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A B S T R A C T   

Using the mathematical model of a Direct Methanol Fuel Cell (DMFC) stack, a new optimum 
approach is presented for estimating the seven unknown parameters i.e., (eo, α, R, jeid, C1, β,req) 
optimally. Specifically, a method is proposed for minimization of the Sum of Squared Errors (SSE) 
associated with the estimated polarization profile, based on the experimental data from simula-
tions. The Enhanced Weighted mean of vectors (EINFO) algorithm is a novel metaheuristic 
method that is proposed to achieve this goal. An analysis of the results of this method is then 
compared to various metaheuristic algorithms such as the Particle Swarm Optimization (PSO), 
Sine Cosine Algorithm (SCA), Dragonfly Algorithm (DA), Atom Search Optimization (ASO), and 
Weighted mean of vectors (INFO) well known in literature. As a final step to confirm the proposed 
approach’s effectiveness, the sensitivity analysis is carried out using temperature changes, along 
with comparison against different approaches described in the literature to demonstrate its su-
periority. After comparison of parameter estimation and different operating temperature a non- 
parametric test is also performed and compared with the rest of the metaheuristic algorithms 
used in the manuscript. From these tests it is concluded that the proposed algorithm is superior to 
the rest of the compared algorithms.   

1. Introduction 

A growing number of research projects are devoted to environmental and ecological issues [1–3]. Research in this area is focused on 
developing clean energy sources, which is most important. The low carbon footprint and efficiency of fuel cells make them one of the 
most preferred energy sources today. Additionally, the production of electricity from fuel cells is not influenced by the weather, unlike 
that of solar and wind energy sources. Direct methanol fuel cell technology will be the main emphasis (DMFC). This fuel cell is regarded 
as one of the top rivals for low power applications (from less than a watt to several megawatts) because to its liquid fuel and minimal 
CO2 emissions, as well as low activation temperature. 
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In order to examine the performance-affecting factors for DMFC cells, analytical models [4–8], semi-empirical equations [9–13], 
and mechanistic models [14–21] have all been taken into account. One of the main areas of interest is semi-empirical models. Yang 
et al. [11] developed a fuel cell model with an equivalent circuit that successfully addresses nonlinear resistors, capacitors, and an 
inductor. A model of a DMFC type fuel cell was published by Yang et al. [12] that takes into account four operating parameters, such as 
temperature, methanol concentration, and methanol and air flow rates. 

Compared to the PEMFC and SOFC fuel cells, the number of publications in the literature devoted to the modelling of the DMFC 
seems to be quite minimal. Mostly researchers estimate the unknown parameters using meta heuristic algorithm like swam based 
algorithms [22,23], genetic based algorithms [24] and currently focusing on artificial intelligence based algorithms [25,26]. Most of 
these works have had great difficulty in solving the Butler–Volmer equation. To make the intricacy of this equation simpler in their 
writings, the authors use assumptions and approximations. The performance of the models suggested for retracing experimental data 
of the current density curve and stack voltage (J-V) of DMFC stacks may be adversely affected by the application of certain approx-
imations and assumptions. The key optimization approach used in earlier publications for parameter extraction is Newton-Raphson 
[9–13]. The drawback of this type of optimization strategy is that it has demonstrated a high sensitivity to beginning values and is 
difficult to differentiability and convexity. Researchers also noted that metaheuristic methods were not used for the extraction of 
parameters from the DMFC stack models, despite the fact that these approaches were demonstrated to conduct optimization better 
than other optimization strategies. They may, for instance, be used to extract properties from models of solar cells, PEMFC [27], SOFC 
fuel cells, and other systems. The paper’s main contribution is outlined in the highlights below:  

• Using a distinct EINFO methodology, the DMFC model’s parameters are optimally retrieved.  
• Real experimental data collected in various climatic conditions are used to confirm the performance of the proposed strategy, 

which is then compared to other well-established approaches.  
• The calculation time of the fuel cell model is computed in order to evaluate the effectiveness and precision of the suggested 

algorithm.  
• To check the consistency and robustness of the proposed algorithm the convergence curve, and different operating temperature, 

results are obtained.  
• Non-parametric statistical test i.e., Friedman Ranking Test, Wilcoxon rank sum test is done for finding the significance of parameter 

estimation of DMFC. 

