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Conditioning regimens for pediatric acute lymphoblastic leukemia (ALL) usually include total body irradiation
(TBI), but TBI may result in serious sequelae. Busulfan and cyclophosphamide have been used as an alter-
native to TBI. Etoposide also has been widely used to enhance antileukemic effect. However, toxicities have
been reported in some studies using busulfan, cyclophosphamide, and etoposide regimen. A reduced toxicity
myeloablative regimen using busulfan and fludarabine showed promising results. Also, therapeutic drug
monitoring (TDM) and administration of targeted doses of busulfan have been recommended to improve the
outcome of hematopoietic stem cell transplantation (HSCT). In this study, we evaluated the outcome of HSCT
using a targeted once-daily i.v. busulfanefludarabineeetoposide (BuFluVP) regimen in pediatric and infant
ALL. Busulfan (age � 1 year, 120 mg/m2; age < 1 year, 80 mg/m2) was administered once daily as the first
dose on day �8, and a targeted dose of busulfan was used according to the TDM results on days �7 to �5.
Forty-four patients were evaluated. Donor-type neutrophil engraftment was achieved in all patients. Veno-
occlusive disease occurred in 7 patients (15.9%), but all patients were successfully treated. Cumulative
incidence of treatment-related mortality and relapse were 9.1% and 9.9%, respectively. One-year overall
survival and event-free survival rates of all patients were 86.2% and 83.8%, respectively. Twelve patients
(27.3%) were infants at diagnosis, and their 1-year overall survival rate was 83.3%. Our study demonstrated
that HSCT using a targeted once-daily i.v. BuFluVP regimen showed favorable outcomes and could be an
option for HSCT in pediatric and infant ALL.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION including pediatric patients [6,15-18]. However, toxicities

Treatment outcomes in pediatric acute lymphoblastic

leukemia (ALL) have dramatically improved, but some high-
risk patients still suffer from poor outcomes. Hematopoietic
stem cell transplantation (HSCT) can be a curative treatment
option for these high-risk or relapsed patients [1-5]. The
usual conditioning regimens for pediatric ALL include total
body irradiation (TBI) [6-8], but TBI often causes serious
sequelae, such as growth impairment, endocrinologic and
metabolic problem, and secondary malignancies [9,10].
Busulfan-based conditioning regimens with cyclophospha-
mide have been used as an alternative to TBI-based regimens
in many diseases, including pediatric ALL [11,12].

Etoposide has beenwidely used in HSCT for lymphoid and
myeloid malignancy because of its antileukemic effect
[13,14], and a conditioning regimen containing busulfan,
cyclophosphamide, and etoposide was used in many studies
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have been also reported in some studies using busulfan,
cyclophosphamide, and etoposide conditioning regimens
[19,20]. A reduced toxicity myeloablative regimen using
busulfan and fludarabine showed promising results [21-24].
Thus, we used a conditioning regimen composed of busulfan,
fludarabine, and etoposide (BuFluVP) to enhance antileu-
kemic effect and to decrease the toxicity for pediatric ALL
patients.

Therapeutic drug monitoring (TDM) of busulfan and
administration of a targeted dose have been recommended
to improve the clinical outcome of HSCT because of the
narrow therapeutic range and highly variable pharmacoki-
netics of busulfan [25-30]. For these reasons, TDM and dose
modification of busulfan were applied in our transplantation
center since 2009. In this study, we evaluated the outcome of
HSCT using a targeted once-daily i.v. BuFluVP conditioning
regimen for pediatric and infant ALL.
METHODS
Study Population and Study Design

Forty-four patients were evaluated. We retrospectively studied patients
who underwent HSCT using a targeted once-daily i.v. BuFluVP regimen at
Seoul National University Children’s Hospital from March 2009 to January
2014. This study was approved by the Institutional Review Board of the
Seoul National University Hospital (H-1107-024-368), and 7 patients were
enrolled in our phase I study, which was registered at www.clinicaltrials.gov
(NCT01018446) [30].

http://www.clinicaltrials.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbmt.2014.09.013&domain=pdf
http://dx.doi.org/10.1016/j.bbmt.2014.09.013
mailto:kanghj@snu.ac.kr


Table 1
Clinical Characteristics and Transplantation Data (N ¼ 44)

Characteristics Value

Median age, yr (range) 9.7 (.6-22.2)
Gender
Male 21 (47.7)
Female 23 (52.3)

