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ABSTRACT Convolutional Neural Networks (CNNs) have demonstrated remarkable performance in
medical image segmentation tasks, with the U-Net architecture being a prominent example. The UNet
Transformer (UNETR), an advanced variant of U-Net, incorporates a transformer architecture to effectively
capture long-range dependencies in Computed Tomography (CT) scans. However, the application of deep
learning models for tumor segmentation remains limited due to the challenges posed by the small size and
unpredictable locations of tumors. To address this issue, we propose a novel approach that leverages organ
information to improve tumor localization. Our model, named OrgUNETR, incorporates organ context
by utilizing the fact that tumors typically exist within specific organs. By integrating organ information,
OrgUNETR successfully detects tumors in CT scans with enhanced accuracy. Experimental results demon-
strate that OrgUNETR surpasses the performance of a baseline model by achieving a 40.86% improvement
in Dice score on the KiTS19 dataset and a 32.69% improvement on the Prostate158 dataset. Furthermore,
we optimize the computational efficiency of UNETR by replacing the Multi-Head Self-Attention (MHSA)
layers with Squeeze and Excitation (SE) layers, which perform attention in a similar manner. This modifi-
cation reduces the computational cost by 13.9% while maintaining comparable performance. The proposed
OrgUNETR model represents a significant advancement in tumor segmentation, combining the benefits
of organ context and efficient attention mechanisms to achieve promising results. This research has the
potential to assist medical professionals in accurate tumor localization and improve patient outcomes in
clinical settings.

INDEX TERMS Organ segmentation, tumor segmentation, medical segmentation, deep learning, squeeze
and excitation network, transformer.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have significantly
advanced the field of image segmentation in recent years [1],
[2], [3], [4]. The U-Net architecture, in particular, has proven
highly effective for medical semantic segmentation by con-
necting a series of CNN layers [5]. The contracting path of
the U-Net extracts spatial information from the input, while
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the expanding path reconstructs the segmented output using
this spatial information via skip connections.

Several variations of the U-Net have been proposed to
further improve its performance. The UNET++ features
a nested encoder-decoder design with dense connections
between layers, allowing it to capture detailed spatial features
that may be lost during downsampling [6]. The KiU-NET
combines the U-Net and Kite-Net architectures in parallel,
enabling it to detect small, indistinct anatomical structures
more effectively [7].
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CNN-based architectures are highly effective at learn-
ing representations but struggle with learning global fea-
ture due to their localized receptive fields [8]. To extract
global feature using a local range receptive field, it is
necessary to employ multiple CNN operations. However,
this approach causes computational inefficiency. Further-
more, the increased number of parameters imposes sig-
nificant difficulties on optimization. These limitations can
lead to inadequate semantic segmentation, particularly
with multiple objects that have diverse boundaries in an
image.

To overcome these challenges, dilated convolution and
deformable convolution have been proposed to expand the
receptive fields and capture a wider range of informa-
tion [9], [10]. The dilated convolution enables the convolu-
tional network to expand its receptive field by introducing
different dilation. The deformable convolution adopts flex-
ibility by utilizing 2D offset to the regular grid kernel.
Since these 2D offsets are learned directly from the data,
deformable convolution networks perform effectively in
vision tasks requiring fine localization.

However, even with these improvement, the receptive
fields in various convolutional layers remain constrained by
the kernel window, which still involves significant computa-
tional complexity [11]. While developed CNNs can indeed
capture global features, they often face limitations such as
high computational costs and accuracy issues. There is a
growing demand to capture relationships between distant
parts of an input image without sacrificing accuracy. There-
fore, the task should request for new models.

To address these issues, researchers have explored com-
bining the CNN based U-Net architecture with transformers,
which have shown great promise in Natural Language Pro-
cessing (NLP) tasks. Vision Transformers (ViT) split the
input image into patches and compute the connections
between them, enabling the extraction of global spatial fea-
tures through the use of Multi-Head Self Attention (MHSA)
layers [6], [13], [16]. The UNet Transformer (UNETR)
incorporates a ViT backbone as its encoder, allowing it to
learn global spatial features and compress spatial information
effectively.

While numerous deep learning models have been pro-
posed for organ segmentation, comparatively fewer have
been developed specifically for tumor segmentation. This is
due in part to the challenges posed by the small size and
unpredictable locations of tumors in medical images. Many
existing models have therefore focused on organ segmenta-
tion, which inherently includes tumor information.

To address these issues, we propose the Organ UNETR
(OrgUNETR), a modified version of the UNETR architec-
ture designed specifically for kidney and prostate tumor
segmentation. Our model leverages both organ and tumor
information to improve tumor segmentation performance
compared to a baseline model that uses only tumor
information.We achieve this by predicting organs and tumors
through distinct channels, each with its own loss function.

Through backpropagation, the model learns to locate both
organs and tumors more accurately.

We further optimize the OrgUNETR architecture by
replacing theMHSA layers with Squeeze and Excitation (SE)
layers [17], [18], [19], [20], [21], [22]. The SE layers effi-
ciently compute attention among feature channels, reducing
the model’s computational cost while maintaining compa-
rable performance. They also enhance the model’s ability
to prioritize important features, making them particularly
effective for medical segmentation tasks.

To validate the effectiveness of our approach, we compare
the performance of OrgUNETR to a baseline model trained
only on tumor information. The proposed model is evaluated
with multiple tumor segmentation datasets with CT images,
KiTS19 and Prostate158, for the generalization of the perfor-
mance of the model.

