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ABSTRACT Demand response (DR) is an economical way of addressing the challenges faced by themassive
penetration of distributed energy resources, such as renewable energy. Residential consumers account for a
significant proportion of electricity consumption. However, their behavior is highly random and uncertain,
meaning it is difficult to quantify the impact of DR programs in which they participate. This paper presents
a two-level optimal bidding strategy framework for load aggregators that combines a data-driven forecasting
model and a data-driven agent-based model (D-ABM) to provide a realistic estimate of the impact of DR.
First, the aggregated load of all consumers and market prices are predicted via a long short-term memory
(LSTM) autoencoder forecasting model. Then, the proposed D-ABM estimates and quantifies the difference
rate in terms of total load due to DR. Since D-ABM is a bottom-up approach, each consumer can be
treated as a heterogeneous agent and changes in individual electricity usage patterns due to DR can be
estimated. Changes in collective electricity consumption patterns can also be quantified by considering the
estimated individual behavior and the interactions defined by the basic rules. In addition, assumptions about
biases and preferences that explain the irrationality of individual decision-making are given to agents, and
the uncertainty of DR participation is considered more realistically. Finally, based on these uncertainties
addressed at each level, various bidding strategies for load aggregators can be obtained. The numerical
simulation results indicate that our framework provides a more realistic estimation of the impact of total
load under DR, minimizes any deviations from bidding strategies, and ensures maximum profits for load
aggregators.

INDEX TERMS Bidding strategy, load aggregator, demand response, long short-term memory autoencoder,
data-driven agent-based model.

I. INTRODUCTION
A. MOTIVATION
Demand response (DR) programs trigger changes in end-user
consumption patterns in response to market price signals.
As a flexible demand-side resource, DR is considered an
efficient tool for maintaining the reliability of power systems
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and solving the problem of the massive penetration of dis-
tributed energy resources, such as renewable generation.
Residential consumers account for a significant proportion
of electricity consumption among all end-users and present
a significant opportunity for implementing DR programs.
However, designing an efficient DR mechanism for the resi-
dential sector presents significant challenges due to the large
number of consumers and their negligible individual impact
on the market [1]. Given these limitations, load aggregators
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have emerged as a means of participating in the wholesale
power market on behalf of individual residential consumers.
However, this emergence of DR and load aggregators has
created new challenges for the entire chain, including market
operators, load aggregators, and residential consumers.

Increased participation in DR programs can complicate the
power flow in demand-side networks, which affects electric-
ity consumption patterns and load forecasting [2]. For load
aggregators, accurately quantifying and estimating the impact
of DR program is crucial when submitting bidding strategies
in day-ahead markets [3]. In other words, before trading in
day-ahead markets, load aggregators need to understand the
rate of change in the total load due to DR. However, the
behavior of residential consumers is heterogeneous. There-
fore, even with similar dwelling sizes, similar occupancy,
similar sets of appliances, and identical geographical condi-
tions, their energy consumption can vary by up to 200% [4].
Moreover, sensitivity to DR signals can vary depending on
the behavior and lifestyle of the consumer. Thus, load aggre-
gators encounter difficulties when attempting to understand
and consider these individual characteristics that determine
electricity consumption.

The development of smart meters is transforming power
systems into smart power networks, and the received data
can provide important clues toward understanding end-
user behavior. In other words, immense amounts of gran-
ular electricity consumption data can be collected due to
the widespread advances in smart meters [5], and this
high-resolution data can provide rich information about
consumers’ electricity consumption patterns and lifestyles.
Through data learning and analyses, this abundant data
presents an opportunity to objectively quantify and estimate
the degree of load change under DR programs. From another
perspective, existing studies onDR that assume that end-users
are always rational and active economic entities lead to inex-
plicable gaps between modeling results and actual observa-
tions [6]. For example, some price-responsive loads may not
consistently change their electricity consumption behavior in
response to price signals. Moreover, the degree of change can
also differ from the expected value. In particular, in situations
where consumers are autonomous, the irrationality of their
decision-making must also be considered when estimating
the impact of DR. Therefore, this study aims to provide more
realistic estimates and quantify changes in total load under
DR programs by proposing a data-driven two-level optimal
bidding strategy framework. This will allow load aggregators
to address various uncertainties related to bidding strategies,
including the irrationality of consumer decision making.

B. LITERATURE REVIEW
Residential consumers could theoretically represent a great
additional source of flexibility with significant potential for
decarbonizing energy systems [7].Many studies have focused
on a variety of topics for effectively implementing DR pro-
grams for residential electricity consumers [8]. One of these

is the task of forecasting loads affected by the implementation
of a DR program. In [9], a load prediction strategy based on a
combined approach of artificial neural networks (ANN) and
wavelet transform (WT) was proposed to evaluate DR-driven
load pattern elasticity in smart households. This approach
was employed to predict the response of residential loads to
various price signals. In [10], a forecasting model based on a
novel support vector regression (SVR) method was proposed
to calculate the DR baseline, which took the ambient tem-
perature 2 h before the DR execution as an input variable by
exploiting the nonlinear characteristics of SVR.

In [11], a novel stacked autoencoder (SAE)-based residen-
tial customers baseline load (CBL) estimation method was
presented using the data reconstruction capability of SAE.
A support vector machine (SVM) classifier was self-trained
for pseudo-load selection, and the results indicated that the
accuracy of residential CBL reconstruction was significantly
improved.