Immunophenotype
Precursor B cell ALL 31 (70.5)
Precursor T cell ALL 8 (18.2)
ALL with biphenotype (B cell lymphoid and myeloid) 4 (9.1)
ALL with biphenotype (B and T cell lymphoid) 1 (2.3)

Transplant type
Related BMT/PBSCT 10 (22.7)
Unrelated BMT/PBSCT 24 (54.5)
CBT 10 (22.7)

Pre-HSCT status
First CR with poor prognostic factor 28 (63.6)
Second CR 12 (27.3)
Third CR, persistence or other* 4 (9.1)

Values are number of cases with percents in parentheses, unless otherwise
noted.

* Reappearance of molecular (fluorescein in situ hybridization) marker.
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We collected and analyzed data regarding engraftment, regimen-related
toxicities, events, and survival. Events were defined as relapse or treatment-
related mortality (TRM). TDM results were also analyzed. We analyzed in-
fant leukemia separately, because infant leukemia is a specific group of
diseases, and it is very difficult to apply TBI in this group of patients.

Transplantation Protocol
Donor selectionwas based on HLA serologic typing performed for class I

antigens and HLA molecular typing for the DRB1 and DQB1 loci. HLA-A, -B,
-C, -DRB1, and -DQB1 were confirmed by a high-resolution molecular
method for all patients and unrelated donors. Suitable donors were selected
in the order of matched sibling, unrelated donor, and cord blood.

The conditioning regimen was composed of busulfan, fludarabine (40
mg/m2 once daily i.v. on days�8 to�3), and etoposide (20 mg/kg once daily
i.v. on days �4 to �2). Busulfan (120 mg/m2 for patients aged � 1 year and
80 mg/m2 for patients aged < 1 year) was administered once daily as the
first dose on day �8, and a targeted dose of busulfan was used according to
the TDM results on days �7 to �5 [30].

Graft-versus-host disease (GVHD) prophylaxis consisted of cyclosporine
plus prednisolone for related HSCT, cyclosporine plus mycophenolate
mofetil for cord blood transplantation (CBT), or tacrolimus plus metho-
trexate for unrelated bone marrow transplantation (BMT)/peripheral blood
stem cell transplantation (PBSCT). Veno-occlusive disease (VOD) and
infection prophylaxis were administered according to our center’s guide-
lines for HSCT [31]. Patients received lipo-prostaglandin E1 (alprostadil,
Eglandin; Welfide, Osaka, Japan) at a dose of 1 mg/kg/day through contin-
uous infusion for prophylaxis of VODwith or without low-molecular-weight
heparin (nadroparin calcium, Fraxiparine; GlaxoSmithKline, United
Kingdom). Patients received ciprofloxacin, itraconazole or micafungin and
acyclovir as a prophylaxis for infection. Intravenous immune globulin (.5 g/
kg/dose) was infused every 2 weeks until day 100 and then monthly until
day 180. Sulfamethoxazole-trimethoprim was discontinued 3 days before
HSCT and then restarted after engraftment.

Engraftment and Toxicities
Myelogenous engraftment was defined as the first of 3 consecutive days

with an absolute neutrophil count of .5 � 109/L, and platelet recovery was
defined as the day the platelet count was 20 � 109/L without platelet
transfusions. Bone marrow examination was done at 1, 3, and 6 months and
1 year after HSCT. Hematopoietic chimerism was evaluated by molecular
analysis of short tandem repeat regions. Regimen-related toxicity until 42
days after transplantation was graded according to the National Cancer
Institute Common Toxicity Criteria (v4.0) (http://evs.nci.nih.gov/ftp1/
CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf).

TDM and Dose Adjustment
The analysis by HPLC (Symbiosis Pharma; Spark Holland, Emmen, The

Netherlands) with tandem mass spectrometry was based on our previously
described method [30]. Blood samplings were taken through the Hickman
catheter line, which was not used for busulfan infusion before administra-
tion, at 0, 1, 2, and 4 hours after the end of infusion. Area under the curve
(AUC) and clearance were calculated by a 1-compartment model using
WinNonlin 5.2.1 (Pharsight, Mountain View, CA).