The main contributions of this paper are as follows:
1) We demonstrate that including organ information

enables more accurate tumor prediction compared to
a baseline model, as organ and tumor information are
inherently related.

2) By substituting MHSA layers with SE layers,
we reduce the computational cost of OrgUNETR while
maintaining tumor segmentation accuracy, making it
more practical for real-world applications.

II. RELATED WORKS
A. TUMOR SEGMENTATION TASK
The tumor segmentation task is an essential process in the
analysis of medical diagnosis, facilitating the precise identifi-
cation of anatomical structures [23]. The tumor segmentation
involves classification of every pixel, distinguishing tumor
region from tissues. The objective of tumor segmentation
is to accurately define the boundaries of tumors across the
medical images such as CT scans,Magnetic Resonance Imag-
ing (MRI), and Positron Emission Tomography (PET) scans.
This task is critical not only for diagnosing diseases but
also for the strategic treatment plan, enabling personalized
medicine approaches.

The CT scan and MRI scan are favored for segmenta-
tion tasks due to their ability to provide detailed images
that facilitate the precise identification of abnormalities like
tumors, making them efficient and crucial for accurate dis-
ease diagnosis [24]. Traditionally, this tumor segmentation
from these scan images has been performed manually by
physicians. This process that is not only time consuming but
also demands significant human resources [25]. To conserve
these resources and enhance the efficiency of the diagnostic
process, the deep learning model is introduced [26]. The
deep learning model is trained on medical image datasets that
include detailed annotation of tumor locations, enabling the
model to learn and subsequently perform tumor segmentation
task autonomously. The integration of deep learning into
tumor segmentation significantly promotes efficiency [27].
By providing the information of tumor location, the model
assists physician in making decision regarding diagnosis.
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Therefore, the deep learning model facilitates the diagnostic
process and improves the accuracy of tumor detection and
segmentation, thereby enhancing the efficiency and effective-
ness of medical treatments.

There have been numerous attempts to develop a deep
learning model that performs tumor segmentation task. For
example, Swin U-Net Transformer (SwinUNETR) detects
tumors by using input features at different resolutions that
are extracted from SwinUNETR encoder utilizing shifted
windows to compute self-attention [28]. Also, nnFormer
successfully segments tumors by utilizing the cooperation
of convolution and self-attention mechanism. By employing
local and global self-attention mechanisms, more precise pre-
diction is feasible [29].

B. U-NET ARCHITECTURE
The U-Net architecture, initially proposed for biomedi-
cal image segmentation, has become a widely adopted
CNN-based model known for its effectiveness [5]. The
U-Net consists of two primary paths: the contracting path
and the expansive path. The contracting path is responsi-
ble for capturing the contextual information of the input
image by gradually reducing its spatial dimensions while
simultaneously increasing the depth of the feature channels.
On the other hand, the expansive path, which is symmetrical
to the contracting path, focuses on reconstructing the seg-
mented image. It utilizes a series of upsampling operations
to expand the feature maps back to the original input dimen-
sions. During this reconstruction process, the expansive path
receives feature maps from the corresponding levels of the
contracting path via skip connections. These skip connections
play a crucial role in transferring detailed spatial informa-
tion, enabling more precise localization of features in the
segmented output. By employing this dual-path architecture,
the U-Net effectively captures both the global context and
local details, making it highly suitable for biomedical image
segmentation tasks.

Several variants of the U-Net have been introduced to
further enhance its performance. One notable example is the
UNET++, which features a nested encoder-decoder design
with dense connections between the layers. These dense con-
nections allow the UNET++ to capture fine-grained spatial
features that might otherwise be lost during the downsam-
pling process. By preserving these detailed features, the
UNET++ is able to generate more accurate segmentation
results, particularly in scenarios where small or intricate
structures are present.

Another variant, the KiU-NET, combines the strengths of
the U-Net and Kite-Net architectures by arranging them in
parallel. This unique configuration enables the KiU-NET to
effectively detect small and indistinct anatomical structures.
The Kite-Net component of the KiU-NET expands the fea-
ture maps before downsampling them, which is in contrast
to the traditional U-Net approach. By employing these two
complementary networks, the KiU-NET is able to capture
both the global context and the fine details of the input image,

resulting in improved segmentation performance for tiny and
blurred objects.

Despite the remarkable success of CNN-based architec-
tures like the U-Net and its variants, their ability to learn
global features is inherently limited by the localized nature
of their receptive fields. This limitation can lead to subopti-
mal semantic segmentation results, particularly when dealing
with images containing multiple objects with diverse bound-
aries. To address this issue, researchers have explored various
techniques, such as dilated convolutions and deformable con-
volutions, which aim to enlarge the receptive fields of the
CNN layers. However, these approaches still face constraints
in terms of the kernel window size and computational com-
plexity, limiting their effectiveness in capturing long-range
dependencies.

C. VISION TRANSFORMER
Transformers, whichwere originally introduced in the field of
machine translation, have revolutionized the way sequence-
to-sequence tasks are approached. These models replace the
traditional recurrent and convolutional operations with self-
attention mechanisms, enabling them to effectively capture
long-range dependencies and achieve state-of-the-art perfor-
mance [30], [31]. The success of transformers quickly spread
beyond machine translation, finding applications in a wide
range of NLP tasks. As a result, transformers have become
the go-to architecture for many NLP applications, such as text
classification, question answering, and language generation.