As the consumer’s role in the DR framework is an active
participant, the uncertainty of their response should be con-
sidered. In [12], a method for predicting consumer response
behavior based on long short-term memory (LSTM) was pro-
posed. Since consumer response behavior characteristics are
variable and exhibit a strong correlation with the timeline, the
characteristics of the LSTM algorithm were analyzed based
on the behavior analysis results. In [13], a load forecasting
method was developed based on DR deviation correction to
reflect the behavior of DR consumers. The process of DR
deviation correction consists of the acquisition of the initial
deviation sequence, normalization, extraction of the Hankel
matrix, and singular value decomposition of the simplified
mapping matrix. In [14], a comprehensive market frame-
work was introduced in which consumer agents could deliver
proactive residential DR measures in a day-ahead market.
Using agent-based modeling and a simulation approach,
the difference in DR potential was captured in advance
and the residential load profile was modeled by classify-
ing each household type. To estimate practical and realistic
DR potentials, [15] proposed a resident behavior detection
model for environment-responsive DR potential estimations.
This method was based on a hidden Markov model and
time-varying Markov chains in which the sub-metering data
of appliances were variously analyzed and profiled. Another
perspective is to quantify the response of residential con-
sumers according to their degree of comfort. In [16], the DR
potential of residential users was comprehensively predicted
based on the evaluation criteria of potential load level, use
consistency score, and frequency of use. In addition, user
comfort was multidimensionally evaluated, and a hybrid DR
model that considered the influence of electricity price and
economic incentives on the willingness to participate in DR
was established. In [17], a bi-level robust optimization model
with demand response and thermal comfort was presented
that considered the uncertainties of multi-energy loads and
renewable energy forecasting. Moreover, robust optimization
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of integrated energy systems was performed, with carbon
emission value (CEV) and resident dissatisfaction index
(RDI) used as the objective functions.

Recently, several studies have considered DR to formulate
the bidding strategies of load aggregators. In [18], an optimal
bidding strategy model for a load aggregator including DR
was proposed that could reduce the risk of financial losses due
to price fluctuations. This was addressed as a mixed-integer
linear programming problem. In [19], risk-based hybrid
energy management of a grid-connected microgrid was pre-
sented based on stochastic/information gap decision theory
optimization considering the confidence-based incentive DR
(CIDR). By implementing a CIDR program with a DR
aggregator, the proposed hybrid energy management scheme
improved stability during peak period loads, ensuring eco-
nomical operation of the microgrid. In [20], a game theory-
based approach was devised to obtain the best bidding
strategy for DR aggregators in the electricity market. This
employed an economically responsive load model based on
the customer benefit function and price elasticity combined
with the DR approach. In [21], a dynamic bidding strategy
for demand-side resources was proposed. This allowed DR
aggregators to participate in the frequency regulation mar-
ket considering the risks of various uncertain factors in the
electricity market. Moreover, a time-varying compensation
method for DR was devised based on analyzing the response
potential of demand-side resources, and the bidding strategy
of the DR aggregator was dynamically optimized by consid-
ering load deviations.

C. CONTRIBUTIONS
Significant advances have been made in recent years on
methods that predict user behavior. However, regardless of
whether this is an approximate abstract function or a linear
or nonlinear approximation, it remains a challenging task
to describe the relationship in terms of a time series [12].
The process of addressing price-responsive uncertainties in
individual consumers is often too complicated or is only
concerned with the comfort related to certain appliances.
Moreover, existing studies on bidding strategies of the load
aggregator that consider DR have focused mainly on opti-
mization based on operation and compensation mechanisms
for DR programs.

Accordingly, this paper proposes a two-level optimal bid-
ding strategy framework that combines an efficient forecast-
ing model and the data-driven agent-based model (D-ABM)
to provide realistic estimates of the impact of DR. First, the
aggregated loads and market prices are predicted through a
long short-term memory (LSTM) autoencoder-based fore-
casting model using multivariate time-series data. Simultane-
ously, D-ABM addresses the price-responsive uncertainty of
individual consumers in their DR participation and estimates
the rate of change in total load due to DR. Finally, consider-
ing the associated uncertainties addressed at each level, the
load aggregator’s bidding strategy is determined, ensuring

maximumprofit by reducing the deviation between actual and
expected load values.

The major contributions of this paper are summarized as
follows:

• A two-level optimal bidding strategy framework is pro-
posed to estimate and quantify the change in total
load under DR programs. The sum of the load of all
consumers (without considering the impact on DR) is
predicted using a data-driven forecasting model, and
the change rate of each agent’s load (considering the
impact of DR) is estimated by D-ABM. Because both
the forecasting model and D-ABM are based on time
series data, the overall framework can be incorporated
as a data-driven methodology.

• The proposed D-ABM defines all consumers as hetero-
geneous agents, meaning that each consumer becomes
a unique agent using individual data. This approach is
different from traditional ABM, which only considers
the comfort associated with certain appliances (such as
air conditioning or heating load) or groups consumer
agents based on electricity consumption patterns and
usage. Moreover, since the properties of each agent
are extracted through statistical data analysis based on
real data, D-ABM can provide improved realism and
objectivity.

• As a strength of the bottom-up approach, D-ABM can
assign different biases and preferences to each consumer
agent, providing an opportunity for more realistic esti-
mates of the impact of total load for DR implementation.

• By realistically estimating the impact of total load under
DR through the proposed framework, it is possible to
minimize any penalty costs due to deviations of the
bidding strategy, ensuring maximum profits for the load
aggregator.

D. PAPER ORGANIZATIONS
The remainder of this paper is organized as follows.
In Section II, a two-level hybrid framework is explained that
addresses uncertainties associated with the load aggregator’s
bidding strategy. Section III presents the problem formulation
of the optimal bidding strategy and an overall flowchart of
the proposed framework. Illustrative numerical simulation
results are analyzed in detail in Section IV. Finally, the con-
clusions are summarized in Section V.

II. UNCERTAINTY MODELING
In this section, the uncertainties associated with a load aggre-
gator’s bidding strategy are addressed. At the aggregate level,
following a two-level hybrid framework, the data-driven fore-
casting model predicts the total load of all consumers and
electricity prices in the day-ahead wholesale market. Then,
at the individual level, D-ABM is introduced to consider the
degree of consumer participation in DR and the uncertainty
of whether to participate. In addition, D-ABM emulates the
usage patterns of the appliances for shiftable and controllable
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loads where electricity consumption has a more right-skewed
distribution especially.

A. LOAD AND MARKET PRICE FORECASTING
The load aggregator acts as an intermediary between end
users and the network operator and needs to collect the
necessary information (such as load and market price fore-
casting) to formulate an optimal bidding strategy. In this
subsection, these uncertainties are handled through LSTM
autoencoder-based forecasting and anomaly detection using
a multivariate time series dataset.