Target AUC was initially set up as 18,125 to 20,000 mg$h/L/day (4415 to
4872 mmol$min/L/day), and the dosewas adjustedwhen AUCwas out of that
range. We planned to perform TDM on the first and fourth days and the day
when a dose adjustment more than 25% was needed according to the results
of a previous study [25]. From June 2009, we made changes in our design
because we observed frequent occurrence of toxicities. The target AUC was
reduced to 18,000 to 19,000 mg$h/L/day (4384 to 4628 mmol$min/L/day), and
we performed TDM and dose adjustment daily. Also, the target AUC on the
fourth daywas decided as (median value of the total target AUCecumulative
AUC during 3 days) mg$h/L/day [30]. In this study, decreased target AUC and
daily TDM were applied to 40 patients.

Statistics
Differences between means in continuous variables were calculated

with Student’s t-test. Kaplan-Meier method and log-rank univariate com-
parisons were used to estimate survival. Cumulative incidence was calcu-
lated using a competing risk model. STATA version 13.0 (Stata Corporation,
College Station, TX) was used for all statistical analyses, and statistical sig-
nificance was accepted when P < .05.

RESULTS
Characteristics of Patients

The clinical characteristics of the patients are summa-
rized in Table 1. Twenty-eight patients underwent HSCT in
first complete remission (CR) because of poor prognostic
factors (8 infant leukemia, 5 initial WBC > 200,000/mL, 4 ALL
with biphenotype, 3 induction failure, 3 MLL positive, 2 BCR/
ABL positive, 1 early T cell precursor leukemia, 1 hypodip-
loidy, and 1 infant BCR/ABL positive). Twelve patients (27.3%)
were in second CR, 1 (2.3%) in third CR, and 2 (4.5%) in
persistence at the time of HSCT. One patient had reappear-
ance of a molecular marker up to 4% by fluorescein in situ
hybridization analysis.

Engraftment Data
Median numbers of infused total nucleated cells and

CD34þ cells were, respectively, 13.8 � 108/kg (5.7 to 52.6 �
108/kg) and 6.2 � 106/kg (.9 to 29.4 � 106/kg) in BMT/PBSCT
and 9.8 � 107/kg (3.1 to 24.3� 107/kg) and 3.8� 105/kg (.5 to
5.9� 105/kg) in CBT. Donor-type neutrophil engraftment was
achieved in all patients. Themedian number of days required
to reach an absolute neutrophil count of more than .5�109/L
was 10 days (8 to 29 days). Spontaneous platelet recovery
more than 20� 109/L was achieved, except in 3 patients who
died before platelet engraftment and required a median 15
days (8 to 164 days).

SCT Complications
Elevation of aspartate and/or alanine aminotransferases or

total bilirubin of at least grade 3 occurred in 24 (54.5%) and 3
patients (6.8%), respectively. Before the reductionof targetAUC
and daily TDM, aspartate and/or alanine aminotransferase
elevationof at least grade 3wasobserved in4patients, and2of
them showed hyperbilirubinemia of at least grade 3. Among
the40patientswhounderwentHSCTafter themodification, 20
patients (50.0%) had elevated aspartate and/or alanine ami-
notransferases of at least grade 3, and hyperbilirubinemia of at
least grade 3 occurred in 11 patients (27.5%).

Seven patients (15.9%) developed VOD (all moderate ac-
cording to McDonald et al. [32]), and all were successfully
treated. The total AUC of patientswith VODwere significantly
higher than total AUC of those without VOD (78,004 � 5155
mg$h/L and 75,019 � 2774 mg$h/L, respectively; P ¼ .030).
Septicemia occurred in 1 patient (2.2%) 6 days after HSCT.

Grades II to IV acute GVHD developed in 19 patients
(grade II in 13 patients, grade III in 3 patients, and grade IV in
3 patients), with a cumulative incidence of 43.4%. Chronic

http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf
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Figure 1. One-year OS and EFS rates of all patients were 86.2% and 83.8%, respectively.
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GVHD developed in 7 patients, with a cumulative incidence
of 16.1%.

Events and Survival Data
Four patients died of TRM, with a cumulative incidence of

9.1%. The causes of TRM were adenoviral pneumonia in 1
patient, respiratory syncytial viral pneumonia in 1, intersti-
tial lung disease in 1, and infection with acute GVHD in 1
patient. Relapse occurred in 4 patients, with a cumulative
incidence of 9.9%. Two were patients with precursor T cell
ALL, and 1 patient was an infant who underwent HSCT in
second CR because the patient showed very early relapse
during consolidation treatment.