Another notable work in this direction is the Vision
Transformer (ViT) [14], [32], [34], which represents a sig-
nificant departure from traditional CNN-based architectures.
Unlike CNNs, which primarily focus on local features, the
ViT model excels at capturing global context by comparing
patches of the input image. The ViT divides the image into
fixed-size patches and linearly projects them into a sequence
of embeddings. These embeddings are then processed by
a stack of transformer layers, which utilize self-attention
mechanisms to model the relationships between the patches.
By attending to the entire sequence of patches, the ViT is
able to capture long-range dependencies and global context,
making it particularly effective for tasks beyond image classi-
fication, such as object detection and semantic segmentation.

D. UNETR FOR 3D MEDICAL SEGMENTATION
Building upon the success of transformers in computer vision,
researchers have begun exploring their potential for medi-
cal image segmentation tasks. One notable example is the
UNETR [35], [36], [37], which is specifically designed
for 3D medical image segmentation. The UNETR archi-
tecture draws inspiration from the ViT and incorporates its
self-attention mechanisms into the U-Net framework.

The UNETR consists of two main components: an encoder
and a decoder. The encoder is responsible for extracting rich
feature representations from the input 3D medical image.
It achieves this by first dividing the image into uniform 3D
patches and projecting them into a sequence of embeddings
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using a linear projection layer. These embeddings are then
processed by a series of transformer layers, which utilize
MHSA and multi-layer perceptron (MLP) blocks to cap-
ture the relationships between the patches. By attending
to the entire sequence of patches, the encoder is able to
extract global contextual information and compress the spa-
tial dimensions of the input image.

The decoder of the UNETR is designed to reconstruct
the segmented output from the compressed feature represen-
tations generated by the encoder. It consists of a series of
3D deconvolution and convolution layers that progressively
upsample the feature maps to the original input dimensions.
To ensure that the decoder has access to the rich feature
representations learned by the encoder, skip connections are
employed between corresponding levels of the encoder and
decoder. These skip connections allow the decoder to lever-
age both the global context captured by the encoder and
the local details preserved in the higher-resolution feature
maps.

One of the key advantages of the UNETR architec-
ture is its ability to capture long-range dependencies and
global context, which is particularly important for medical
image segmentation tasks. By incorporating self-attention
mechanisms, the UNETR is able to effectively model the
relationships between different regions of the input image,
enabling it to generate more accurate and coherent segmenta-
tion results. Moreover, the UNETR is designed to handle 3D
medical images directly, without the need for slice-by-slice
processing, which is common in CNN-based approaches.
This allows theUNETR to exploit the inherent 3D structure of
medical images and capture valuable volumetric information.

E. SQUEEZE AND EXCITATION NETWORK
The SE network is an architectural unit that aims to improve
the representational power of CNNs by explicitly mod-
eling the interdependencies between the channels of its
convolutional features. The SE block is designed to adap-
tively recalibrate the feature maps generated by a CNN,
allowing the network to emphasize informative features and
suppress less useful ones.

The SE block consists of two main operations: squeeze
and excitation. The squeeze operation aims to aggregate the
spatial information of each feature map into a single numeric
value, effectively capturing the global context of the fea-
ture map. This is typically achieved through global average
pooling, which computes the average value of each feature
map across its spatial dimensions. The resulting vector, often
referred to as the channel descriptor, provides a compact
representation of the global distribution of the feature map.

The excitation operation, on the other hand, aims to capture
the interdependencies between the channels of the feature
maps. It takes the channel descriptor as input and generates a
set of channel-wise weights through a small neural network.
This neural network typically consists of a dimensionality
reduction layer, followed by a non-linearity (e.g., ReLU) and
a dimensionality increasing layer. The output of the excitation

operation is a set of channel-wise weights that can be used to
scale the original feature maps.

The scaled featuremaps are obtained by element-wisemul-
tiplication of the original feature maps with the channel-wise
weights generated by the excitation operation. This allows the
SE block to adaptively recalibrate the feature maps, empha-
sizing the channels that are most informative for the task at
hand and suppressing the less relevant ones. By doing so, the
SE block enhances the representational power of the CNN
and enables it to capture more discriminative features.

III. MATERIALS AND METHODS
A. ORGUNETR: INCORPORATING ORGAN CONTEXT
FOR ENHANCED TUMOR SEGMENTATION
The proposed OrgUNETR architecture is designed to incor-
porate organ context information for improved tumor seg-
mentation. Figure 1 presents an overview of the OrgUNETR
model. The input to the model is a 3D CT scan, which is
first processed by a patch embedding layer. This layer divides
the input image (x ∈ RH×W×D) into uniform 3D patches
(xp ∈ RN×P3 ), where N = HWD/P∧3 represents the total
number of patches. These patches are then projected into a
sequence of tokens using a linear projection layer.

The encoder of the OrgUNETR model consists of a series
of SE blocks, which are connected successively. The archi-
tecture employs 2, 4, and 6 SE blocks in the encoder, with
each block downsampling the spatial dimensions by a factor
of two. This allows the encoder to compress the spatial infor-
mation while extracting relevant features at different scales.

At various stages of the network, the extracted features are
upsampled using deconvolution layers and further enhanced
by convolution layers, followed by batch normalization and
ReLU activation functions. The upsampled features are then
concatenated with the corresponding features from earlier
blocks via skip connections. This process is repeated until the
feature maps reach the same spatial dimensions as the input
image.

One of the key challenges in tumor segmentation is the
small size and unpredictable location of tumors within the
CT scans. To address this issue, the OrgUNETR model
incorporates both organ and tumor information for precise
tumor localization. The output of the model consists of two
channels, one for organ segmentation and the other for tumor
segmentation. By sharing weights between the tumor pre-
diction channel and the organ prediction channel, the model
leverages organ information during the tumor prediction
process. This dual-channel approach effectively incorporates
organ context, enabling more accurate segmentation of tumor
locations.