2. DMFC mathematical modeling 

In a fuel cell, chemical energy is transformed into electrical energy. It continuously converts chemical energy into electrical energy 
and heat. The fuel cell transforms the chemical energy provided by a fuel and an oxidant into water and electrical energy. The fuel cell 
is different from a battery in that it runs constantly while receiving fuel rather than storing energy. The mathematical modelling of the 
DMFC stack is our goal and schematic of DMFC is represented in Fig. 1. To extract the model’s unidentified parameters i.e., (eo, α, R, jeid, 
C1, β,req), the EINFO metaheuristic algorithm is adopted. The DMFC cell voltage is represented in equation (1) [10]. 

vcell =Eact − Econ − Erev − Eohm (1)  

Where the cell voltage is represented by vcell, the concentration polarization is represented by Econ, the activation polarization is 
represented by Eact , the reversible polarization is represented by Erev, and the ohmic polarization is represented by Eohm. 

The electrochemical equation of DMFC is given in following equations: 

Fig. 1. Schematic of DMFC [28].  
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Equation (2) represents the anode side electrochemical reaction: 

CH3OH +H2O → 6H+ + 6e− + CO2 (2) 

Equation (3) represents the cathode side electrochemical reaction: 

3
2
O2 + 6H+ + 6e− → 3H2O (3) 

Equation (4) represents the overall electrochemical reaction: 

CH3OH +
3
2
O2 → 2H2O+CO2 + Heat (4)    

(a) Expression for Activation Loss Voltage: 

The overvoltage needed to energize the electrodes is represented by the activation voltage. Using the Butler-Volmer equation, the 
current density jmax will be expressed in equation (5) to estimate the value of the activation voltage [9]: 

jmax = jeid

[
e

(

αnF
RT Eact

)

− e
−

(
(1− α)F

RT Eact

)

]
(5)  

Where exchange current density is represented by jeid, and the value of α lies between the 0 and 1. The calculation of the activation 
voltage of equation (5) cannot be solved analytically in its current form. The voltage Eact will be replaced by Econ, Erev, Eohm, and vcell in 
the first exponential of the equation to solve this problem, which results in the following equation (6): 

jmax = jeid

[
e

(

αnF
RT (Econ − Eohm − Erev − vcell)

)

− e
−

(
(1− α)nF

RT Eact

)

]
(6) 

Finally, the expression for the new activation voltage may be expressed in equation (7): 

Eact =
RT
[
log
(
jmax + jeide(

αnF
RT (Econ − Eohm − Erev − vcell))

)
− log(jeid)

]

αnF
(7)    

(b) Expression for Ohmic Loss Voltage: 

The term “ohmic loss voltage” refers to the resistances that are added in response to the movement of ions, electrons, and material 
across a membrane. The following equation (8) represents the ohmic voltage [10]: 

Eohm =Rjcd (8)  

Where the internal resistance of the fuel cell is represented by R, and he current density is denoted by jcd.  

(c) Expression for Concentration Loss Voltage: 

The voltage loss due to mass transportation is indicated by the voltage loss of concentration. The concentration voltage may be 
expressed in equation (9) using Fick’s law [12]: 

Econ = −
RT
βnF

ln
(

1 −
jmax

jlimit

)

(9)  

In equation (9) jmax is briefly represented in equation (10): 

jmax =
Erev − vcell − Rjcd

rcon + ract
(10)  

Where the empirical coefficient parameter is denoted by β, and the limit current density is represented by jlimit.  

