was added to the cases with less than 250 slices.

To evaluate the performance of  the medical image 
analysis algorithm, the dice similarity correlation (DSC) 
score was used as a statistical validation metric to assess the 
accuracy of spatial overlap between the true and predicted 
manual segmentation labels using the following formula:

DSC=(2×True Positive)/(True Negative+False  
              Positive+True Positive+False Negative)

Before calculation, the 3D masks of the kidney region 
were obtained from 32 test cases using a well-trained model 
(the number of slices may be different in each case). After 
the model inferred the 3D masks for 32 test samples, a con-
fusion matrix was constructed and the DSC calculated. Five-
fold cross-validation was performed to confirm the robust-
ness of the model for the training dataset. The comparison 
between ground-truth and auto-segmented TKV was also 
performed with calculation of an interclass correlation coef-
ficient (ICC). 

RESULTS

1. Dataset information 
A total of 753 cases with 95,117 slices were included in 

the dataset. CT images were acquired from eight types of CT 
scanners in seven institutions. The average number of slices 
in the entire dataset was 126 (range 26–276). The model was 
trained with 655 CT-DICOM files with 82,850 slices, vali-
dated with 66 DICOM files with 7,778 slices, and tested with 
32 DICOM files with 4,489 slices. The detailed information 
of our database is summarized in Table 1.

2. Performance of the algorithm
The differences between the ground-truth ADPKD kid-

ney mask and the predicted ADPKD kidney were negligible 
(Fig. 3). The ICC calculated by comparing the ground truth 
and AI auto-segmentation TKV results was 0.99976, which is 
extremely reliable (Fig. 4). Most of the differences were false 
alarms, which were successfully removed by the post-process 
filter; as shown in Fig. 5, they had no clinical significance. 
The test-set performance plot shows homogeneously equal 
performance in each of the 32 test samples (Fig. 6). 

The test DSC score of our model was 0.971 and the DSC 
score improved to 0.979 after post-processing (Table 2). 

3. Operation of AI-based kidney volumetry
After dragging-and drop of DICOM files from the CT 

scan, patients’ baseline demographics including age, sex, 
race, height, and serum creatinine is entered (Fig. 7A). After 
inference of the data, kidney volume is calculated automati-
cally and ADPKD classification is reported (Fig. 7B). The 
overall process for using our SaaS is presented in Supple-
mentary Video.

Abdomen+
Pelvis CT (raw data)

Train 3D
dynamic U-Net

Automatic
segmentation

Post-processing 3D mask
volume

TKV
calculation

Dataset annotation
95,117 hand-labeled
segmentation mask

A

B

C D E F G

Fig. 2. Overall flow chart of the algorithm. (A) Abdomen and pelvis computed tomography (CT) images were acquired from several hospitals. (B) 
Dataset was annotated with hand-labelled segmentation mask. (C) 3D Dynamic U-net model was trained with the dataset, which was previously 
constructed with 38,261 hand-labeled semantic-segmentation and inspected by three expert radiologists. (D) Automatic segmentation was per-
formed to test autosomal dominant polycystic kidney disease samples with the trained model. (E) Collected masks inferred by the model under-
went post-processing to remove false alarms. (F) 3D volume model was constructed with inferred segmentation masks. (G) Total kidney volume 
(TKV) calculation was performed by applying the 3D volume to the volume calculation equation.
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DISCUSSION

The Mayo imaging classification is a simple tool that can 
easily identify patients at the highest risk for disease pro-
gression regardless of renal function and is currently used 
for tolvaptan treatment candidate selection [11,12]. Accurate 
TKV measurement is crucial for prompt decision-making; 
however, TKV is generally approximated with ellipsoidal 
kidney length, width, and depth measurements due to the 
lack of feasible, commercialized, technical support. The pres-
ent study focus on kidney volume only and presents the 
excellent performance of a well-trained, deep learning volu-
metry system, a 3D-Dynamic U-Net, in the largest clinical 
dataset, which can be helpful in overcoming the aforemen-
tioned drawbacks. Our AI model was fully automated and 
had a Dice score of 0.971, which was further improved to 0.979 
by removing clinically insignificant data via post-processing. 
Moreover, our AI model was successfully applied to SaaS 
which is designed to identify rapid progressors.

Current studies on deep learning-based volume measure-
ment in ADPKD utilize various image modalities, including 
CT scans, MRI, and US. The Dice score of each segmentation 
methodology ranges from 0.86 to 0.969 for CT scans [9,13,14] 
and 0.84 to 0.98 for MRIs [15-19]. There are few studies on 
US; one study by Jagtap et al. [20] reported a dice score of 0.80 
by 2D U-Net segmentation in kidney US. Our 3D-Dynamic 
U-Net provided the highest Dice score of 0.971 compared to 
previous studies using CT scans. This excellent, expert-level 
performance is based on a large clinical dataset. Our dataset 
included 95,117 slices from 753 ADPKD patients, which is the 
largest number of study subjects reported so far. 

