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Introduction: Systemic chemotherapy is typically administered following radical
gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated
the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel,
and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat
models employing nuclear medicine and molecular imaging technology.

Method:Nine Sprague Dawley rats were divided into three groups: paclitaxel (n =
3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated
APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by
conventional electrophilic radioiodination using tert-butylstannyl substituted
paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]
APNs) were prepared using a desolvation technique. Liposome-encapsulated
APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000,
HSPC, and cholesterol. The rats in each group were injected with each test drug
into the subserosa of the stomach antrum. After predetermined times (30min, 2,
4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using
single-photon emission computed tomography/computed tomography.

Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in
the stomach, with L-APNs showing the largest area under the curve. Most drugs
administered via the gastric subserosal route are distributed in the stomach and
intestines, with a low uptake of less than 1% in other major organs. The time to
reach the maximum concentration in the intestine for L-APNs, paclitaxel, and
APNs was 6.67, 5.33, and 4.00 h, respectively.
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Conclusion: These preliminary results imply that L-APNs have the potential to serve
as a novel paclitaxel preparation method for the regional treatment of
gastric cancer.
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Introduction

Gastric cancer one of the most prevalent malignancies in both
Korea and worldwide, holding the fifth position in incidence globally
and ranking as the fourth leading cause of death among all solid
cancers (International Agency for Research on Cancer, 2022). In
Korea, gastric cancer accounted for 10.8% of new cancer cases,
ranking fourth with 26,662 reported cases, slightly trailing behind
thyroid, lung, and colon cancers, as outlined in the report by the
Korea Central Cancer Registry for the year 2020 (National Cancer
Center, Korea Central Cancer Registry, 2022). Notably, owing to the
national screening program, gastric cancer is often diagnosed at an
early stage, termed early gastric cancer in Korea. Although radical
gastrectomy with lymph node dissection is the standard treatment
for gastric cancer, endoscopic submucosal dissection (ESD) is
becoming increasingly common in patients with early gastric
cancer (Guideline Committee of the Korean Gastric Cancer
Association Development Working Group and Review Panel,
2019; Ono et al., 2021). However, despite the introduction of
extended indications and the publication of long-term treatment
results of ESD on early gastric cancer, recurrence and regional
lymph node metastasis following ESD remain a challenge.

Adjuvant chemotherapy holds pivotal significance after radical
gastrectomy in patients diagnosed with stage II or stage III gastric
cancer (Sakuramoto et al., 2007; Sakamoto et al., 2009; Bang et al.,
2012). Its primary aim is the eradication of residual cancer cells post-
surgery, potentially diminishing the likelihood of recurrence and
enhancing overall survival rates. Systemic chemotherapy, an
established modality in gastric cancer treatment, employs
pharmaceutical agents disseminated throughout the body to target
and eradicate cancer cells, encompassing agents such as fluorouracil,
oxaliplatin, capecitabine, paclitaxel, among others. However,
traditional systemic chemotherapy via intravenous injection has the
drawback of affecting both normal and cancerous cells, leading to
undesirable side effects. In contrast, regional chemotherapy offers the
enticing prospect of maintaining a high concentration of anticancer
drugs in the tumor while minimizing side effects by confining the
drug’s effects to specific regions or organs (Akamo et al., 1994;
Kobayashi et al., 2014). This can be achieved through various
methods, including intraperitoneal chemotherapy, transarterial
chemoembolization, and intratumoral chemotherapy (Llovet et al.,
2002; Kono et al., 2017).

This strategy is particularly promising for lipophilic anticancer
drugs, which can help maintain high concentrations within the
lymphatic system while maintaining low systemic blood
concentrations (Worley et al., 2016). Furthermore, encapsulating
anticancer drugs in liposomes allows for enhanced lymphatic
concentration while preserving drug stability in vivo (Hua et al.,
2010; Huang et al., 2018; Okamoto et al., 2019). The potential

application of liposome-encapsulated albumin-paclitaxel in
regional chemotherapy is promising due to its capacity to localize
drug delivery at the tumor site while mitigating systemic side effects.
Nonetheless, present research lacks investigations into regional
chemotherapy for gastric cancer utilizing liposome-encapsulated
albumin-paclitaxel, particularly regarding the dispersion of
lipophilic anticancer drugs via subserosal injection. With this as
the backdrop, we focused on evaluating and comparing the
distribution of lipophilic anticancer drugs, including paclitaxel,
albumin-paclitaxel, and liposome-encapsulated albumin-
paclitaxel, within the body (Figure 1).