One-year overall survival (OS) and event-free survival
(EFS) rates of all patients were 86.2% and 83.8%, respectively,
with 25.8 months of median follow-up (Figure 1). EFS
showed no difference according to the type of HSCT (80.0% in
related BMT/PBSCT, 83.1% in unrelated BMT/PBSCT, and 77.1%
in CBT, P ¼ .97, Figure 2).

TDM Results
AUC of the first day ranged from 10,167 to 33,181 mg$h/L/

day (median, 20,823 mg$h/L/day). In only 1 patient, AUC after
the first day fell into the target range. Busulfan dose was
increased on the second day in 13 patients, and a dose
reductionwasmade in 30 patients. The total dose of busulfan
ranged from 249.9 to 709.1 mg/m2 (median, 391.6 mg/m2),
and the total AUC was 70,815 to 87,448 mg$h/L (median,
74,823 mg$h/L).
Figure 2. EFS showed no difference according to the type of stem cell trans-
plantation (80.0% in related BMT/PBSCT, 83.1% in unrelated BMT/PBSCT, and
77.1% in CBT).
Infant ALL
In this study, 12 patients (27.3%) were infants at diag-

nosis, with a median age of .5 years (.1 to .9 years) (Table 2).
Eight of these infants (66.7%) hadMLL gene rearrangements
and 1 had t(9;22). One patient who underwent HSCT in
second CR relapsed at 2 months after HSCT, and 1 patient
died of respiratory syncytial viral pneumonia at 1 month
after HSCT. One patient who had persistent disease before
HSCT achieved CR after HSCT and is alive without disease
after 20 months of follow-up. The 1-year OS rate in these
infant patients was 83.3%.
DISCUSSION
Conditioning regimens for pediatric ALL have been mye-

loablative regimens traditionally using TBI and high-dose
cyclophosphamide [8]. Although TBI-based conditioning
regimens have been widely suggested for pediatric ALL pa-
tients, long-term sequelae of TBI should be considered,
especially in young children. In a report studying the late
effects and health-related quality of life of childhood cancer
survivors after radiotherapy, TBI was significantly associated
with endocrine dysfunction [33]. Cardiopulmonary prob-
lems, severe cataracts, and secondarymalignancies were also
observed in other studies [7,34]. Children are usually in their
growth and development period during treatment and also
have a long life expectancy after HSCT. Long-term sequelae
such as growth hormone deficiency, hypogonadism, hypo-
thyroidism, and secondary malignancy could be serious
problems for children.

To avoid the late sequelae of TBI, conditioning regimens
without TBI have been studied by some researchers [6,11,12].
A randomized trial comparing busulfan with TBI as a con-
ditioning regimen for pediatric ALL [6] found similar relapses
in both arms, but TRM was more frequent in busulfan arm,
resulting in inferior EFS rates. However, a fixed dose of oral
busulfan was used without TDM, and the authors suggested
that targeting the level of busulfan could be an option to
decrease TRM and improve outcome.

Busulfan has a narrow therapeutic range with high risk of
toxicities such as VOD on high exposure [28,35-38] and
increased relapse or graft failure on low exposure [28,39].
Because the pharmacokinetics of busulfan is known to be
variable [29,40], TDM and dose adjustment of busulfan have
been recommended to improve the outcome of HSCT [25-
29]. In our previous reports, busulfan pharmacokinetics
showed high inter- and intraindividual variability, and we
suggested the need for intensive monitoring and dose
adjustment of busulfan [30].



Table 2
Infant ALL

Patient
Number

Sex Age at
Diagnosis (yr)

Age at
HSCT (yr)

Cytogenetics Pre-HSCT Status Type of HSCT Status, Last
Follow-up

5 F .4 1.2 MLL CR1 UPBSCT NED, 59 mo
6 F .7 1.8 del(9p) CR1 UPBSCT NED, 57 mo
7 M .5 .9 MLL, t(4;11) CR1 CBT NED, 55 mo
8 F .8 1.2 t(9;22) CR1 RPBSCT NED, 53 mo
11 F .8 1.3 MLL CR1 CBT NED, 49 mo
17 F .5 1.5 MLL, del(9p) CR1 UPBSCT NED, 33 mo
21 F .1 .6 MLL, t(4;11) CR2 UPBSCT DOD, 4 mo
22 F .4 1.3 MLL, t(11;19) CR3 CBT TRM, 1 mo
25 M .8 1.3 del(9p) CR1 CBT NED, 27 mo
31 M .3 .6 Persistence RPBSCT NED, 20 mo
32 F .9 1.3 MLL CR1 UPBSCT NED, 19 mo
42 F .2 .6 MLL, t(10;11) CR1 CBT NED, 7 mo