Early deep learning-based methods usually consist of 
semi-automated systems in which AIs produce the initial 
prediction of renal contours that can later be confirmed 
and modified by radiologists [21,22]. Such a system omits the 
process of laborious manual drawing on each slide, resulting 
in time-cost effectiveness, efficiency, accuracy, and improved 
ergonomics for the physicians. However, a semi-automated 
system always requires expert manpower for supervision, 
and there is always a risk for human error. Volumetry, in-
cluding TKV measurement, is a field of work that requires 
consistency and reproducibility. This has resulted in the 
need for semi-automated segmentation in order to overcome 
the limitations of manual annotation. Our AI model pro-
vides a fully automated segmentation technique with a Dice 
score of 0.979, which is non-inferior to human specialists who 
had DSC ranging from 0.957 to 0.975 based on our previous 
report [9]. 

Among various segmentation models, we chose 3D Dy-Ta
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namic U-Net as the main network of  the present study 
rather than 2D/3D Residual U-Net, 3D-UnNetR, and the 
3D-Dynamic U-Net 5-Fold ensemble set. Three-dimensional 
Dynamic U-Net is implemented based on the nnU-Net 
architecture proposed by Isensee et al. [23] and has three 
advantages compared to the general vanilla U-Net. First, 
residual connection is supported in convolutional blocks. Sec-
ond, anisotropic kernel sizes and strides can be used in each 
layer. Third, deep supervision heads can be added. Moreover, 
3D Dynamic U-Net generates full-resolution feature maps at 
multiple semantic levels owing to the nested skip pathways. 
Thus, the losses are estimated from four semantic levels. The 
deep supervision enables model pruning and improves, or in 

the worst case, achieves comparable performance to using 
only one loss layer. 

Our segmentation model includes an important refine-
ment process named “post-processing”. Post-processing identi-
fies and removes false alarms, which usually have no clini-
cal significance, leading to an improvement of the Dice score 
in both validation and test sets. The differences between 
pre- and post-process filters might not be significant (0.971 
vs. 0.979) as the performance of 3D-Dynamic U-Net itself is 
highly competitive. However, such processes should not be 
neglected as aesthetic mask quality improvement provides 
more accurate and reliable 3D images for both clinicians and 
patients. As a 3D printed model is commonly used to facili-
tate more intuitive explanation to patients, it is crucial that 
the quality of 3D images be reliable. This enables better un-
derstanding of patients regarding their clinical information 
and might lead to higher compliance and persistence rate to 
the clinicians.

Five years have passed since the approval of tolvaptan 
for kidney disease, but several problems remain unsolved in 
clinical practice. Efficacy monitoring of any newly adopted 
drug is necessary for objective and scientific evaluation. The 
therapeutic efficacy of tolvaptan is frequently monitored by 
changes in serum glomerular filtration rate (GFR) but not 
consecutive TKV measurements due to the absence of reli-
able methodologies in clinical practice [4]. 

Consecutive TKV measurements are important and help-

A B C D

Fig. 3. Comparison between ground truth and artificial intelligence auto-segmentation. (A) Original computed tomography slice image. (B) 
Ground-truth mask image superimposed onto the original input image. (C) Predicted mask image superimposed onto the original image. (D) The 
differences between (B) and (C) relative to the original images. IoU, intersection over union.

200

1,400

1,200

1,000

800

600

400

200

1,400

A
.I

s
m

e
a
s
u
re

m
e
n
t
(m

L
)

Radiologist s measurement (mL)

400 600 800 1,000 1,200

y=1.00532939x 2.23957357
ICC value=0.99976

Fig. 4. The interclass correlation coefficient (ICC) between ground truth 
and artificial intelligence (AI) auto-segmentation.
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ful for treatment efficacy monitoring. First, there are other 
comorbidities, including uncontrolled hypertension, diabetes, 
and vascular disease, which could be modifiable contributing 
factors for GFR decline in ADPKD patients [24,25]. Serial 
TKV monitoring is necessary to confirm that renal function 
deterioration is actually due to ADPKD progression. Second, 
there is still no definite titration regimen for tolvaptan as-
sociated with maximal therapeutic efficacy and minimal 
adverse events [4,26]. The combination of GFR and TKV on 
serial follow-ups might be useful to precisely determine the 
effects of tolvaptan persistence on the clinical course of AD-
PKD. This, in turn, could lead to the establishment of a clear 
treatment strategy. Third, tolvaptan is currently the only 

drug being widely prescribed for ADPKD and is extremely 
expensive. Patients need to take the medication twice a day 
until they progress to end-stage renal disease. The duration 
of treatment could be a lifetime if the side effects [27,28] 
(especially liver toxicity and polyuria) are tolerable and re-
nal function is maintained. This is a serious socio-economic 
burden for both the affected individuals and society. Hence, 
it is very important to provide scientific evidence to decide 
which types of patients should get medical expense coverage 
for tolvaptan usage. 