To achieve a balance between computational efficiency
and performance, the OrgUNETRmodel replaces the MHSA
layers, commonly used in transformer-based architectures,
with SE layers. Unlike self-attention mechanisms, which
require the computation of attention maps across all patch
sequences, SE layers focus on modulating the feature chan-
nels based on global information obtained through a global
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FIGURE 1. The overall architecture of OrgUNETR. It illustrates the comprehensive architecture of the OrgUNETR model, detailing its various layers and
connections. A 3D CT scan is divided into a uniform 3D patches and projected into a token sequence by linear projection. The sequence is used as an
input of SE Blocks. The encoded feature maps of different SE Blocks are extracted and integrated by the decoder. The final output dimension is
H × W × D × 2 and the two channels indicate organ and tumor prediction outputs. The number of feature map channel C is 32 and patch
resolution P is 16.

averag pooling layer. By replacing self-attention layers with
SE layers, the OrgUNETR model reduces computational
complexity while maintaining segmentation performance.

B. PREPROCESSING AND PATCH EMBEDDING
Preprocessing the input CT scans is a crucial step in the
OrgUNETR pipeline. Directly processing every pixel in a
3D CT scan would result in high computational complexity,
making it impractical for real-world applications. To alleviate
this issue, the OrgUNETR model adopts a patch embedding
layer, inspired by the original UNETR architecture.

The patch embedding layer divides the input image (x ∈

RH×W×D) into non-overlapping 3D patches (xp ∈ RN×P3 ),
whereN = HWD/P∧3 represents the total number of patches
and P denotes the patch size. Each patch is then transformed
into a token using a linear projection layer. However, this
process does not preserve the positional information of the
patches, which is essential for the model to understand the
spatial relationships between them.

To address this issue, a learnable positional encoding vec-
tor (Epos) is added to the projected patch tokens [38], [39].
The positional encoding vector captures the spatial informa-
tion of each patch, allowing the model to distinguish between
patches at different positions. The embedding process can be
represented by the following equation:

ztokens = [p1E; p2E; · · · ; pNE] + Epos, (1)

where ztokens represents the token vector; pn represents the
n-th patch vector; E represents the embedding matrix, and;
Epos represents the positional encoding vector.

C. SQUEEZE AND EXCITATION BLOCKS
The SE blocks form a crucial component of the OrgUNETR
architecture. These blocks are designed to adaptively recal-
ibrate the feature maps by explicitly modeling the inter-
dependencies between channels [17], [18], [19], [20],
[21], [22]. By doing so, the SE blocks enable the model
to prioritize informative features and suppress less relevant
ones.

In the OrgUNETR model, each SE block consists of an
SE layer followed by an MLP layer. A normalization layer
is appended after each layer to stabilize the weight values
during training. The SE layer assesses the significance of
each feature channel by generating a channel-wise attention
vector.

The operation of the SE block can be represented by the
following equation:

Sl = LN (MLP(LN (vl−1 × Sl−1)), (2)

where Sl represents the input to the l-th SE layer; LN denotes
the layer normalization operation; vl−1 represents the
channel- wise attention vector from the previous SE layer,
and Sl−1 represents the output of the previous SE layer.
The channel-wise attention vector vl−1 serves to inject

attention into the feature map channels, enabling the model to
focus on relevant features. The attention vector is generated
by the SE layer through a series of operations. First, the SE
layer applies global average pooling to the input featuremaps,
reducing their spatial dimensions and producing a channel
descriptor. This descriptor captures the global information of
each feature channel.
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Next, the channel descriptor undergoes a dimensionality
reduction operation, typically implemented using a fully con-
nected layer with a smaller number of neurons compared to
the number of channels. This step helps to reduce the com-
putational complexity and prevent overfitting. The reduced
channel descriptor is then passed through a non-linear activa-
tion function, such as ReLU, to introduce non-linearity into
the attention mechanism.

Finally, the activated channel descriptor is expanded
back to the original number of channels using another
fully connected layer. This expansion operation generates
the channel-wise attention vector (vl−1), which contains a
weight for each feature channel. The attention vector is then
element-wise multiplied with the input feature maps (Sl−1) to
produce the recalibrated feature maps.

The recalibrated feature maps are further processed by the
MLP layer, which learns to combine the attended features
effectively. The output of the MLP layer is then normalized
using layer normalization to stabilize the training process.

By employing SE blocks, the OrgUNETRmodel can adap-
tively recalibrate the feature maps, emphasizing informative
channels and suppressing less relevant ones. This mechanism
enhances the model’s ability to capture discriminative fea-
tures and improves its segmentation performance. Moreover,
by using a single attention vector for each SE block, the
computational complexity is significantly reduced compared
to the MHSA layers used in transformer-based architectures.

D. METRICS
To train and evaluate the performance of the OrgUNETR
model, we employ a combination of the Dice coefficient
and Cross-Entropy Loss, which are widely used metrics in
segmentation tasks [40], [41], [42].

The Dice coefficient measures the overlap between the
predicted segmentation and the ground truth. It is calculated
using the following equation:

Sdice =
2 ×

(
Ptrue × Ppred

)
Ptrue + Ppred

, (3)

where Ptrue and Ppred are binary matrices representing
the ground truth and predicted locations of the organ
or tumor, respectively [41]. The Dice coefficient ranges
from 0 to 1, with a higher value indicating better segmentation
performance.