(d) Expression for Reversible Loss Voltage: 

The energetic activity in the fuel cell, which includes the forming and breaking of bonds at the level of the electrodes, leads to the 
reversible voltage. The Nernst equation may be used to explain the reversible voltage as shown in equation (11) [21]: 

Erev = eo +
RT
nF

[

log
(
cCH3OH

)
+

3
2

log
(
po2

)
]

−
RT
nF

[

2 log
(
pH2O

)
+

3
2

log
(
pco2

)
]

(11) 
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Where eo is the potential for the reaction between methanol and oxygen, pCH3OH is the partial pressure of methanol present at the anode, 
pH2O is the partial pressure of water at the cathode, which is 1, when liquid water is produced, po2 is the partial pressure of oxygen at the 
cathode, is pco2 the partial pressure CO2, R is the universal gas constant (8.314 J/molK), F is the Faraday’s constant (94,485 c/mol) and 
number of electrons is represented by n. In general, experimental access to the pressures of CO2 and H2O is not possible. Due to these 
factors, the term − RT

nF
[
2 log(pH2O)+

3
2 log(pc2o)

]
will equal C1, making C1 a parameter that has to be established. The reversible voltage 

equation therefore becomes as shown in equation (12): 

Erev = eo +
RT
nF

[

log
(
cCH3OH

)
+

3
2

log
(
po2

)
]

+ C1 (12)  

Where the temperature of cell in K (Kelvin) is denoted by T.  

(e) Expression for Fuel Cell Voltage: 

Based on previous theoretical developments, the following equation (13) can be the expression of the fuel cell voltage Vcell: 

vcell =Eact − Econ − Erev − Eohm (13a)  

With 

Eact =
RT
[
log
(

jmax + jeide(
αnf
rt (Econ − Eohm − Erev − vcell))

)
− log(jeid)

]

αnF
(13b)  

Eohm =Rjcd (13c)  

Econ = −
RT
βnF

ln
(

1 −
jmax

jlimit

)

(13d)  

Erev = eo +
RT
nF

[

log
(
cCH3OH

)
+

3
2

log
(
po2

)
]

+ C1 (13e) 

The seven unknown parameters y are given by equations (13a-13e) in the form y = [eo, α, R, jeid, C1, β,req]. 

2.1. Problem formulation 

For the purpose of estimating the parameters of DMFC, this research suggests a new, better approach called EINFO. Utilizing 
optimization methods, output voltage is predicted for each input of current density. Equation (14) illustrates the objective function of 
the SSE (Sum of Square Error) metric, which is used to compare predicted and experimental output voltages. 

SSE =MIN

(

F =
∑N

i=1
(Vactual − Vi)

2

)

(14) 

The constraints of the DMFC is represented in equations 15–21: 

eomin ≤ eo ≤ eomax (15)  

βmin ≤ β ≤ βmax (16)  

αmin ≤α ≤ αmax (17)  

Rmin ≤R ≤ Rmax (18)  

jeidmin ≤ jeid ≤ jeidmax (19)  

reqmin ≤ req ≤ reqmax (20)  

C1min ≤C1 ≤ C1max (21)  

Where N represents the number of data points Vactual is the experimental output voltage and Vi is the predicted output voltage using 
various optimization algorithms. The main goal of this paper is to minimize the SSE value for obtaining better performance as well as 
more accuracy and precision in order to estimate the parameters of DMFC. 
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3. Method 

In this part, the suggested improved INFO (EINFO) algorithm is provided after a brief description of the weighted mean of vectors 
(INFO) methodology. 

3.1. Weighted mean of vectors (INFO) 

In 2022, the INFO method was presented [29]. Using four key stages—initialization, updating rule, vector combining, and lastly 
local search—this technique’s concept relies on a strong structure and updating the vectors’ positions. 

Step 1. Initialization Stage: A population of n vectors in a D-dimensional search space compensate the INFO approach. The following 
equation (22) produces a random beginning population: 

Xn =Xmin + rand(0, 1).(Xmax − Xmin) (22)  

Where Xn is the nth vector, Xmin,Xmax are the limits of the solution domain in each problem and rand(0,1) is a random number defined 
in the range of [0, 1]. 