Furthermore, nuclear medicine and molecular imaging
techniques utilizing radiolabeled drugs, such as positron emission
tomography (PET) and single photon emission computed
tomography (SPECT), offer distinct advantages over conventional
approaches for assessing tissue pharmacokinetics (PK)
(Vallabhajosula, 2007). This cutting-edge technology facilitates
non-invasive, real-time visualization of biochemical processes at
the cellular and molecular levels in living organisms. It enables the
examination of the specific and selective binding of radiolabeled
drug candidates to their targets, transcending the limitations of
conventional PK studies. These methodologies allow for the
visualization and quantification of tissue PK properties of drug
candidates within specific organs and lesions of interest
(Bergström et al., 2003; Lau et al., 2020). Image-based nuclear
medicine and molecular imaging, consequently, emerges as a
valuable tool for identifying nuanced biochemical or pathological
events, facilitating disease diagnosis, predicting treatment outcomes,
and contributing to effective treatment planning. Herein, nuclear
medicine and molecular imaging were employed to investigate the
effects of subserosal injections in rat models.

Materials and methods

General

Globulin and fatty acid-free human serum albumin were obtained
from Sigma-Aldrich (#A3782, ≥99%, St. Louis, Missouri, USA). tert-
Butylstannyl-paclitaxel (#FC-6080, SnBu3-paclitaxel, >95%) from
Futurechem Co. (Seoul, Korea) was used as a precursor for
radioiodination. Anhydrous ethanol was purchased from Merck
(#1.00983, ≥99.9%, Rahway, New Jersey, USA) and ultrafiltration
membranes were obtained from Sartorius (Goettingen, Germany). A
PD-10 desalting column was purchased from GE Healthcare (CA, IL,
USA). The iodine-123 labeled paclitaxel ([123I]I-paclitaxel) was
synthesized by electrophilic iodination using a Na[123I]I solution
with an oxidant. Albumin-[123I]iodo-paclitaxel nanoparticles were
prepared using the desolvation technique and liposome-

Frontiers in Pharmacology frontiersin.org02

Lee et al. 10.3389/fphar.2024.1381406

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1381406


encapsulated albumin-[123I]iodo-paclitaxel nanoparticles were
obtained using the thin-film method.

Preparation of [123I]I-paclitaxel

[123I]I-paclitaxel was prepared by conventional electrophilic
radioiodination using SnBu3-paclitaxel as a precursor, according
to the literature, with a slight modification (Kiesewetter et al., 2003).
Briefly, a solution of sodium hydroxide containing I-123 was added
to a reaction vial containing chloramine-T trihydrate (0.1 mL, 1 mg/
mL of water), 1 N HCl (50 μL), and SnBu3-paclitaxel (0.1 mg) in
ethanol (0.1 mL). The mixture was then stirred at room temperature
for 10 min. After dilution with 10 mL of water and 8.4% NaHCO3

solution (100 μL), the solution was loaded onto a C18 plus Sep-Pak
cartridge, washed with water for injection (5 mL), and eluted with
acetonitrile (1.5 mL). The eluted solution was diluted with 1.5 mL of
water, filtered with a universal hydrophilic polytetrafluoroethylene
(UHP) syringe filter (0.45 μm, 13 mm), and purified by semi-
preparative high-performance liquid chromatography (HPLC;
Gilson 322 system equipped with a UV-detector (230 nm) and
NaI gamma-ray detector (LabLogic); XTerra RP18, 10 × 250 mm,
10 μm; 55% CH3CN/H2O, flow rate:3 mL/min). The collected
solution, around 24.5 min of retention time (tR) from HPLC, was
diluted with 17 mL of water, loaded onto a C18 plus Sep-Pak
cartridge, and washed with water for injection (5 mL) to remove
biologically unavailable HPLC solvent (Figure 2A). The desired
product was then eluted with ethanol (1.0 mL). Finally, the
ethanol solution was reduced to the desired volume using