Despite the need for sufficient research on TKV mea-
surement, there are few 3D volumetry techniques capable 
of effective and accurate calculation. Variations in image 
modalities, models, protocols, and the performance of radiolo-
gists were considered insurmountable in traditional settings. 
Moreover, valid and sensitive approaches for monitoring the 
changes in TKV have not yet been established. Our AI 3D-
volumetry could be a breakthrough for such problems as 
it is capable of high-quality performance in datasets where 
most images are non-enhanced CT scans, which do not re-

Table 2. Performance of the artificial intelligence auto-segmentation 
model 

Model Test Dice score
Validation 
Dice score

3D-Dynamic U-Net 0.971 0.967
After post-processing (for 3D model) 0.979 0.970

A B C

Fig. 5. Representative image of post-processing filter. (A) Before post-process filter application. (B) After post-process filter application. (C) Com-
parison of rendering 3D space before and after post-process filter.

1

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50
32

C
la

s
s

0
(B

G
)

D
S

C

Image index (#32)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

C
la

s
s

1
(k

id
n
e
y
)

D
S

C

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Class 0 (BG) DSC
Class 1 (kidney) DSC
Class 0 mean DSC
Class 1 mean DSC

Test statistics

Fig. 6. Test set performance plot. The solid red line represents the dice similarity correlation (DSC) score of the background class for each test 
sample, and the solid black line represents the DSC score of the autosomal dominant polycystic kidney disease (ADPKD) kidney class for each test 
sample. The red and the black dotted lines denote the average DSC scores of the background class and the ADPKD kidney, respectively. 



262 www.icurology.org

Shin et al

https://doi.org/10.4111/icu.20220411

quire any special protocol (although radiation exposure dose 
and image thickness might differ).

The limitations of the present study are as follows. We 
needed a training dataset created by experts to set ground-
truth images and this dataset only included CT scans. How-
ever, there is no other way for setting ground-truth images 
except for hand-labeled semantic segmentation. In addition, 
CT scan is more favorable than MRI as setting a ground-
truth value in low-resolution MRI is extremely difficult to 
be generalized based on differences in vendor and hospital 
setting values. Our AI volumetry presented high-quality 
performance despite the use of non-enhanced CT scans.

We report an automatic 3D-volumetry model from vari-
ous CT models by using the largest clinical dataset reported 
to date; this successfully reflects the heterogeneity of real-
world settings. Furthermore, post-processing of the predicted 
3D images improved image quality with better aesthetics, 
accuracy, and reliability. Furthermore, we developed SaaS 
based on Mayo imaging classification to support clinical de-
cision on tolvaptan prescription. 

Tolvaptan is the only Food and Drug Administration-
approved drug for ADPKD treatment. However, currently 
available studies are mostly clinical trials on ADPKD pa-
tients who were mostly recruited from Western countries; 
therefore, robust investigations on other ethnicities and 
studies that reflect real-world data are urgently required. 
Above all, future studies should utilize more comprehen-
sive clinical data by including not only serum GFR but also 
TKV. If our AI-based segmentation model is more widely 
applied to real practice, non-inferior and high-quality data 
could be provided to both physicians and patients without 
laborious and time-consuming, manual labeling by radiolo-
gists. In addition, further clinical decision-making, including 

therapeutic outcome monitoring, and prediction of progno-
sis, might be more efficacious, leading to decreased medi-
cal expenses. Future studies with external validation and 
comparison with other segmentation models are warranted 
for the clinical application of this outstanding AI volumetry 
technique in real-world settings.

CONCLUSIONS

Our deep learning-based, automatic-segmentation, 3D 
volumetry exhibited effective, feasible, and non-inferior per-
formance compared with that of human experts. This model 
was improved by post-processing to provide more accurate 
and reliable 3D images for both clinicians and patients. 
Moreover, application of AI 3D-volumetry to SaaS for select-
ing rapid progressors was also successful. 
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patient.
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SUPPLEMENTARY MATERIAL

Accompanying video can be found in the ‘Urology in 
Motion’ section of the journal homepage (www.icurology.org). 
The supplementary video clip can also be accessed by scan-
ning a QR code, and will be available on YouTube: Supple-
mentary Video, https://youtu.be/gVh72uY2cSU.
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