1) MULTIVARIATE TIME SERIES DATA ANALYSIS
Time series forecasting is a technique for studying the behav-
ior of temporal data (which is a collection of observations in
chronological order) and predicting future values. Time series
data can be divided into two broad categories: univariate and
multivariate. Multivariate time series data has more than one
time-dependent variable. Moreover, each variable is associ-
ated with its past value and, in some cases, is correlated with
other variables in the dataset. Therefore, modeling all related
variables together in these problems provides a better under-
standing compared to modeling each variable individually.

The general expression for multivariate time series fore-
casting is presented in (1). Here, themodel input is a historical
dataset containing the target y itself and other variables from
the multivariate time series data. The goal of the model is to
forecast the future temporal values from yt+1 at time t + 1 to
yt+p at time t + p based on a past time series dataset. x(1)t−l · · · x(n)t−l

...
. . .

...

x(1)t · · · x(n)t


multivariate time series data

model
→

 yt+1
...

yt+p

 (1)

where l, n, and p represent the number of samples, the number
of input variables, and the predicted size ofmulti-step forward
forecasting, respectively.

Data preprocessing is initially performed, which is the
foundation of effective data analysis. This is an indispensable
step considering the intrinsic complexity of time series data
and deficiencies in terms of data quality. Data preprocessing
refers to a set of techniques for improving the quality of raw
data, such as removing outliers and handling missing values.
First, the data is passed to the data-cleaning step, where
missing or defective data are treated with linear interpolation.
Then, the cleaned data of each variable is scaled using the
MinMaxScaler function, as represented by

x(i)scaled =
x(i) − x(i)min

x(i)max − x(i)min

, i = 1, . . . , n (2)

where x(i)max and x
(i)
min are the maximum and minimum values

of the data of each variable x(i), respectively.
Although the high dimensionality and spatiotemporal

dependence of multivariate time series data render them
useful for predicting future values, they contain noisy data.

One of the feature extraction methods is PCA [22], which
is a dimensionality-reducing multivariate statistical method
that can transform original multiple correlated variables
into several linearly uncorrelated principal components. The
information contained in the principal components does not
overlap and is not interrelated.Moreover, selecting a few prin-
cipal components with high contributions can reflect most of
the information in the original variable. Thus, PCA is applied
to convert a high-dimensional data set into a low-dimensional
data set. By using PCA, noise and redundant data can be
reduced while preserving as much of the important informa-
tion from the original data set as possible.

2) LSTM AUTOENCODER
Time series data usually refers to a sequence of values mea-
sured continuously or discretely over time. In time series
forecasting tasks, the complexity of sequence dependencies
among the input variables must be considered. Recurrent
neural networks (RNNs) are a powerful type of NN for
addressing these sequence dependencies. Moreover, an RNN
has a feedback loop in the hidden layer of the NN, through
which it can be influenced by the output of the previous
time step, providing some level of memory within the net-
work itself. However, in traditional RNNs, as the distance
between the relevant information and the point where it is
used increases, the gradient gradually decreases during back-
propagation, resulting in a significant decrease in learning
ability. LSTM has been proposed to overcome the vanishing
or exploding gradient problems of the RNN training pro-
cess [23]. LSTM networks are a modified form of RNNs
with state memory and multi-layered cell structures to learn
long-term dependence information.

In LSTM architecture, the processing state is recorded in
the cell and there are gate mechanisms (forget, input, out-
put, and update gates) to control the information in the cell.
The forget gate decides which information to discard, while
the input gate determines which new information should be
recorded into the cell state. The update gate refers to the
process of updating from a past cell state ct−1 to a cell state
ct , while the output gate determines howmuch information in
the current cell is assigned to the next cell. The mathematical
representation of the LSTM model is as follows:

ft = σ (W T
xf · xt +W T

hi · ht−1 + bi) (3)

it = σ (W T
xi · xt +W T

hi · ht−1 + bf ) (4)

ot = σ (W T
xo · xt +W T

ho · ht−1 + bo) (5)

gt = tanh(W T
xg · xt +W T

hg · ht−1 + bg) (6)

ct = ft ⊗ ct−1 + it ⊗ gt (7)

yt , ht = ot ⊗ tanh(ct ) (8)

where ft , it , ot , and gt are the output values of the forget,
input, output, and update gates, respectively. The inputs of
each gate include the input data xt at a present time step t
and the LSTM output value ht−1 at a former time step t-1.
Terms Wxf ,xi,xo,xg and Whf ,hi,ho,hg are the weight matrices
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FIGURE 1. Schematic structure of LSTM autoencoder network.

of xt and ht−1, respectively, while bf ,i,o,g are bias vectors
and ct and ct−1 indicate the cell states at times t and t-1,
respectively. Term σ is the sigmoid activation function.

LSTM can be applied to both time series forecasting and
anomaly detection due to its nature of learning patterns
in data over long sequences. An autoencoder is a type of
deep NN that performs two main tasks. First, it compresses
a high-dimensional input into a lower-dimensional latent
vector representation. Then, it uses this latent vector to recon-
struct the original input. The autoencoder is composed of two
major components: an encoder (which projects the input into
the latent vector) and a decoder (which maps the latent vector
back to the original space to reconstruct the input). The basic
version of an autoencoder consists of three fully connected
layers: input, hidden, and output. However, conventional
autoencoders have limitations in terms of capturing temporal
dependencies effectively. To address this issue, we adopted an
LSTM autoencoder, which uses gate mechanisms to extract
temporal dependencies more efficiently. Through this mea-
sure, the forecasting accuracy of load and market prices
is increased. Among the available autoencoders, the LSTM
autoencoder refers to configuring both the encoder and the
decoder as an LSTM network, as displayed in Fig. 1 [24].
In this symmetrical structure, the encoder captures the most
representative features of the input data using a small feature
space, while the decoder reconstructs the input data based
on the encoded features of the small feature space. Recon-
struction errors are minimized through the learning process of
the autoencoder. The autoencoder uses small feature spaces
to maintain important information while reducing the data
dimension; hence, it is likely to fail when reconstructing an
anomaly. These deviations between the original input data
and the reconstructed data can be an indicator of anoma-
lies [2]. In other words, the ability of a trained autoencoder
to reconstruct given input data provides insights into the nor-
mality of the input sequences. This means that the magnitude
of the autoencoder’s reconstruction error indicates that there
is an anomalous vector within the data.