CR1 indicates first complete remission; UPBSCT, unrelated peripheral blood stem cell transplantation; NED, no evidence of disease; RPBSCT, related peripheral
blood stem cell transplantation; DOD, dead of disease.
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In this study, we performed TDM and dose modification
of busulfan daily to reduce the effect of intraindividual
variability and tried to meet the total target AUC by
calculating the target AUC on the fourth day as a (median
value of the total target AUC rangeecumulative AUC during
3 days) mg$h/L/day. Many reports have shown that once-
daily i.v. busulfan could be well tolerated as a condition-
ing regimen without increasing toxicity [41-44], and we
used once-daily i.v. busulfan because of the convenience
for TDM. We added etoposide (60 mg/kg) to enhance
antileukemic effect and fludarabine instead of cyclophos-
phamide to reduce toxicities. With this targeted once-daily
i.v. BuFluVP regimen, OS and EFS rates were 86.2% and
83.8%, respectively, and the cumulative incidence of TRM
was 9.1%. These promising results suggest that once-daily
i.v. BuFluVP with intensive TDM and dose modification
could be an option for HSCT instead of a TBI-based regimen
in pediatric ALL patients.

Unexpectedly, VOD still developed in 15.9% of patients
even after this intensive TDM. This could be partly due to the
addition of etoposide, because etoposide probably makes the
conditioning regimen more toxic. Although VOD did not
result in toxic death in this study, one should be aware of the
possibility of VOD during the use of this regimen.

In our study, 10 patients (22.7%) underwent CBT, which is
alternative means of HSCT in patients who do not have
suitable siblings or unrelated matched donors. However,
graft failure and early TRM are major obstacles to CBT. To
enhance the engraftment potential, double-unit CBT has
been attempted in many studies [45,46], but graft failure was
still a problem. In this study, all CBT patients achieved
neutrophil engraftment. One patient relapsed and 1 patient
died of respiratory syncytial viral pneumonia. OS of these
patients was comparable with that of patients who under-
went related or unrelated BMT/PBSCT. Although the number
of patients is not sufficient to draw any conclusion, optimi-
zation of the busulfan exposure by TDM could be one way to
improve the outcome of CBT.

Twelve patients were infants at diagnosis, with a median
age of .5 years. The outcome of infant leukemia is known to
be very poor, with EFS rates of 42% to 47% in 2 large studies
[47,48]. There is insufficient evidence to support the benefit
of HSCT in infant leukemia [49], but several studies have
explored the use of HSCT to improve the outcome of infant
leukemia, especially in cases of MLL positive [50-52]. How-
ever, TBI could result in serious sequelae, especially for these
young patients. The outcome of HSCT of 12 infants in our
study was promising, with an OS rate of 83.3%, considering
many of them were carrying MLL gene rearrangement. This
result suggests the feasibility of a targeted once-daily i.v.
BuFluVP regimen to avoid severe toxicity and late sequelae in
the patients with infant leukemia.

This study has its limitations in that it was a retrospective
study with patients of a single institution. Also, some pa-
tients were not currently indicated for HSCT in centers in
other countries. For example, HSCT of Phþ ALL is not
routinely recommended in the United States and Europe
after the Children’s Oncology Group study [53] and EsPhALL
trial [54], which showed excellent outcome of chemotherapy
with imatinib. Chemotherapy with imatinib followed by
HSCT has been a standard treatment for Phþ ALL in our
center if there are matched donors. These factors should be
considered in interpreting our data. However, our study
showed tolerable toxicity and safety of targeted once-daily
i.v. BuFluVP regimen. A future randomized multicenter trial
is needed to confirm our results.

In conclusion, our study demonstrated that HSCT using a
targeted once-daily i.v. BuFluVP regimen showed favorable
outcomes in pediatric and infant ALL patients. The outcomes
of HSCT were especially promising in infant ALL and CBT.
With this result, a conditioning regimen of targeted once-
daily i.v. BuFluVP could be one option for HSCT in pediatric
and infant ALL patients.
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