Step 2. Updating Rule: Through the search process, this step broadens the population. This operation produces new vectors by using 
the weighted mean of the vectors. The following equation (23) is the updating rule’s key formulation: 

if rand < 0.5 (23)  

z1iter
l = xiter

l + σ ×MeanRule+ randn ×

(
xbs − xiter

a1

)

(f (xbs) − f (xiter
a1 ) + 1)

z2iter
l = xbs + σ ×MeanRule+ randn ×

(
xiter

a1 − xiter
b

)

(f (xiter
a1 ) − f (xiter

a2 ) + 1)

else  

z1iter
l = xiter

a + σ ×MeanRule+ randn ×

(
xiter

a2 − xiter
a3

)

(f (xiter
a2 ) − f (xiter

a3 ) + 1)

z2iter
i = xbt + σ ×MeanRule+ randn ×

(
xiter

a1 − xiter
a2

)

(f (xiter
a1 ) − f (xiter

a2 ) + 1)

end  

Where z1iter
l and z2iter

l denote the new vectors in the gth generation; and σ is the scaling rate of a vector, as shown in equation (24) as: 

σ = 2α × rand − α (24)   

Step 3. Vector Combining: The two vectors generated in the preceding section (z1iter
l and z2iter

l ) (and) are merged with vector xiter
l 

based on the INFO method to build the population’s diversity as shown in equation 25.1–25.3: 

if rand < 0.5  

if rand < 0.5  

uiter
l = z1iter

l + μ.
⃒
⃒z1iter

l − z2iter
l

⃒
⃒ (25.1)  

else  

uiter
l = z2iter

l + μ.
⃒
⃒z1iter

l − z2iter
l

⃒
⃒ (25.2)  

end  

else  

uiter
l = xiter

l (25.3)  

end 
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Where μ is equal to 0.05 × randn. 

Step 4. Local Search: The capability of this stage prevent the algorithm to drop into local minima. The local operator is considered 
using the global location (xiter

best). According to this operator, a novel vector can be produced around global position (xiter
best) as shown in 

equation 26.1 to 26.4: 

ifrand < 0.5  

ifrand < 0.5  

uiter
l = xbs + randn ×

(
MeanRule+ randn×

(
xiter

bs − xiter
a1

))
(26.1)  

else  

uiter
l = xrnd + randn × (MeanRule+ randn×(υ1 × xbs − υ2 × xrnd)) (26.2)  

end  

end  

xrnd =φ× xavg +(1 − φ) × (φ× xbt +(1 − φ)× xbs) (26.3) 

Figure 2. Proposed algorithm flowchart.  
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Fig. 3. Pseudocode of EINFO  

Table 1 
Data sheet of DMFC [10].  

Model Data 

Surface of Plate A [cm2] 25 
Cathode Side Oxygen Pressure [bar] 1.35 
Reservoir Side Oxygen Pressure [bar] 1.5 
Oxygen Flowrate [ml/min] 200 
Methanol Flowrate [ml/min] 1.94 
Temperature [oC] 80  

Table 2 
DMFC upper and lower bounds [10].  

Parameters Lower Bound Upper Bound 

eo (V) 0.83 1.23 
α 0 1 
R 0 3 
jeid 0 0.3 
C1 − 4.8 − 0.5 
β 0 2 
req 0 50  
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xavg =
(xa + xb + xc)

3
(26.4)  

Where φ is a random number in the range of (0, 1); and xrnd is a new solution that combines the components of the three solutions (xavg, 
xbt and xbs) randomly. This increases the randomness nature of the proposed algorithm to better search in the solution space. υ1 and υ2 
are two random numbers given by the following equation 26.5–26.6: 

υ1 =

{
2 × rand ifp > 0.5

1 otherwise (26.5)  

υ2 =

{
rand ifp < 0.5

1 otherwise (26.6)  

Where p refers to a random number in the range of (0, 1). 

3.2. Proposed enhanced efficient optimization (EINFO) algorithm 

The development is called the high and low velocity ratios based on the Marine predator algorithm (MPA) [30,31]. This way was 
proposed to solve the possibility of the optimal value may drop into local minima. This modification depends on two stages. The first 
stage is the high-velocity ratio situation. This stage’s mathematical model is shown in equation 27.1 to 27.3: 

iter <
1
3

itermax (27.1)  

S= RB
̅→⨂

(
E − RB

̅→⨂Xn(iter)
)

(27.2)  

Xn(iter + 1)=Xn(iter) + P. RB
̅→⨂ S (27.3)  