In this study, an LSTM Autoencoder was adopted as a
data-driven forecasting model for anomaly classification, and
the anomaly detection result was then used as a reference
for load aggregator decision-making. Among the various

FIGURE 2. D-ABM in a bottom-up modeling approach.

methods for classifying anomalies, using predictive modeling
defines an anomaly score based on the difference between
predicted and newly observed values [25]. The mean absolute
error (MAE) of (9) was adopted for the reconstruction loss
calculation.

MAE =
1
N

N∑
t=1

∣∣yt − ŷt
∣∣ (9)

whereN is the subsequence length and yt , ŷt are the actual and
predicted values, respectively. Because there are no anomaly
labels, the thresholds for anomaly detection can be very
difficult to define. By sorting MAE in descending order,
a threshold value for classifying anomalies can be selected.

B. PRICE-RESPONSIVE LOAD UNCERTAINTY
In this subsection, uncertainties in the price-responsive load
for DR participation are addressed using D-ABM. In the
context of ABM, D-ABM estimates emergent phenomena for
changes in power consumption patterns caused by consumer
agents with DR-related properties, and their interactions are
defined by basic rules.

1) ABM
ABM is an approach for defining and capturing the dynam-
ics of complex systems. These systems typically contain
heterogeneous subsystems or autonomous entities and are
often characterized by non-linear relationships and multiple
interactions between them [26]. ABM is a simulation method
that represents the phenomenon in which autonomous and
adaptive agents interact within a given environment, render-
ing it useful formodeling the previouslymentioned properties
of complex systems [27]. In ABM, the environment is popu-
lated by autonomous beings that interact through prescribed
basic rules. Furthermore, ABM is a bottom-up approach
that allows observing the resulting emergent behavior of the
system through the basic rules of individual behavior and
collective interactions. These aspects allow it to predict or
envision phenomena of interest by focusing on the uniqueness
of individuals and the interactions between them. ABM also
models a variety of heterogeneous behaviors at the individual
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level, and these individual behaviors result in expressing the
emergent phenomenon at the global level. While an individ-
ual agent’s behavior is based on limited information at the
micro level, the resultant emerging behavior of the system
can be derived and analyzed at the macro level.

Unlike conventional mathematical models that consider
a homogenous population, agent-based approaches can be
modeled by reflecting individuals with distinct characteris-
tics. To quantify the various effects on the aggregated load
under a certain scheme of DR through D-ABM, the load
of each consumer agent is decomposed to the appliance
level, as displayed in Fig. 2. These loads of each agent
are classified into five types according to the degree of
flexibility: a) shiftable loads (e.g., dishwashers and wash-
ing machines); b) controllable loads (e.g., air-conditioners
and heating systems); c) storable loads (e.g., EVs);
d) on-demand loads (e.g., lighting and televisions); and
e) base loads (e.g., refrigerators). Here, shiftable loads are
appliances that can transfer electricity consumption to other
times without affecting normal service, whereas control-
lable loads are appliances that can reduce consumption
without affecting the occupants’ comfort or quality of life.
On-demand loads are appliances that meet the needs of occu-
pants’ living and entertainment [28]. Accordingly, shiftable
loads have the greatest potential for participation in DR,
followed by controllable and on-demand loads. Base loads
have no potential for participation in DR.

In our study, only three groups of appliances were consid-
ered for estimating the individual potential of each consumer
to participate in DR: shiftable loads, controllable loads, and
other loads. Each consumer agent has a unique number of
appliances and different usage patterns for individual appli-
ances. Therefore, these facts become the properties of each
agent derived through statistical data analysis as the initial
condition of D-ABM.

In the context of ABM, the behavior and interactions of
complex systems composed of heterogeneous agents can be
defined by simple rules and assumptions. Herein, changes
in the electricity consumption patterns of each agent due to
DR is emulated closely to the real phenomena through basic
rules. Moreover, uncertainties about agents’ behaviors are
addressed from several assumptions about behavioral eco-
nomics that explain bounded rationality. From these simple
rules and assumptions, our model focuses on modeling the
uncertainties of heterogeneous consumer agents’ decision-
making and the consequent variety of collective phenom-
ena. Details of D-ABM will be discussed in the following
subsections.

2) D-ABM
The starting point of ABM is to identify a set of facts and
empirical regularities, such as observed distributions and
static or dynamic correlations [29]. The input of ABM can
be characterized into two broad categories: initial conditions
and parameters. Initial conditions in complex systems are

not easily identified and are not well-known to modelers.
To extract the characteristics of these agentsmore realistically
and objectively from data, this study proposes D-ABM based
on a statistical data analysis. The heterogeneous properties of
each agent in D-ABM are defined from a specific statistical
distribution that represents empirical regularities according to
the data analysis. Electricity consumption patterns of individ-
ual household consumers are usually irregular, exhibit strong
randomness, and depend on various factors (including the
features of dwellings, the diversity of home appliances, and
the behavior of occupants). Seasonal and diurnal variations
also have an effect. ABM provides an opportunity to model
these heterogeneous usage patterns that reflect multiple fac-
tors. In D-ABM, each consumer agent has the following two
properties as random values derived from the probability dis-
tribution function of its actual electricity consumption data:
a) individual total load consumption and b) shiftable and
controllable load consumption.

Individual total load consumption is a non-negative integer
that has a right-skewed distribution at each time resolution
in the dataset. Low and moderate electricity consumption is
more common, while high electricity consumption is rela-
tively rare. Therefore, the probability distribution that fits the
dataset will be asymmetrical. Herein, a box-cox transforma-
tion was applied to generate random values that would be as
close as possible to the distribution of the actual data. Box-
cox transformation is a power transformation method that
integrates, extends, and improves traditional transformation
methods (such as log, square root, and inverse), enabling
researchers to easily find optimal normalization transforma-
tions for each variable [30]. Moreover, it can meet statistical
assumptions (i.e., normality, and homogeneity of variance) by
improving the normality of the distribution over the dataset
and stabilizing the variance.

wt =

{
log(yt ), λ = 0;

(yλt − 1)/λ, λ ̸= 0.
(10)

Depending on parameter λ, (10) indicates that a vari-
able can be effectively transformed to move to normality,
regardless of whether it is negatively or positively skewed.
A random value is generated from the statistical distribution
processed through the box-cox transformation of each time
resolution data. Then, this value is inverted and provided as
agent properties for expected individual total load consump-
tion values.