nitrogen streaming. The radiochemical purity of the final
solution was confirmed by analytical HPLC (Figure 2B; Agilent
1260 system equipped with a UV-detector (230 nm) and NaI
gamma-ray detector (Raytest); XTerra RP18, 4.6 × 250 mm,
5 μm; 60% CH3CN/H2O, flow rate: 1 mL/min).

Preparation of albumin-[123I]iodo-paclitaxel
nanoparticles ([123I]APNs)

Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were
prepared using a previously described desolvation technique with
slight modifications (Ruttala and Ko, 2015). In brief, fatty acid-free
human serum albumin (1 mg/mL), practically devoid of globulin,
was dissolved in distilled water and filtered through a UHP syringe
filter (0.45 μm, 13 mm). The pH was adjusted to approximately nine
using 1 M NaOH. Subsequently, dropwise addition of [123I]I-
paclitaxel in ethanol solution (0.2 mL) was carried out into the
albumin solution (2 mL) with stirring (500 rpm) at 3 min intervals
for a total of 10 portions. The mixture was stirred for an additional
1.5 h. The mixture was separated by ultrafiltration using a 10-kDa
ultrafiltration membrane or PD-10 desalting columns.

Preparation of liposome-encapsulated APNs
(L-[123I]APNs)

Liposome-encapsulated APNs (L-[123I]APNs) were prepared
using the thin-film method described previously (Gill et al., 2012).

FIGURE 1
Schematics for the preparation of [123I]iodo-paclitaxel, albumin-[123I]iodo-paclitaxel nanoparticles and liposome-encapsulated albumin-[123I]iodo-
paclitaxel nanoparticles.
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In brief, L-[123I]APNs were encapsulated in liposomes by hydration of
the dried lipid thin film. Hydro Soy phosphatidylcholine (HSPC),
cholesterol, and DSPE-PEG2000 were dissolved in chloroform at a 90:
10:5 M ratio. The organic solvent was evaporated under a stream of
nitrogen gas to form a thin film at the bottom and wall of the vial.
Freeze-drying was performed overnight to remove any traces of the
remaining solvent. The dried film was hydrated with [123I]APNs
solution and incubated at 42°C for 20 min. The multilamellar
preparations obtained were resized by repeated extrusion through
polycarbonate membrane filters. Free unentrapped [123I]APNs were
removed by centrifugation at 5,000 rpm for 10 min. The supernatant
was collected in a glass vial and stored at 4°C until further use. The
sizes of [123I]APNs and L-[123I]APNs were determined by DLS using a
Zetasizer Nano (n = 3, Malvern Instruments Ltd, United Kingdom).
Drug entrapment efficiency (EE) was subsequently calculated using
the following formula: EE = (radioactivity of drug in liposomes)/
(radioactivity of feeding drug) × 100.

Animals

Seven to nine-week-old male Sprague Dawley (SD) rats were
obtained from Orient Bio Inc. (Seongnam, Korea) and maintained
in a controlled environment. To allow them to adapt, the rats were

acclimatized for 1 week, and maintained in air-conditioned quarters
in a specific pathogen-free (SPF) environment during periods with
free access to water and food. An SPF environment was maintained
with approximately 55% humidity, 21°C temperature, 12 h light/
dark cycle, ad libitum food and water, and housed in groups of two
animals per cage. Prior to the experiments, we randomly divided ten
mice into three groups with similar average body weight per group:
paclitaxel (n = 3), albumin-paclitaxel nanoparticles (APNs, n = 3),
and liposome-encapsulated APNs (L-APNs, n = 3). One rat was
prepared as a contingency for unavoidable situations such as
injection failure. Subserosal gastric injections were administered
to rats under isoflurane anesthesia. Following an upper abdominal
midline incision, each drug was injected into the subserosal antrum
of the stomach. The muscular layers and skin incision were closed,
and analgesics (ketoprofen, 5 mg/kg) were administered.