In addition to the Dice coefficient, we also employ
the Cross-Entropy Loss, which quantifies the dissimilarity
between the predicted probabilities and the ground truth
labels. The Cross-Entropy Loss is calculated as follows:

CE =

∑ ∑
T × log(ptruth), (4)

where T is number value indicates organ or tumor,
ptruth denotes the probability of predicted value compared to
truth.

To combine the Dice coefficient and Cross-Entropy Loss,
we introduce the DiceCELoss, which is a weighted sum of

the two metrics. The DiceCELoss is defined as:

DiceCELoss = α × Sdice + β × CE, (5)

where α and β are hyperparameters that control the relative
importance of the Dice coefficient and Cross-Entropy Loss,
respectively. These hyperparameters are adjusted during the
training process to optimize the model’s performance.

Given the critical importance of accurately segment-
ing both the organ and the tumor, we further extend the
DiceCELoss by introducing a weighted variant:

DL total = 0.65 × DLorgan + 0.35 × DL tumor , (6)

where DL total represents the overall Dice coefficient, Cross
entropy loss, it is computed as a weighted sum of the
DiceCELoss for organ (DLorgan) and tumor (DL tumor ), with
respective weightings of 65% and 35%. This weighted
approach prioritizes the organ segmentation slightly more
than the tumor, reflecting the model emphasis on using organ
context for improved tumor localization. The DiceCELoss is
minimized by backpropagation algorithm [43].

E. KIDNEY TUMOR SEGMENTATION DATASET
To evaluate the performance of the OrgUNETR model on
kidney tumor segmentation, we utilize the KiTS19 dataset.
This dataset serves as a cornerstone for our study, providing
CT scans accompanied by annotations for both the right and
left kidneys, as well as kidney tumors.

The KiTS19 dataset comprises 544 CT scans, which were
annotated bymedical students under the supervision of expert
radiologists. Each CT scan has a consistent resolution of
512 × 512 pixels, with the number of slices ranging from
a minimum of 29 to a maximum of 1,059. However, due to
computational constraints, we rescale the dataset to a uniform
size of 128 × 128 × 128 using linear interpolation, adjusting
the number of slices accordingly.

It is important to note that the resizing process can intro-
duce a challenge: small tumor pixelsmaymergewith adjacent
pixels, potentially leading to the elimination of tumor pixels
in some cases. To mitigate this issue, we carefully exam-
ine the resized CT scans and exclude 54 scans that lack
tumor pixels after resizing. This step ensures that the train-
ing dataset contains sufficient tumor information for the
model to learn from. The KiTS19 dataset is publicly acces-
sible and can be downloaded from the official repository
(https://github.com/neheller/kits19) with the consent of the
organizers.

F. PROSTATE TUMOR SEGMENNTATION DATASET
In addition to the KiTS19 dataset, we also utilize the
Prostate158 dataset to evaluate the performance of the
OrgUNETR model on prostate tumor segmentation.
The Prostate158 dataset is a comprehensive collection of
high-quality 3 Tesla MRI scans specifically designed for
prostate segmentation tasks.

The dataset includes scans of both anatomical zones and
cancerous lesions within the prostate, making it a valuable
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resource for prostate MRI image analysis. The inclusion
of both healthy and cancerous tissue annotations enables
the development of models that can accurately segment the
prostate gland and identify tumors simultaneously [44].

The Prostate158 dataset consists of 139 training samples
and 19 validation samples. Each MRI scan has a native
resolution of 270× 270× 24 voxels. However, due to compu-
tational limitations, we resize the scans to a uniform size of
128 × 128 × 128 voxels using linear interpolation. During
the resizing process, we carefully monitor the presence of
tumor pixels and exclude 72 samples that lose tumor pixel
information as a result of the resizing operation. This ensures
that the training dataset maintains a sufficient representation
of tumors for effective learning.

To normalize the intensity values of the MRI scans,
we apply min-max scaling to each scan, bringing the pixel
values into a consistent range. This normalization step helps
to mitigate the influence of variations in scanner settings and
acquisition protocols, making the dataset more suitable for
training deep learning models.

The Prostate158 dataset is accompanied by expert anno-
tations, which serve as ground truth labels for training and
validating the segmentation models. These annotations were
carefully curated by experienced radiologists, ensuring their
reliability and accuracy.

The Prostate158 dataset is publicly available and can
be accessed from the official repository (https://zenodo.org/
record/6481141) with the consent of the organizers. This
dataset has been widely used in the research community for
developing and evaluating prostate segmentation algorithms,
contributing to the advancement of prostate cancer diagnosis
and treatment planning.

IV. RESULTS
A. SEGMENTATION RESULTS WITH KITS19 DATASET
To evaluate the performance of our proposed OrgUNETR
model on kidney tumor segmentation, we conduct exper-
iments using the KiTS19 dataset. The dataset consists
of 490 CT volumes, each annotated with both kidney and
kidney tumor labels. We partition the dataset into training and
validation sets using a 70:30 ratio, ensuring a fair evaluation
of the model’s generalization ability.

During training, we employ the AdamW optimizer [45]
with a learning rate of 0.0001. To enhance the model’s robust-
ness and prevent overfitting, we apply data augmentation
techniques, specifically random rotation of the input images
within a range of 0 to 10 degrees [46]. The loss function used
for training is a combination of Dice Loss and Cross-Entropy
Loss, referred to as DiceCELoss.