Appliance-level electricity consumption has a more right-
skewed distribution, especially for shiftable and controllable
loads. Moreover, the frequency of use is relatively intermit-
tent, and consumption is generally low (close to zero) except
when in use. Gamma distribution was adopted to generate
random values that would represent the distribution of data
for these appliances at each time resolution, which is defined
as follows:

f (x; a, b) =
xa−1

0(a)ba
exp(−

x
b
) , a, b > 0 (11)
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FIGURE 3. Daily electricity consumption profile affected by DR.

Here, 0 is the gamma function and x, a, b are a ran-
dom variable, the shape parameter, and the scale parameter,
respectively. The expected electricity consumption values for
each appliance at each time resolution are assigned as random
values based on the gamma distribution of the data for that
time resolution. These statistical analyses can capture when
and to what extent a particular appliance is likely to be used.

The behavior and interactions of consumer agents can be
defined by basic rules and assumptions in the context of
ABM. In our study, the basic rule is defined based on the
collective phenomenon that appears as the electricity tariff
system applied to each consumer agent changes. In particular,
we explore the changes in consumer’s electricity consump-
tion pattern under the TOU tariffs, which guarantees the
consumer’s degree of freedom among various DR programs
and can provide consumers with certainty about price infor-
mation at different times [31].
With TOU tariffs, days are divided into several periods

(usually less than five), and different fixed rates are used
for peak and off-peak periods. This encourages rational con-
sumers to permanently change their energy consumption
based on differential electricity rates. Fig. 3 illustrates typical
changes in consumption patterns under the TOU program.
This is termed ‘‘Peak Shaving and Rebound’’ as a collec-
tive phenomenon, which is a result of changing consumer
behavior under TOU [32]. As a basic rule for changes in
consumption patterns of each appliance, price-responsive
shiftable loads are likely to shift entirely to an adjacent time
period when rates are lower. Moreover, the consumption
of price-responsive controllable loads is likely to simply
reduce to an extent that does not impair consumer comfort.
Basic rules emulating these phenomena can be formulated as
follows:

Pshiftt,i = (
∑
t=TDR

Pshiftt,i ) · α
shift
1 ∀t ∈ {tstartDR − 1t1, . . . , tstartDR }

(12)

Pshiftt,i = (
∑
t=TDR

Pshiftt,i ) · α
shift
2 ∀t ∈ {tendDR , . . . , tendDR + 1t2}

(13)

Pcontrolt,i = Req(Pcontrolt,i ) · αcontrol ∀t ∈ {tstartDR , . . . , tendDR }

(14)

s.tαshift1 · 1t1 + α
shift
2 · 1t2 = 1 (15)

where TDR = {t|tstartDR , . . . , tendDR } is a set of times-
lots during the DR duration period and the time resolution
1t = 15min. TermsPshiftt,i and Pcontrolt,i are the electricity
consumption of ith the consumer’s shiftable load and con-
trollable load at time t , respectively. Term Req(Pcontrolt,i ) is
the electricity consumption of the controllable load originally
required, while α

shift
1 , α

shift
2 , and αcontrol are the coefficients

of change in each appliance’s usage due to DR participation.
These coefficients determine the degree of load change due
to DR in (12), (13), and (14), while (15) means that the
electricity consumption of the shiftable load remains constant
before and after DR.
The purpose of D-ABM interactions is to estimate changes

in collective electricity consumption patterns from the inde-
pendent decision-making results of each agent. In the real
world, each household has no related information on the elec-
tricity consumption and behavior of other households, and
their impact on each other is insignificant. Furthermore, the
behavior of each agent is not homogeneous. Therefore, vari-
ous changes in electricity consumption patterns are estimated
herein by taking advantage of ABM, which is a bottom-up
approach. The bottom-up approach can quantify the results of
various interactions considering the irrationality of consumer
decision-making by assigning ‘‘bias and preference’’ to each
agent. This is one of the theories of behavioral economics.
Behavioral economics combines elements of psychol-

ogy with classical economics to incorporate fundamental,
persistent, and consistent biases into individual decision-
making [33]. Because D-ABM simply uses it to assume
a situation of bounded rationality for individual decision-
making, a more detailed explanation of behavioral economics
is considered beyond the scope of this paper. Ultimately, the
goal of this study is to model more realistic DR participation
rates by imposing assumptions related to bounded rationality
on specific agents. Several assumptions about behavioral
economics (in terms of interactions) are described in more
detail in the simulation process of Section IV.

III. OPTIMAL BIDDING STRATEGY
In this work, the main purpose of the load aggregator’s bid-
ding strategy is to maximize their profit. This is achieved by
determining the optimal bid quantity for each hour in the
day-ahead markets and minimizing penalty costs resulting
from load deviations, as depicted in Fig. 4. Specifically,
in the aggregated level, the total load and market prices are
forecasted based on the LSTM autoencoder. Simultaneously,
at the individual level, the D-ABM addresses the uncertainty
of individual consumers’ price responsiveness when partic-
ipating in DR. The proposed D-ABM estimates the rate of
change of the total load resulting from demand response
activities. Finally, considering the uncertainties addressed
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FIGURE 4. Framework of optimal bidding strategy for load aggregator.

FIGURE 5. Interactions with load aggregator and related business entities.

at each level, the proposed framework can determine the
load aggregator’s bidding strategy in day-ahead markets.
This ensures maximum profit by reducing any deviations
between actual and expected load values. Specific details of
the proposed two-level bidding framework are illustrated in
the following subsections.

A. PROBLEM FORMULATION
As mentioned previously, load aggregators act as interme-
diaries that interact with end users and network operators.
However, unlike the unidirectional exchange of information
in traditional power systems, the addition of load aggregators
(including DR) means that the entire market requires more
interactions, adding complexity. These bi-directional interac-
tions with load aggregators and related business entities are
illustrated in Fig. 5. In the relationships between consumers
and load aggregators, downward interactions refer to retail
price information, while upward interactions refer to the
demand profile information. In the relationship between the
wholesale market and load aggregators, downward interac-
tions refer to market price information, while upward inter-
actions refer to bidding strategies.