Where RB
̅→ is a vector of random integers from the Normal distribution that reflect Brownian motion. The notation ⨂ depicts entry-by- 

entry multiplications. The new position is simulated by multiplying RB
̅→ by previous position, P = 0.5 is a constant, and RB

̅→ is a vector 
of uniform random values in the range [0, 1]. This situation occurs during the first third of iterations when the step size is large, 
indicating a high level of exploratory ability. iter is the current iteration while itermax is the maximum one. The fittest solution (E) is 
designated as a best position to form a matrix as shown in equation (28): 

E=

⎡

⎢
⎢
⎣

Xbiter
1.1 ⋯ Xbiter

1.d

⋮ ⋱ ⋮
Xbiter

n.1 ⋯ Xbiter
n.d

⎤

⎥
⎥
⎦ (28)  

Where, Xb denotes the best solution, which is copied n times to create the E matrix. n denotes the number of search agents, whereas 
d denotes the number of dimensions. 

The second stage is the low velocity ratio. This stage occurs near the end of the optimization process, which is typically associated 
with high exploitation capability. Lévy is the best approach for low-velocity ratios. This stage is depicted as shown in equation 29.1 to 
29.3: 

iter >
1
3

itermax (29.1)  

S= RL
̅→⨂

(
RL
̅→⨂E − Xn(iter)

)
(29.2) 

Table 3 
DMFC parameter estimation.  

Parameters/Algorithms PSO DA ASO SCA INFO Proposed Algorithm (EINFO) 

eo (V) 0.8458 0.8574 1.2259 1.2299 0.8965 0.8994 
α 0.5231 0.4587 0.5507 0.2598 0.3587 0.8879 
R 2.9587 1.2410 1.3258 1.5423 1.0028 1.2054 
jeid 0.1254 0.1248 0.2194 0.1592 0.1249 0.1670 
C1 − 0.8955 − 0.1131 − 0.8532 − 0.1131 − 0.9416 − 0.5814 
β 0.1368 0.5743 0.2587 1.2305 0.1574 1.5840 
req 12.716 21.078 15.557 12.711 16.171 14.258 
SSE 1.54E-02 1.04E-04 1.31E-04 1.12E-03 1.57E-08 1.77E-10 
Computation Time (Sec) 2.908 1.589 1.897 1.995 1.115 1.252  
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Fig. 4. (a) Sum of Square Error (b) Standard Deviation (c) Computational Time (d) Convergence Curve at STC (e) V–I Graph (f) P–I Graph.  
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Table 4 
DMFC statistical results.  

Parameters/Algorithms PSO DA ASO SCA INFO Proposed Algorithm (EINFO) 

Minimum 1.54E-02 1.04E-04 1.31E-04 1.12E-03 1.57E-08 1.77E-10 
Maximum 2.35E-02 1.47E-04 2.19E-04 2.40E-03 6.49E-08 5.34E-10 
Average 1.90E-02 1.27E-04 1.79E-04 1.56E-03 3.34E-08 2.89E-10 
Standard Deviation (S.D) 3.16E-03 1.72E-05 3.85E-05 5.16E-04 2.12E-08 1.48E-10  

Fig. 5. (a) Convergence Curve at 60 ◦C (b) 70 ◦C (c) 90 ◦C.  
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Xn(iter + 1)=E + P.CF⨂ S (29.3) 

In the Lévy method, multiplying RL and E, whereas adding the step size to position to aid in the updating of location. The fittest 
solution (E) is designated as a best position to form a matrix as shown in equation (30): 

E=

⎡

⎢
⎢
⎣

Xbiter
1.1 ⋯ Xbiter

1.d

⋮ ⋱ ⋮
Xbiter

n.1 ⋯ Xbiter
n.d

⎤

⎥
⎥
⎦ (30) 

Additional feature of EINFO is increasing the chances of escape from local optima. The Fig. 2 and Fig. 3 depicts the flowchart and 
pseudocode of proposed algorithm, respectively. The place of high and low velocity ratios in the proposed algorithm are presented in 
this figure. This modification leads to enhance the exploration of the proposed EINFO algorithm. 