SPECT/CT study

Each animal underwent whole-body SPECT/CT using a small
animal-dedicated SPECT/CT system (NanoSPECT/CT; Mediso,
Budapest, Hungary) with an axial field of view (FOV) of 10 cm
and a transaxial FOV of 12 cm. The SPECT spatial resolution at the
center of the FOV was 1.2 mm full-width at half maximum. Prior to

FIGURE 2
The chromatograms for separation profile of the reaction mixture (A); gamma-ray: red, UV-230 nm: blue) and analysis profile of radiochemical
purity (B); gamma-ray).
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the SPECT scan, CT was conducted with a semicircular full
trajectory, maximum FOV, 723 projections, 55 kVp, 1000 ms,
and 1:4 binning. For the biodistribution study, whole-body
SPECT/CT images of the experimental mice were acquired at
30 min and 2, 4, 8, and 24 h (24–72 s per frame) after each
injection of [123I]I-paclitaxel (15.7 ± 1.3 MBq), [123I]APNs (19.8 ±
2.6 MBq), and L-[123I]APNs (2.9 ± 0.1 MBq). During scanning, all
animals were anesthetized with 2% isoflurane. The SPECT images
were reconstructed using the iterative three-dimensional ordered
subset expectation-maximization algorithm with the following
settings: four iterations, six subsets, full detector model, low
regularization, spike filter on, and a voxel size of 0.6 mm. Decay,
scatter, and attenuation corrections were applied during the
reconstruction. The final reconstructed SPECT and CT images
had matrix sizes of 142 × 142 × 163 mm³ and voxel sizes of
0.6 × 0.6 × 0.6 mm³ for further analysis. The PMOD software
version 3.8 (PMOD Technologies, Zurich, Switzerland) was used
to process the SPECT and CT images, including activity
normalization and registration.

Image analysis

Volumes of interest (VOIs) were drawn manually on SPECT-
and CT-fused images of the major organs (stomach, intestine, liver,
heart, kidney, and urinary bladder). Care was taken to ensure that
VOIs did not overlap. The VOIs were applied to the corresponding
organs on the SPECT images to estimate the radioactivity of each
organ. The measured activity (kBq/cc) was normalized to the total
injected activity to calculate the percentage of the injected dose per
Gram (%ID/g). The biodistribution data were plotted over time to
generate time-activity curves (TACs). Data were expressed as
mean ± standard error of the mean (SEM). The pharmacokinetic
parameters of radioiodine in each organ, including peak
concentration (Cmax), time to reach Cmax (Tmax), half-life (T1/2),
and area under the curve (AUC) were quantitatively evaluated using
the TACs of the organs of interest.

Statistical analysis

All statistical analyses were performed using Prism software
(GraphPad Software version 5.0, La Jolla, CA, USA). Data are
expressed as mean values ±standard error of the mean, and
comparisons of quantitative data between the two groups were
analyzed using an unpaired t-test. Statistical significance was set
at p < 0.05.

Results

Preparation of [123I]I-paclitaxel, [123I]APNs
and L-[123I]APNs

Radioiodination of paclitaxel ([123I]I-paclitaxel) was successfully
achieved through a conventional electrophilic aromatic substitution
reaction on activated paclitaxel using a tert-butylstannyl moiety and
the standard chloramine-T oxidation method. The radiosynthesis

process took approximately 80 min, and the radioactivity yield after
HPLC separation was found to be 29.8% ± 2.6% (Figure 2A, n = 14,
non-decay corrected). The radiochemical purity was greater than 99%
(Figure 2B; tR = 8.4 min). No significant radiolysis of [123I]I-paclitaxel
was observed in absolute ethanol after 4 h at room temperature.
Subsequently, an ethanol solution containing [123I]I-paclitaxel was
mixed with an albumin solution in a 1:10 (v/v) ratio, inducing the
self-assembly of albumin and forming [123I]APNs. The desired product
was obtained using a desolvation technique, yielding 33.2% ± 4.7% (n =
11, non-decay corrected) of radioactivity yield calculated from the used
[123I]I-paclitaxel radioactivity. The preparation time for the [123I]iodo-
paclitaxel-loaded albumin was approximately 180 min. No significant
differences were observed in the separation methods between
ultrafiltration and the use of the PD-10 column (31.2% ± 6.1% vs.
33.2% ± 4.7%, n > 3, non-decay corrected).