Based on Fig. 5, the aim of load aggregators’ bidding
strategies is to maximize profits by optimally determining
the hourly bid quantity in day-ahead markets and minimizing
penalty costs due to deviations. This is formulated as follows:

MaxRAgg =

N t∑
t=1

{
(Rsellt ) − (CPM

t + CP,Base
t )

}
(16)

Rsellt = Psellt × λsellt ∀t (17)

CPM
t = PPMt × λPMt ∀t (18)

CP,Base
t =

N t∑
t=1

λRRt × max[0, (PBaset − PR,Base
t )]

+

N t∑
t=1

π1 × max[0, (PR,Base
t − PBaset )] ∀t (19)

PPMt = PBaset ∀t (20)

The aim of the objective function provided by (16) is
to maximize the profits for the load aggregators. (17) for
Rsellt represents the revenue from selling electricity to con-
sumers, where Psellt and λsellt are the amounts of electricity
sold to consumers and the retail prices, respectively. (18)
for CPM

t represents the cost of purchasing electricity from
the wholesale power market, where PPMt and λPMt are the
amount of electricity purchased from the market and the
price of day-ahead power markets, respectively. (19) for
CP,Base
t represents the penalty cost of load due to forecasting

deviations, where PBaset and PR,Base
t are the predicted and

actual values of the baseline load and λRRt and π1 are the
price of reserve requirement and the penalty coefficients of
the load, respectively. The power balance constraint in (20)
means that the supply PPMt and demand PBaset of the load
aggregator must be equal.
In this study, the load aggregators act as price-takers in

the wholesale market, given their relatively small capaci-
ties [34]. Therefore, by utilizing the uncertainties (related
to market price, total electricity consumption, and price-
responsive load) handled through the proposed framework,
it is possible to reduce penalty costs due to bidding strategy
deviation and to ensure maximum profits.

B. OVERALL PROCEDURE
The overall procedure of the proposed data-driven two-level
optimal bidding strategy framework is displayed in Fig. 6 and
can be performed according to the following steps:
Step 1: Collect multivariate time series data for data-driven

forecasting modeling and the D-ABM.
Step 2: Perform data preprocessing in data-driven forecast-

ing models, which comprises a series of processes, including
data cleansing, normalization, and feature extraction.
Step 3: Construct a forecasting model based on the LSTM

autoencoder, which features a reconstruction process. It can
also be utilized for anomaly detection.
Step 4: Forecast the aggregate load of a consumer group

and market price. The predicted values are then used as input
data to the load aggregator’s bidding strategy.
Step 5: As a starting point for the D-ABM stage, assign

each agent’s two properties via statistical analysis of their
unique personal data at each time resolution: a) individual
total load consumption and b) shiftable and controllable load
consumption.
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FIGURE 6. Flowchart of the proposed bidding strategy framework.

Step 6: Generate random values that emulate the agents’
actual electricity consumption patterns. The value of a) is
obtained from a normal distribution with a box-cox trans-
formation, while the value of b) is obtained from a gamma
distribution.

Step 7: Calculate the potential for DR participation of each
agent with heterogeneous properties by applying basic rules
that emulate phenomena based on an institutional framework.

Step 8: Estimate the rate of change in the total load from
interactions by assuming different situations regarding biases
and preferences.

Step 9: Optimize the load aggregator’s bidding strategy
based on the expected deviation from a comparison between
each scenario in Step 8.

IV. NUMERICAL SIMULATION
The proposed data-driven two-level optimal bidding strat-
egy was numerically simulated using actual data. The load
aggregator was assumed to participate in the day-ahead power
market on behalf of residential loads. The load data was a
15-min time-resolution time-series data from the Pecan Street
dataport [35], from which the data of 11 households without
solar power were selected from a total of 25 households in
New York from 1 May 2019 to 31 Oct. 2019. This also
included electricity usage according to each appliance, and
each agent had different appliances based on their personal
ownership status. The price data was time-series data with

TABLE 1. Parameter settings.

FIGURE 7. Day-ahead market and retail prices.

1-h intervals for the NYISO’s day-ahead wholesale market
from 1 Nov. 2017 to 31 Oct. 2019 [36]. Additionally, other
historical data (such as the weather, day of the week, and
natural gas prices) were included as multivariate variables
for predictions in the data-driven forecasting model. Fig. 7
displays the retail prices ( λsellt ) and day-ahead market prices
( λPMt ) that were adopted. Here, flat and TOU tariffs were
applied to the retail price. Table 1 depicts several important
parameter settings used for the numerical simulations [37].

The evaluation metric of the data-driven forecasting
model is as follows: RMSE (Root Mean Square Error) and
R2(Coefficient of Determination).

RMSE =

√
1
N

∑N

i=1
(yactuali − ypredicti )2 (21)

R2
=1−

∑
i
(ypredicti −yactuali )2/

∑
i
(yaveragei −yactuali )2

(22)

where yactuali is an actual value of testing samples; ypredicti is
the forecasting result of yactuali ; and N is the total number
of testing samples. The R2measure indicates the extent to
which the variance of the forecasted value validates the vari-
ance of the actual value. The simulations for the data-driven
forecasting model and D-ABM were implemented based on
Python’s TensorFlow and libraries and were performed on
a platform with a 3.4GHz Intel(R) Core (TM) i7 and 16GB
of RAM.

A. DATA-DRIVEN FORECASTING RESULTS
The collected multivariate time series dataset for the pre-
diction of aggregated load and market price contained
17664 samples/21 features and 17520 samples/17 features,
respectively. For more accurate predictions and improved
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FIGURE 8. Dimension reduction by PCA.

computational efficiency, the dataset was dimensionally
reduced using the PCA algorithm, as presented in Fig. 8.
According to the contribution rate and the cumulative con-
tribution rate of each component, seven and six principal
components representing a cumulative contribution rate of
90% or more were selected, respectively.