To assess the effectiveness of our proposal, which involves
training models with organ information to enhance accu-
racy, across various state-of-the-art models, we estimate its
applicability on KiTS19 using the conventional UNETR,
SwinUNETR, nnFormer, and U-Net [5], [28], [29], [36], both
in their original form and with our proposed modification.
We evaluate the performance of each conventional model

trained solely with tumor information against each proposed
model trained with both tumor and organ information using
the Dice score metric, which calculates the overlap between
the predicted segmentation and the ground truth.

The results presented in Table 1 indicate that our proposed
models that are trained with organ and tumor information
yields improved Dice score compared to the conventional
models that are trained only with tumor information. The
overall our proposed models demonstrated superior perfor-
mance compared to the conventional models. The proposed
UNETR outperforms the conventional UNETR by 34.9%.
Also, in case of nnFormer, the proposed model surpasses
the conventional model by 14.9%. Particularly noteworthy
is the SwinUNETR model, where our proposed modifi-
cation achieved a Dice score of 0.4786, representing an
increase of 103%. The U-Net model proposed in our study
demonstrates a 47.0% increase in accuracy compared to the
conventional U-Net. These results clearly show that training
models with organ information that is explicitly related to the
tumor enhances the tumor segmentation ability.

TABLE 1. Performance evaluation with KiTS19 dataset.

By examining the results from the various models, the
approach of simultaneously training on both organ and tumor
information is applicable to other models. This indicates that
the approach is not only applicable to the models discussed
in this paper but can also be extended to other deep learning
models. Furthermore, this strategy can be expanded into a
general methodology that to detect the target precisely, the
related information that related to the target is required.

The results of our OrgUNETR experiments on the KiTS19
dataset are presented in Figure 2. Our OrgUNETR model
achieves a Dice score that is 49.04% higher than the baseline
model, demonstrating the significant impact of incorporating
organ information in tumor localization. The dual-channel
approach enables the model to leverage the contextual infor-
mation provided by the organ labels, leading to more accurate
tumor segmentation.

Figure 3 illustrates the training and validation loss curves
for both OrgUNETR and the baseline model. Our model
demonstrates a substantial reduction in DiceCELoss com-
pared to the baseline model, with a decrease of 37.85%.
This observation suggests that training the model with organ
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FIGURE 2. Dice score comparison for tumor segmentation on the KiTS19
dataset. (a) depicts the comparison of the OrgUNETR versus UNETR model
using the validation dataset, and (b) presents the Dice scores of
OrgUNETR versus UNETR on the training dataset. In both (a) and (b), the
orange line shows the Dice score from OrgUNETR, while the blue lines
show the Dice score from UNETR. The bold lines represent the application
of a moving average to enhance clarity.

FIGURE 3. Comparison of DiceCELoss for tumor segmentation on the
KiTS19 dataset. (a) illustrates the comparison between the OrgUNETR and
UNETR models using the validation dataset, while (b) displays the loss for
OrgUNETR compared to UNETR on the training dataset.
In both (a) and (b), the orange line represents the loss for OrgUNETR,
whereas the blue lines indicate the loss for UNETR. Bold lines signify the
use of a moving average for clarity.

information enhances its learning capacity by providing
additional supervision regarding organ location. The lower
validation loss achieved by OrgUNETR indicates its superior
performance and generalization ability compared to the base-
line model.

One of the key contributions of our work is the replace-
ment of MHSA layers with SE layers in the OrgUNETR
architecture. By adopting SE layers that perform channel-
wise attention, we achieve a notable reduction in computa-
tional complexity while maintaining segmentation accuracy.
Specifically, our model exhibits a 13.9% reduction in com-
putational cost compared to the original UNETR architec-
ture, making it more efficient and suitable for practical
applications.

To further illustrate the impact of incorporating organ
information on tumor segmentation, we present a visual com-
parison of the segmentation results obtained by OrgUNETR
and the baseline model in Figure 4. The first row shows
the ground truth segmentation, while the second and third
rows display the tumor predictions of OrgUNETR and the
baseline model, respectively. The pink pixels represent the

FIGURE 4. Tumor prediction from OrgUNETR and the baseline model on
KiTS19 dataset. The first row indicates the ground truth. The second row
illustrates the tumor prediction of OrgUNETR. The third row shows the
tumor prediction performed by the baseline model. The pink pixels
throughout the image represents the tumor pixels, whereas the greyscale
pixels indicate the background.

tumor regions, while the grayscale pixels correspond to the
background.

In the third column of Figure 4, we observe a significant
difference between the predictions of OrgUNETR and the
baseline model. For instance, in the second row, OrgUNETR
accurately predicts the tumor in the right kidney, whereas the
baseline model incorrectly predicts a non-existent tumor in
the left kidney. This observation highlights the inferior perfor-
mance of the baseline model in detecting tumors accurately
from CT scans.

Similarly, in the fifth column, OrgUNETR correctly shows
the absence of a tumor in the left kidney, while the baseline
model incorrectly predicts the presence of tumors in the
left kidney. These examples demonstrate the effectiveness of
incorporating organ information in improving tumor segmen-
tation accuracy.

Overall, the experimental results on the KiTS19 dataset
strongly support the efficacy of our proposed OrgUNETR
model in kidney tumor segmentation. By leveraging organ
information through a dual-channel approach and employing
SE layers for efficient attention mechanisms, OrgUNETR
achieves superior performance compared to the baseline
model, both in terms of Dice score and visual quality of the
segmentation results.