Subsequently, the [123I]APNs formed were encapsulated in
liposomes by hydrating the dried lipid thin film to produce L-
[123I]APNs. Results of dynamic light scattering (DLS) measured in
phosphate buffered saline showed 193 ± 20 nm for [123I]APNs
(Figure 3A) and 241 ± 24 nm for L-[123I]APNs (Figure 3B). The
size of L-[123I]APNs was slightly larger than that of [123I]APNs or
Abraxane (163 ± 47 nm, Figure 3C), suggesting that the L-[123I]
APNs was loaded within the vesicular structure. The encapsulation
efficiency (EE) of L-[123I]APNs was 82.8% ± 7.8%.

In vivo tissue pharmacokinetics

To evaluate the in vivo tissue distribution of [123I]I-paclitaxel,
[123I]APNs, and L-[123I]APNs in normal rats, radioisotope-labeled
drugs were administered via the gastric subserosal route. Whole-
body SPECT/CT scans were acquired using a small animal-
dedicated SPECT/CT system at 30 min and 2, 4, 8, and 24 h after
each injection of [123I]I-paclitaxel, [123I]APNs, or L-[123I]APNs. The
acquired SPECT images were reconstructed using the iterative three-
dimensional ordered subset expectation-maximization algorithm
into three-dimensional images by combining them with the CT
images. Representative SPECT/CT images as time and
time–radioactivity profiles generated for each interest organ
determined from whole-body SPECT images are shown in
Figures 4, 5, respectively. In addition, pharmacokinetic
parameters such as T1/2, Tmax, AUC, and Cmax were analyzed
based on the quantified biodistribution data of each organ over
time (Table 1), and the excretion routes were also estimated (Moon
et al., 2021; Park et al., 2022; Park et al., 2023).

Paclitaxel, APNs, and L-APNs showed a high cumulative
distribution in the stomach. In decreasing order, the AUCs were
983 ± 167 for L-APNs, 893 ± 160 for APNs, and 838 ± 44 for
paclitaxel. Although the differences were not statistically significant,
likely due to the limited number of animals in each study group,
(p = 0.4, L-APNs vs. APNs; p = 0.18, L-APNs vs. Paclitaxel), the
combination for L-APNs of highest AUC and initially flat curves in all
organs, seems to indicate a prolonged and sustained presence of
L-APNs in the stomach. Drugs administered through the gastric
subserosal route were mostly distributed in the stomach and
intestines, with a low intake level (<1%) in other major organs.
Paclitaxel, APNs, and L-APNs were mainly excreted in the feces
through the intestines, and the time to reach the maximum
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concentration in the intestine for L-APNs was the longest at 6.67 h,
followed by paclitaxel at 5.33 h and APNs at 4.00 h. These findings
underscore the potential of L-APNs for targeted and prolonged drug
delivery to the stomach, possibly reducing systemic exposure and side
effects. L-APNs (Cmax = 0.23 ± 0.14 %ID/g) showed relatively high
uptake in the kidneys compared to other drugs, followed by
APNs (0.20 ± 0.03 %ID/g) and paclitaxel (0.03 ± 0.03 %ID/g) in
that order.

On the other hand, the uptake of free I-123 in the thyroid region,
which can predict in vivo instability, was not observed for any of the

drugs, [123I]I-paclitaxel, [123I]APNs, and L-[123I]APNs. The in vivo
stability seemed to be very high, allowing for unimpeded evaluation
of their distribution in vivo.