For training and forecasting the model, 70%, 15%, and
15% of the dataset were assigned to training, validation,
and test samples, respectively. The LSTM autoencoder fore-
casting model employed in this study contained four hidden
LSTM layers, each with 100, 50, 50, and 100 neurons. The
learning rate, optimizer, activation, and loss functions were
0.001, Adam, Relu, and MeanSquaredError, respectively.
These model hyperparameters were all designed using a trial-
and-error method. Early stopping was also adopted to reduce
training costs and prevent overfitting. Fig. 9 displays the
loss function for each training and validation dataset in the
training process. It should be noted that the hyperparameters
are optimized so that the difference between the loss functions
is negligible without overfitting and convergence problems.
After training the model, the next step involved using it to
make predictions.

To demonstrate the superiority of the LSTM autoencoder,
Table 2 displays a comparison between the prognostic per-
formances on the test dataset of the LSTM autoencoder
and three well-established prediction models (LSTM, CNN,

FIGURE 9. Learning curve results.

TABLE 2. Forecasting error criteria.

and CNN-LSTM). Here, the RMSE values of the LSTM
autoencoder for aggregated load and market price were
1.577 and 1.308, respectively, compared to 1.618 and 1.405,
respectively, for the CNN-LSTM model. The R2 values
of the market price and aggregated load for the LSTM
autoencoder were 0.9546 and 0.7603, respectively. Typically,
individual loads fluctuate widely and are highly random,
while market prices are relatively stable. Accordingly, the
forecasting results for market prices tend to be more accu-
rate. In particular, since the number of aggregated loads in
this paper was small, the variability of the individual loads
remained in the aggregated loads, as evidenced by the low R2

value.
Fig. 10 illustrates the forecasting and anomaly detection

results for the test dataset using the LSTM autoencoder.
As displayed in Fig. 10(a), the model usually captured the
trend of change for the aggregated load, although it exhibited
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FIGURE 10. Forecasting results and anomaly detection of LSTM
autoencoder model.

gaps caused by values for unexpected variations. To detect
unexpected variations, the threshold applied to anomaly
detection was 0.4513, which was the top 5th value of MAE
in the training dataset. Here, the number of anomalies was
13, which occurred evenly over the entire time horizon.
The forecasting values for the market price in Fig. 10(b)
exhibited small differences from the actual values, and the
LSTM autoencoder displayed more accurate forecasting per-
formance. In this case, the threshold applied to anomaly
detection was 0.0846, which was the top 5th value of MAE
in the training dataset, in which there were 11 anomalies.
These anomalies were concentrated on a specific day, and no
anomalies were found during the rest of the period. In addi-
tion, when 0.138 was set as the threshold (the highest value
of the MAE of the training dataset), no anomalies were found
in the test dataset.

B. D-ABM RESULTS
The purpose of D-ABM is to derive the rate of change in the
total load more realistically. In this context, the properties
of each consumer agent were divided into two categories:

FIGURE 11. Comparison of actual and D-ABM values for total electricity
consumption.

a) consumption of total loads and b) consumption of shiftable
and controllable loads with DR potential. Since the usage
patterns of individual home appliances often follow periodic
and seasonal characteristics, only data from adjacent periods
(60 days in this simulation) with similar weather data were
used as the input values for D-ABM.

Fig. 11 depicts a comparison between the actual data for the
total electricity consumption of home2 and the valuemodeled
via D-ABM. Here, the entire data was selected from two
months (Sep. and Oct.) of data that exhibited similar electric-
ity consumption patterns due to the influences of seasonality
and the weather. The results in Fig. 11(a) demonstrate that
each dataset exhibited a similar distribution and had slight
differences that could be regarded as randomness in the real
world. Fig. 11(b) presents the 24-h electricity consumption
of home2 at 96-h resolution (15)-min intervals). Here, the
bold line is the average of the actual data over the period
and the dashed line represents the 99% confidence interval.
The total number of iterations is 100. Most of the random
values were included in the confidence interval and only some
were outside the confidence interval. Accordingly, this result
realistically emulated the intermittence and randomness of
actual electricity consumption.
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TABLE 3. Appliance list and consumption patterns of consumer agents.

TABLE 4. Potential for DR participation of consumer agents.

TABLE 5. Rate of change in the total load according to scenario.

A gamma distribution was selected to emulate the con-
sumption of shiftable and controllable loads with DR
potential. The parameters of the gamma distribution were
determined from the actual data of each time zone, and the
electricity consumption of each device was randomly gen-
erated through a random gamma function to which these
parameters were applied. Fig. 12 presents a comparison
between the actual and random values for the electricity con-
sumption of the shiftable and controllable loads at the 12:30
time zone in home2. Similarly, for the entire dataset, values
were selected for two months (Sep. and Oct.) and compared.
Here, it was evident that the electricity consumption of each
device appeared intermittently within the maximum value
range. Moreover, the frequency of use was close to the actual
value by reflecting the characteristics of each device.

Fig. 13 presents the results of changes in the consumption
patterns of the total load, which were simulated according to
the basic rules. As displayed in Fig. 13(a), the use of home
appliances with DR potential shifted from the TOU time zone
to the neighboring time zone. The electricity consumption
before and after the TOU time zone increased by the shaded
area, while electricity consumption during the TOU time zone
decreased. In Fig. 13(b), each thin line represents the rate of
change in electricity consumption in one iteration, and the
bold line is a representative value for the potential of DR
participation in home2. This was selected as the mean value
of all iterations to mitigate the randomness of the results.
As displayed in Table 3, each agent had different ownership
characteristics of home appliances and electricity consump-
tion over time; hence, the potential for DR participation was
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FIGURE 12. Comparison of actual and D-ABM values for each appliance’s
electricity consumption.

TABLE 6. Comparison of profit assuming deviations.

also unique. For the sake of brevity, only the simulation
process for home2 is presented herein, although the same
process was applied to the other 10 consumer agents. The
results of the potential for DR participation of all agents are
displayed in Table 4.