Step 1. Initialization 

Set the initial parameters (dim, population, size, maximum iteration) 
Generate initial population 
Calculate the objective function of each vector 
Determine the best vector 

Step 2. Updating Rule 

Calculate the vector Z1iter
i & Z2iter

i using equation 23 

Step 3. Vector Combining 

Calculate the vector Uiter
i using equation 25 

Step 4. Local Search 

Calculate the local search operate using equation 26 

Table 5 
Parameter estimation of DMFC at different operating temperature.  

Temperature (oC) Parameters/Algorithms PSO DA ASO SCA INFO Proposed Algorithm (EINFO) 

60 eo (V) 0.2589 0.3587 0.4528 0.5478 0.2148 0.2105 
α 0.1048 0.3326 0.3888 0.2673 0.2002 0.3301 
R 1.0251 1.2412 2.2358 2.9587 2.6687 2.0627 
jeid 0.1670 0.1766 0.2255 0.1597 0.1148 0.1282 
C1 − 0.9416 − 0.9816 − 0.4070 − 0.9066 − 0.4117 − 0.8773 
β 0.1360 0.0400 0.0381 0.0321 0.0241 0.0341 
req 16.171 17.754 22.160 15.759 11.538 12.325 
SSE 1.69E-02 1.17E-04 1.62E-04 1.16E-03 1.65E-08 1.82E-10 
Computation Time (Sec) 2.748 1.874 1.991 2.054 1.158 1.021 

70 eo (V) 0.3254 0.8914 0.5897 1.1258 0.5968 0.2358 
α 0.1105 0.5874 0.1997 0.2625 0.3024 0.3425 
R 1.0254 2.8950 2.0336 1.0327 2.0517 1.1691 
jeid 0.1592 0.2354 0.1648 0.1891 0.1161 0.1955 
C1 − 0.8532 − 0.2893 − 0.1115 − 0.9162 − 0.7818 − 0.9298 
β 0.0574 0.5210 0.1203 0.2802 0.2925 0.3177 
req 15.887 23.921 16.936 18.944 11.308 19.253 
SSE 1.89E-02 1.26E-04 1.64E-04 1.49E-03 2.51E-08 2.35E-10 
Computation Time (Sec) 2.895 2.166 2.591 1.291 1.258 1.113 

90 eo (V) 0.5987 0.6587 0.5621 0.3254 0.3210 0.4897 
α 0.1124 0.2707 0.2898 0.3289 0.4543 0.2901 
R 1.0008 1.0587 1.1225 2.5332 1.2705 1.2243 
jeid 0.1249 0.2358 0.1483 0.1757 0.2297 0.1465 
C1 − 0.1131 − 0.8532 − 0.1154 − 0.1066 − 0.1173 − 0.1163 
β 0.1362 0.2970 0.2561 0.2571 0.4532 0.1407 
req 12.711 23.694 14.431 17.454 22.255 14.243 
SSE 2.04E-02 1.39E-04 2.17E-04 1.62E-03 4.50E-08 3.18E-10 
Computation Time (Sec) 2.754 1.226 1.587 2.369 1.187 1.024  
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Step 5. High & low velocity ratio 

for iter <1/3 iter max 
Calculate the high velocity ration using equation 27 
Update the best vector 
then 
for iter >1/3 iter max 
Calculate the low velocity ration using equation 29 
Update the best vector 

Step 6. Return Vector Xg
best,j as the final solution 

Fig. 6. (a) Sum of Square Error at 60 ◦C (b) 70 ◦C (c) 90 ◦C.  
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4. Results and discussion 

The recently utilized metaheuristic algorithms PSO [32], DA [33], ASO [34], SCA [35], and INFO [28] are used to validate the 
proposed algorithm. The technical and operational data of the tested stack are displayed in Table 1. Table 2 displays the boundaries of 
the control variables for the DMFC stack. The estimated values of the control variables (eo, α, r, jeid, C1, β,req) were calculated by 
resolving the optimization problem. In order to produce a precise DMFC stack model, these properties will be used. 