Discussion

In this study, we successfully synthesized [123I]I-paclitaxel and
prepared L-[123I]APNs containing [123I]APNs. The resulting
material exhibited high stability, confirming its potential for in

FIGURE 3
Dynamic light scattering data (n = 3) of [123I]APNs (A), L-[123I]APNs (B), and Abraxane (C). [123I]APNs, albumin-[123I]iodo-paclitaxel nanoparticles; L-
[123I]APNs, liposome-encapsulated albumin-[123I]iodo-paclitaxel nanoparticles.
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vivo applications. The somewhat longer preparation time for [123I]
APNs from radioiodination, approximately 260 min, was acceptable
in terms of the half-life of iodine-123 (t1/2 = 13 h) and in the context
of the objectives of our study.

Akamo et al. compared the effectiveness of delivering
adriamycin (ADR) to perigastric lymph nodes using gastric
submucosal injection of liposomal adriamycin (Lipo-ADR) and
intravenous administration of free ADR (F-ADR) (Akamo et al.,
1994). The study involved 34 gastric carcinoma patients who
received Lipo-ADR via endoscopic injection into the gastric
submucosa adjacent to the primary tumor and 18 patients who
received F-ADR intravenously. The results revealed that following
Lipo-ADR injection, the concentration of ADR in the primary and

secondary drainage lymph nodes was significantly higher than in
other regional lymph nodes.

Liposomes are lipid-based structures that encapsulate drugs
within lipid membranes. In the evaluation of the in vivo tissue
pharmacokinetics, our findings indicated a notable accumulation of
APNs and L-APNs in the stomach. This observation aligns with the
subserosal gastric injection route, which was selected because it
efficiently targets gastric tissues. The area under the curve (AUC)
associated with L-APNs is noteworthy, suggesting their potential for
extended release and sustained therapeutic effects. This extended
release was further supported by the delay in reaching the maximum
concentration in the intestines, with L-APNs requiring the
longest duration.

FIGURE 4
Representative single photon emission computed tomography/computed tomography images over time of [123I]I-paclitaxel (A), [123I]APNs (B), and
L-[123I]APNs (C). [123I]APNs, albumin-[123I]iodo-paclitaxel nanoparticles; L-[123I]APNs, liposome-encapsulated albumin-[123I]iodo-paclitaxel nanoparticles.
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FIGURE 5
Time-activity curves of [123I]I-paclitaxel (blue), [123I]APNs (red), and L-[123I]APNs (black) calculated from whole-body single photon emission
computed tomography/computed tomography images. Please note the differences in scaling, with liver, hearth, kidney, and urinary bladder having
uptake <1 %ID/g. [123I]APNs, albumin-[123I]iodo-paclitaxel nanoparticles; L-[123I]APNs, liposome-encapsulated albumin-[123I]iodo-paclitaxel nanoparticles.

TABLE 1 Pharmacokinetic parameters of [123I]I-paclitaxel, [123I]APNs and L-[123I]APNs after gastric subserosal administration in healthy ratsa.

Organ T1/2 [h] Cmax [%ID/g] Tmax [h] AUC0-t [%ID/g x h]