C. BIDDING STRATEGY OF LOAD AGGREGATOR
The bidding strategy for maximizing the profit of the load
aggregator (which is an intermediary) can be achieved by
optimally determining the hourly bidding quantities without
deviations in the day-ahead market. To reduce deviations,
our study focused on deriving the DR participation rate to
a more realistic value. In Table 4, the potential for each
agent’s participation in DR was estimated according to the
agent’s properties and the basic rules in D-ABM. However,
the potential for DR participation at this time was close to the
maximum value for participation.

Accordingly, D-ABM quantified the rate of change in total
load due to participation in DR by additionally considering

FIGURE 13. Changes in electricity consumption of home2 under TOU.

FIGURE 14. Estimated electricity consumption of the entire group by
scenario.

several biases and preferences of each agent, which deter-
mined whether to participate in the DR program. The results
were estimated by assuming three scenarios for the following
biases and preferences that reflected the bounded rationality
of consumers [6], [38], [39].
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• Scenario 1 (endowment effect): People are relatively
reluctant to trade because they value the things they own
more highly. For example, a consumer may feel that
they ‘‘own’’ the comfort. In this case, it was assumed
that homes 1, 2, and 8, (which consumed less electricity
during the TOU period yet had a high potential of partic-
ipating in DR) did not participate due to inconvenience.
For reference, the endowment effect can be perceived as
a specific case of status quo bias.

• Scenario 2 (status quo bias): In a sociological sense, this
is defined as a desire to maintain existing social struc-
tures or values. In other words, people tend to continue
with the preset options, even when an alternative could
produce better results. It was assumed that homes 6, 7,
9, and 10 were included. They consume a significant
amount of electricity during the TOU period, but have
a low DR potential, so they did not participate in DR
due to low expected profit.

• Scenario 3 (pro-social preferences): Among the factors
influencing energy consumption, appealing to pro-social
preferences is more effective than buying DR. In this
case, it was assumed that the entire group had a prosocial
preference, which meant that each home cooperatively
participated in the DR program with the maximum pos-
sible DR potential.

Table 5 presents the rates of change in the total load for each
scenario. These were derived by considering the potential
of DR participation in each time zone and the weight of an
individual consumer’s electricity consumption. In Scenario 1,
the rate of change in total load over the TOU period was low
(between−5.5% and+7.2%) because no consumer with high
DR potential participated. Scenario 3, where the maximum
DR potential participated in DR, varied the rate of change in
total load in the range of −14.0% to +17%. The results for
Scenario 2 had values close to Scenario 3 and exhibited a rate
of change ranging from −12.9% to +15.4%.
Fig. 14 depicts the expected electricity consumption

obtained through the product of the change rate for each
scenario and the total load value predicted by the data-driven
forecasting model. Here, the predicted value of the aggregate
load was selected as the value of 31 Oct. 2019, which was
the day when no anomalies were detected. As demonstrated
in Fig. 14, the rate of change in the total load for each
scenario resulted in the load aggregator’s various bidding
strategies.

Table 6 displays a comparison of the total profit and penalty
cost of the load aggregator considering possible deviations
from the bidding strategy for each scenario. The total profit
for all scenarios was higher compared to the base scenario
without implementing the TOU tariff, with a difference of
up to $25. In the scenario-by-scenario comparison without
deviations, Scenario 3 (where the DR participation rate was
high) exhibited the highest profit. An analysis revealed that
this was because (for Scenario 3) electricity consumption
decreased the most during the period when the difference

between the purchase price from the wholesale market and
the retail price was small. Penalty costs appeared differently
depending on the size of the deviations in each scenario. In the
case of Scenario 1, assuming that the DR participation rate of
Scenario 3 occurred, a penalty cost of $20.18 was incurred
for additional power sales and purchases in each time zone.
Under this situation, the total revenue at this time reduced to
a value similar to the base scenario. Similarly, in Scenario 3,
if consumers did not participate in DR at all, the penalty
cost of $42.52 could result in a lower total profit than in
the base scenario. These results suggested that an optimal
bidding strategy was achieved by minimizing these devia-
tions. Beyond the three scenarios, the strength of D-ABMwas
that as a bottom-up approach, various biases and preferences
could be applied to each consumer agent individually. Since
the overall simulation process of this study was based on data,
if the bias and preference of each agent could be appropriately
assigned through the analysis of historical or newly acquired
data, a more realistic estimate of DR participation rates would
be possible. Therefore, the proposed bidding strategy frame-
work could create maximum profit for the load aggregator
by reducing deviations when formulating a bidding strategy
while considering the DR.

V. CONCLUSION
In this paper, a two-level optimal bidding strategy frame-
work was proposed for load aggregators that combined
a data-driven forecasting model and D-ABM to estimate
the impact of DR in detail on electricity usage patterns.
At the aggregated level, loads and market prices were
predicted through an LSTM autoencoder-based forecasting
model using multivariate time series data. Characterized by
the reconstruction process, the LSTM autoencoders pro-
vided high forecasting performance and could be utilized for
anomaly detection. At the individual level, the uncertainty
of each consumer about the degree of DR participation was
addressed through D-ABM. Moreover, the rate of change in
total load was quantified under various assumptions about
biases and preferences. By addressing uncertainties related
to the bidding strategy at each level, our study focused on
reducing deviations from the bidding strategy by estimating
the change in total load under DR more realistically. In con-
trast to existing ABM studies in DR, this paper defined each
consumer as a heterogeneous agent rather than only consid-
ering a single appliance or grouping consumer agents. Based
on the actual individual data in each time zone, the proper-
ties of each agent were extracted through the statistical data
analysis, and the random values generated by each consumer
agent with these properties exhibited distribution and elec-
tricity consumption close to the actual values. Furthermore,
as a bottom-up approach, D-ABM could more realistically
estimate the extent to which total load changed under the
influence of DR by assigning different biases and preferences
to each consumer agent. It should be noted that the simulation
results demonstrated that realistically estimating the impact
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of total load under DR could minimize deviations from the
bidding strategy, guaranteeing maximum profit. This work
can be further improved by exploring bidding strategies for
load aggregators participating in real-time markets and devel-
oping the proposed framework with a different price-based
DR (e.g., real-time pricing) or incentive-based DR. Mov-
ing forward, the bidding strategies of load aggregators with
various policies taken by the decision maker and bi-lateral
contracts could also be investigated for practical applications
in power systems.
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