B. SEGMENTATION RESULTS WITH PROSTATE158 DATASET
To further validate the effectiveness of our proposed
OrgUNETR model, we conduct experiments on the
Prostate158 dataset, which consists of high-quality 3 Tesla
MRI scans specifically designed for prostate segmentation
tasks. The dataset includes annotations for both anatomical
zones and cancerous lesions within the prostate, making
it a comprehensive resource for evaluating prostate tumor
segmentation models.

The Prostate158 dataset comprises 139 training samples
and 19 validation samples. Each MRI scan has a native
resolution of 270 × 270 × 24 voxels. Due to computa-
tional limitations, we resize the scans to a uniform size
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of 128 × 128 × 128 voxels using linear interpolation. During
the resizing process, we carefully examine the presence of
tumor pixels and exclude 72 samples that lose tumor pixel
information as a result of the resizing operation. This ensures
that the training dataset maintains a sufficient representa-
tion of tumors for effective learning. Additionally, we apply
min-max scaling to normalize the intensity values of the
MRI scans, bringing them into a consistent range. Using the
Prostate158 dataset, we evaluated the performance of each
conventional model and the proposed model in the identical
approach as the experiment conducted with KiTS19 dataset.

TABLE 2. Performance evaluation with Prostate158 dataset.

Table 2 presents a comparative analysis of the Dice scores
achieved by various models on Prostate158 dataset. In case of
U-Net, the proposed model surpasses the conventional model
by 11.4%. For the UNETR and SwinUNETR, the proposed
models show superior performance by 22.8% and 22.1%
respectively. Contrary to other models, the nnFormer demon-
strated better performance in the conventional model.
However, the overall architectures of the proposed mod-
els show superior performance relative to the conventional
models. Through experiments conducted with Prostate158
dataset, we confirm the applicability of our model across
various models.

Especially for OrgUNETR, The training and validation sets
are split in a ratio of 70 to 30. We train the OrgUNETRmodel
using the AdamW optimizer with a learning rate of 0.0001.
To enhance the model’s robustness, we employ data augmen-
tation techniques, specifically random rotation of the input
images within a range of 0 to 30 degrees.

The performance of OrgUNETR is evaluated using the
Dice score metric, and we compare it against a baseline
model that focuses solely on tumor localization using a
single channel. Figure 5 presents the comparison of Dice
scores between OrgUNETR and the baseline model on the
Prostate158 dataset. The left plot shows the Dice scores on
the validation set, while the right plot displays the Dice scores
on the training set.

Our OrgUNETR model achieves a Dice score that
is 32.69% higher than the baseline model, demonstrating
the significant impact of incorporating organ information in
prostate tumor segmentation. Interestingly, we observe that

FIGURE 5. Dice score comparison for tumor segmentation on the Prostate
158 dataset. (a) depicts the comparison of the OrgUNETR versus UNETR
model using the validation dataset, and (b) presents the Dice scores of
OrgUNETR versus UNETR on the training dataset. In both (a) and (b), the
orange line shows the Dice score from OrgUNETR, while the blue lines
show the Dice score from UNETR. The bold lines represent the application
of a moving average to enhance clarity.

the training Dice score of the baseline model surpasses that
of OrgUNETR. However, when evaluated on the validation
set, OrgUNETR consistently outperforms the baselinemodel.
This observation suggests that OrgUNETR is more effective
in generalizing to unseen data and is less prone to overfitting
compared to the baseline model.

Figure 6 illustrates the training and validation loss
curves for both OrgUNETR and the baseline model on the
Prostate158 dataset. Our model demonstrates a substantial
reduction in DiceCELoss compared to the baseline model,
with a decrease of 43.39%. This observation underscores the
benefit of incorporating organ information into the segmenta-
tion process, leading to more accurate tumor predictions. It is
worth noting that the training DiceCELoss of both models
shows only a 3.44% difference, indicating that both models
are trained similarly. However, the superior performance of
OrgUNETR on the validation and test sets highlights its
ability to generalize well and make accurate predictions on
unseen data.

FIGURE 6. Comparison of DiceCELoss for tumor segmentation on the
Prostate 158 dataset. (a) illustrates the comparison between the
OrgUNETR and UNETR models using the validation dataset, while
(b) displays the loss for OrgUNETR compared to UNETR on the training
dataset. In both (a) and (b), the orange line represents the loss for
OrgUNETR, whereas the blue lines indicate the loss for UNETR. Bold lines
signify the use of a moving average for clarity.

To provide a qualitative assessment of the segmentation
results, we present representative examples in Figure 7.
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FIGURE 7. Tumor prediction from OrgUNETR and the baseline model on
Prostate 158 dataset. The first row indicates the ground truth. The second
row illustrates the tumor prediction of OrgUNETR. The third row shows
the tumor prediction performed by the baseline model. The pink pixels
throughout the image represents the tumor pixels, whereas the greyscale
pixels indicate the background.

The first row shows the ground truth segmentation, while
the second and third rows display the tumor predictions of
OrgUNETR and the baseline model, respectively. The pink
pixels represent the tumor regions, while the grayscale pixels
correspond to the background.

In the third column of Figure 7, we observe significant
differences between the predictions of OrgUNETR and the
baselinemodel. OrgUNETR accurately predicts a large tumor
in the middle of the prostate, closely resembling the ground
truth. In contrast, the baseline model not only predicts the
tumor in the middle of the prostate but also incorrectly iden-
tifies additional tumor regions. These examples demonstrate
the superior performance of OrgUNETR in accurately seg-
menting prostate tumors by leveraging organ information.