[123I]I-paclitaxel Stomach 3.23 ± 0.34 99.5 ± 0.3 0.50 ± 0.00 838 ± 44

Intestine 5.26 ± 2.90 44.3 ± 3.9 5.33 ± 1.33 487 ± 44

Liver 2.14 ± 0.16 0.12 ± 0.07 1.67 ± 1.17 0.93 ± 0.54

Heart - - - -

Kidney 2.13 ± 0.90 0.03 ± 0.03 0.50 ± 0.00 1.07 ± 0.14

Urinary Bladder 1.97 ± 0.00 0.04 ± 0.04 3.00 ± 2.50 1.11 ± 0.39

[123I]APNs Stomach 5.01 ± 1.06 95.7 ± 0.9 0.50 ± 0.00 893 ± 160

Intestine 7.27 ± 1.03 20.8 ± 5.7 4.00 ± 0.00 261 ± 60

Liver 2.15 ± 0.52 0.11 ± 0.07 2.67 ± 0.67 1.24 ± 0.50

Heart 1.97 ± 0.00 0.04 ± 0.04 3.00 ± 2.50 0.77 ± 0.21

Kidney - 0.20 ± 0.03 6.67 ± 1.33 3.05 ± 0.36

Urinary Bladder 2.32 ± 0.35 0.02 ± 0.02 8.33 ± 7.83 1.11 ± 0.26

L-[123I]APNs Stomach 6.11 ± 3.21 99.0 ± 1.4 1.50 ± 0.50 983 ± 167

Intestine - 30.7 ± 7.3 6.67 ± 1.33 436 ± 95

Liver - 0.06 ± 0.06 3.00 ± 2.50 0.66 ± 0.66

Heart - 0.05 ± 0.05 3.00 ± 2.50 0.68 ± 0.68

Kidney - 0.23 ± 0.14 4.17 ± 2.17 5.35 ± 2.47

Urinary Bladder - 0.01 ± 0.01 3.00 ± 2.50 0.06 ± 0.06

aData shown are mean values ± Standard Error of the Mean (n = 3).
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Okamoto et al. employed liposomes to address the challenge of
the low water solubility of paclitaxel (Okamoto et al., 2019). In this
study, we explored the in vivo antitumor effects of APNs in a mouse
model of subcutaneously inoculated pancreatic cancer cells. These
results demonstrate that APNs effectively accumulated at the tumor
site, presumably through an enhanced permeability retention effect,
and exhibited significant antitumor activity.

In the present study, the low distribution of these drugs in other
major organs of the body (<1%) suggests that the subserosal injection
route effectively minimizes systemic distribution, emphasizing the
potential for localized therapy with reduced systemic side effects.
These results highlight the potential of our approach for delivering
paclitaxel and other lipophilic anticancer drugs, offering a strategy to
enhance their therapeutic impact while minimizing systemic
exposure. Thus, L-APNs have the potential to serve as a novel
method for preparing paclitaxel for gastric cancer treatment. The
application of nuclear medicine and molecular imaging technology to
evaluate the distribution and pharmacokinetics of these agents in vivo
demonstrated the translational potential of this research in the field of
cancer treatment.

It is important to note that further studies, including toxicity
assessments, efficacy evaluations, and clinical trials, will be necessary
to translate these findings into clinical practice. Nonetheless, the
promising results obtained in this study provide a strong foundation
for future investigations into developing novel localized
anticancer therapies.

The current study had some limitations. Paclitaxel and [123I]
iodo-paclitaxel ([123I]I-paclitaxel) are structurally slightly
different. [18F]Fluoro-paclitaxel, which has relatively smaller
structural change, has a very similar distribution to paclitaxel
(Kiesewetter et al., 2003). However, [18F]fluoro-paclitaxel was
unsuitable for this study because it has a relatively short half-
life of 110 min. There may be differences in body distribution
between paclitaxel and [123I]iodo-paclitaxel, but these could be
considered minor differences in the present study using identical
conditions. Additionally, when [123I]I-paclitaxel is broken down
in vivo, free iodide is absorbed into thyroid tissues. Considering
that all three radiotracers, [123I]I-paclitaxel, [123I]APNs, and L-
[123I]APNs, were barely absorbed, the in vivo stability appeared to
be very high; thus, there were no problems in evaluating their
distribution in vivo. Another limitation is that the sample size
used in this preliminary experiment was relatively small, which
may have limited the accuracy of the distribution of these
substances in the body. Nevertheless, this study, which assessed
tissue pharmacokinetics using image-based nuclear medicine and
molecular imaging techniques, indicated the potential of L-APNs.

Conclusion

These initial findings imply the potential of L-APNs as a
novel preparation method of paclitaxel for regional treatment of
gastric cancer. These results indicate that L-APNs exhibit
favorable distribution and accumulation in the stomach,
making them a potentially valuable approach for localized
treatment. Further preclinical and clinical studies are
warranted to explore the full potential and efficacy of L-APNs
in gastric cancer therapy.
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