4.1. DMFC parameter estimation 

Every programme has been coded in MATLAB 2020a and has been executed 20 times. All the algorithms are iterated at the same of 
search agents i.e. 30 and maximum no of iterations i.e. 1000 whereas the rest of the parameters of all the algorithms are kept standard. 
The suggested EINFO is used to estimate the parameters of DMFCs, and its performance and efficiency are further evaluated in 
comparison to a number of other algorithms, including PSO, INFO, DA, SCA, and ASO. The DMFC parameter estimation at STC 
(Standard Temperature Condition), with SSE and computation time is shown in Table 3. Fig. 4 shows, the sum of square error, standard 
deviation, I–V and P–V graph and computation time at standard temperature condition. The suggested approach outperforms the other 
comparable metaheuristic algorithms, it may be shown from these scattering figures. Table 4 displays the DMFC’s statistics results. The 
DMFC convergence curve at STC is shown in Fig. 5. The suggested method outperforms the other examined algorithms, according to 
this figure. 

Fig. 7. (a) Computational Time at 60 ◦C (b) 70 ◦C (c) 90 ◦C.  
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4.2. Convergence analysis 

The parameter estimation for the DMFC at various operating temperatures is shown in Table 5. The parameter is extracted at 
different temperature i.e. 60, 70 and 90 ◦C respectively. At different temperature SSE and computation time is calculated as repre-
sented in Table 5. According to this table, the suggested method performs much better than the rest of the examined algorithms in 
terms of SSE and calculation time. Fig. 5 shows the convergence curve at various temperatures. This shows that the suggested hybrid 
method is more accurate and precise than existing meta-heuristic algorithms because of its faster rate of convergence. The SSE at 
various temperatures is seen in Fig. 6. Additionally, it may be inferred from this that the suggested method is superior to the rest of the 
algorithms evaluated. Fig. 7 shows the computational time at various operating temperatures, and it can be inferred that the suggested 
method performs significantly better than existing algorithms from this as well. Figs. 8 and 9 represents the I–V graphs and I–P graphs 
at different operating temperature of the proposed algorithm respectively. 

Fig. 8. (a) I–V Graph at 60 ◦C (b) 70 ◦C (c) 90 ◦C.  
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Fig. 9. (a) I–P Graph at 60 ◦C (b) 70 ◦C (c) 90 ◦C.  

Table 6 
Friedman ranking test.  

Algorithm Friedman ranking 

Proposed Algorithm 1 
INFO 2 
SCA 5 
ASO 4 
DA 3 
PSO 6  
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4.3. Non-parametric test 

Based on the Friedman Ranking Test [36–39], Table 6 compares the parameter estimation of DMFC using the proposed algorithm 
with INFO, DA, ASO, SCA, and PSO respectively. It is evident from the results that the proposed algorithm is more efficient, accurate, 
precise, and robust than various other meta-heuristic algorithms. Second, the Wilcoxon rank sum test is applied in this test. It seems to 
be a simple, yet secure, and reliable non-parametric method for combined statistical analysis when samples are independent, and it is 
prominent and present in dynamic programming, as shown in Table 7. 

5. Conclusion 

The paper proposes a newly developed algorithm, EINFO, for obtaining the optimal solution to the DMFC parameter estimation 
optimization problem. Based on the results obtained, the following conclusions were drawn:  

1. A new algorithm i.e., EINFO algorithm has been proposed.  
2. At Standard Temperature Conditions, Parameter Estimation of DMFC is performed using EINFO, and the results show that the 

proposed hybrid algorithm offers better performance and more accuracy than various other meta-heuristic algorithms, including 
the SSE and computational time.  

3. This study presents a convergence graph and different operating temperature curves which clearly demonstrate one of the highest 
speed of convergence of the proposed algorithm over other meta-heuristic algorithms.  

4. In addition, a complete statistical analysis was conducted using Friedman Ranking Test and Wilcoxon rank sum test methods to 
demonstrate the efficiency, performance, and robustness of the proposed algorithm, with EINFO securing a first place ranking thus 
indicating that EINFO is the most effective. 

The proposed algorithm has better performance than various other meta-heuristic algorithms, as it is more accurate and precise. 
The application of this method can be explored in other areas for better results. This proposed algorithms cam be solved to different 
complex engineering problems like parameter estimation of solar PV, optimal sizing of renewable energy system, thermal scheduling, 
etc. 
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