The experimental results on the Prostate158 dataset fur-
ther validate the effectiveness of our proposed OrgUNETR
model in tumor segmentation tasks. By incorporating organ
information through a dual-channel approach, OrgUNETR
achieves significant improvements in Dice score and visual
quality of the segmentation results compared to the baseline
model. The model’s ability to generalize well to unseen data
and its robustness to overfitting make it a promising tool for
prostate tumor segmentation in clinical practice.

C. ADDITIONAL EXPERIMENTS
To thoroughly evaluate the robustness and performance of
our OrgUNETR model, we conducted an extensive series of
experiments across various hyperparameter configurations.
Initially, the number of channels in the decoder layer was
set to 16, and the learning rate was fixed at 0.0001.
We then explored different embedding dimensions for the
input patches, specifically 8, 16, and 32, to analyze their
impact on model performance.

Our experimental setup employed the KiTS19 and
Prostate158 datasets, which are well-regarded benchmarks
for assessing the efficacy of medical image segmentation
models. The performance of our model was quantified using
the Dice score, a standard metric for evaluating the accuracy
of segmentation models.

TABLE 3. Performance evaluation with different embedding dimensions.

Table 3 presents the Dice scores achieved by OrgUNETR
across the different embedding dimensions. Notably, even
with varying hyperparameters, our model consistently
demonstrated robust performance. For instance, with an
embedding dimension of 16, OrgUNETR attained a Dice
score of 0.2137 on the KiTS19 dataset, which is the highest
performance observed for this dataset. On the Prostate158
dataset, the model achieved its peak performance with
an embedding dimension of 32, recording a Dice score
of 0.2195. It is important to highlight that while the
highest Dice scores were observed at embedding dimensions
of 16 and 32, the scores at dimension 8 also showed com-
mendable performance, indicating the model’s stability and
efficiency across different configurations.

The marginal convergence of Dice scores between dimen-
sions 16 and 32 further underscores the model’s robustness.
Despite the variation in embedding dimensions, the perfor-
mance remained consistently high, demonstrating the effec-
tiveness and reliability of OrgUNETR in handling complex
medical image segmentation tasks. This consistent perfor-
mance, irrespective of the embedding dimension, attests to
the superior design and implementation of our model.

In conclusion, the experimental results confirm that
OrgUNETR performs exceptionally well across different
hyperparameter settings. The consistent Dice scores across
varying embedding dimensions indicate that our model
maintains high performance regardless of specific parame-
ter adjustments. This robustness highlights the potential of
OrgUNETR as a reliable tool for medical image segmenta-
tion, capable of delivering accurate and consistent results.

V. CONCLUSION
In this study, we introduced OrgUNETR, an enhanced ver-
sion of the UNETR architecture specifically designed for
tumor segmentation in medical images. The proposed model
incorporates organ context information to improve the accu-
racy and robustness of tumor localization. By leveraging
the fact that tumors typically exist within specific organs,
OrgUNETR effectively addresses the challenges posed by the
small size and unpredictable locations of tumors in CT and
MRI scans.

One of the key contributions of OrgUNETR is its ability
to simultaneously segment both the organ and the tumor
using a dual-channel approach. This approach significantly

VOLUME 12, 2024 84131



S. R. Choi et al.: OrgUNETR: Utilizing Organ Information and Squeeze and Excitation Block

improves tumor segmentation performance by allowing the
model to learn the inherent relationships between organs
and tumors. The experimental results on the KiTS19 and
Prostate158 datasets demonstrate the effectiveness of incor-
porating organ information, with OrgUNETR achieving
substantial improvements in Dice score compared to a base-
line model that focuses solely on tumor segmentation.

On the KiTS19 dataset, which consists of CT scans of the
kidney and kidney tumors, OrgUNETR achieved a remark-
able 40.54% increase in Dice score for tumor segmentation
when organ information was included. Similarly, on the
Prostate158 dataset, which containsMRI scans of the prostate
gland and prostate tumors, OrgUNETR outperformed the
baseline model by 32.69% in terms of Dice score. These
results provide strong evidence for the benefits of leveraging
organ context in tumor segmentation tasks.

In addition to the performance gains, we also optimized
the computational efficiency of OrgUNETR by replacing
the MHSA layers with SE layers. The SE layers efficiently
compute channel-wise attention, reducing the computational
complexity of the model while maintaining its segmenta-
tion accuracy. By substituting MHSA layers with SE layers,
we achieved a 13.9% reduction in computational cost, making
OrgUNETR more practical for real-world applications with
limited computational resources.

The superior performance of OrgUNETR can be attributed
to its ability to capture both local and global contextual
information. The encoder of OrgUNETR, which consists of
a series of SE blocks, effectively compresses spatial informa-
tion while extracting relevant features at different scales. The
decoder, on the other hand, reconstructs the segmented output
by integrating the extracted features through skip connec-
tions and upsampling operations. This architecture enables
OrgUNETR to generate precise and coherent segmentation
results, even for challenging cases with small and irregularly
shaped tumors.

Furthermore, the inclusion of organ information in the
segmentation process helps to mitigate the issue of false
positives, where the model incorrectly identifies non-tumor
regions as tumors. By learning the relationships between
organs and tumors, OrgUNETR is able to distinguish between
normal anatomical structures and abnormal growths more
effectively. This is particularly important in clinical settings,
where accurate tumor detection and delineation are crucial
for treatment planning and patient management.

The experimental results also highlight the generalization
ability of OrgUNETR. Despite the variations in tumor size,
shape, and location across different patients and imaging
modalities, OrgUNETR consistently outperforms the base-
line model. This robustness is essential for the practical
deployment of the model in real-world scenarios, where it
may encounter a wide range of tumor characteristics.
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