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ABSTRACT This study investigates the optimization of proportional fair (PF) and energy efficiency in
simultaneous wireless information and power transfer (SWIPT)-based device-to-device (D2D) networks
considering the residual battery levels of D2D users to increase the network lifetime. We establish an
optimization model that determines the subchannel allocation and transmission power levels for D2D
users, to maximize an objective function that combines user fairness and energy efficiency. To tackle this
problem in a distributed manner, we propose a multi-agent deep reinforcement learning (DRL) model.
Given that fairness considerations necessitate information about other agents, we employ the long short-term
memory (LSTM) algorithm to estimate the parameters of other D2D pairs within the state space of the
multi-agent DRL model. Through simulations, we compare the performance of our proposed algorithm with
that of existing iterative algorithms, namely, exhaustive search (ES) and gradient search (GS). The results
demonstrate that the proposed multi-agent DRL approach achieves a solution that is nearly globally optimal,
while maintaining a lower computational complexity due to the parallel computing of multi-agent DRL.
Furthermore, the proposed algorithm reduces the standard deviation of residual battery levels among D2D
pairs and contributes to an increased network lifetime.

INDEX TERMS Distributed D2D, proportional fair, energy efficiency, joint optimization, multi-agent DRL.

I. INTRODUCTION
Increasing demands of next generation networks for higher
transmission rates, energy efficiency, cellular coverage,
and spectral efficiency have triggered the emergence of
a device-to-device (D2D) networks, which enables more
energy-efficient communication through direct communica-
tion among mobile nodes, [1], [2], [3]. Recently, researchers
have been investigating D2D networks with SWIPT func-
tionality, as these can improve the spectral efficiency and
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throughput by letting D2D devices communicate with each
other while simultaneously harvesting energy from other
nodes. Wireless networks feature a well-known trade-off
between the total throughput (i.e., energy efficiency) and
user fairness; it has been controlled using various scheduling
schemes such as the proportional fair (PF) scheduling algo-
rithm. The PF scheduling algorithm manages this trade-off
in a way to maximize the sum of the logarithmic average
received data rates of users, [4]. For improving the D2D
network performance, it is critical to not only improve the
energy efficiency of specific D2D nodes but also maximize
network lifetime, because the latter ensures efficient use of
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limited wireless resources, maintains the quality of service
(QoS) of D2D users, and provides network scalability by
supporting more D2D users over time.

In recent years, there has been a lot of research
into improving the performance of SWIPT-based D2D
networks. In [5], the joint optimization of the transmit
power and power-splitting coefficients was proposed for
SWIPT-based multi-user in distributed networks. In [6], the
research focused on enhancing D2D communication through
the integration of full-duplex (FD) relaying, simultaneous
wireless information and power transfer (SWIPT), and
non-orthogonal multiple access (NOMA), demonstrating
superior efficiency and connectivity compared to classical
SWIPT-FD-orthogonal multiple access (SWIPT-FD-OMA)
methods. In [7], a game-theoretic model for D2D power
allocation with SWIPT is introduced, offering mechanisms
and strategies that boost energy efficiency and user mobility
responsiveness. In [8], the study explored SWIPT-enhanced
mode selection for D2D communications through stochastic
geometry, presenting an energy-efficient methodology that
surpasses traditional mode selection strategies, particularly in
ultra-dense cellular environments. However, these advance-
ments leverage novel strategies to effectively address the
challenges inherent in SWIPT-based D2D networks.

Moving forward, machine learning has gained popularity
among researchers as an intelligent solution to wireless
network challenges. In [9], the authors highlight the crucial
role of machine learning in advancing next-generation
wireless networks, achieving high data rates, and supporting
new applications through intelligent adaptive learning across
various 5G technologies. The authors of [10] proposed a deep
reinforcement learning (DRL)-based resource allocation
strategy for wireless sensor networks (WSNs) aimed at max-
imizing throughput through optimized power and time man-
agement, which outperformed conventional policies. In [11],
the authors presented a DRL-based optimization for wireless
powered IIoE networks, focusing on age-energy efficiency by
optimizing device scheduling and power, which significantly
outperformed simulation benchmarks. The authors of [12]
proposed the multi-agent DRL model to optimize the
dynamic radio resource allocation in a distributed system.
In [13], the multi-agent DRL framework was developed to
optimize the load-aware distributed resource allocation.

Therefore, we develop a PF scheduling problem for a
SWIPT-based D2D network. Our problem differs from the
conventional PF scheduling problems in that it considers not
only the trade-off between user throughput and fairness but
also the effect of the energy harvesting functionality of D2D
users on scheduling by considering the residual battery lives
of D2D devices for prolonging the network lifetime. It is
noted that PF scheduling operate in a centralized way where
each user provides the central coordinator with information
necessary for scheduling, and the central coordinator collects
this information and controls the amount of user data trans-
mitted at each time. However, using a centralized algorithm
is not suitable in the D2D networks owing to the increased

FIGURE 1. System model.

computational load imposed on each D2D device having
low computing capacity, consequent energy consumption for
D2D users with limited battery life, and increased signaling
overhead in the network. Furthermore, previous PF schedul-
ing problems only required information about the channel
quality of each user and the amount of data transmitted during
a given past interval. By contrast, the our PF scheduling
problem needs additional information, such as the energy
harvesting ratio and residual energy level of each user,
which inevitably increases algorithm complexity. To solve
this problem, we propose a decentralized machine learning
algorithm considering its low computation complexity.

The contributions of this study can be summarized as fol-
lows. First, we develop the optimization of packet scheduling,
energy efficiency, and network life-time maximization in dis-
tributed SWIPT-based D2D networks. After that, we focus on
applying DRL to optimize energy efficiency and PF in D2D
communication networks. Considering the impracticality of
centralized DRL for requiring a single agent to collect entire
information in D2D communication networks, we propose
integrating long short-term memory (LSTM) networks into
the multi-agent DRL design. Here, LSTM is employed for
each agent to estimate important information about the other
agent, such as channel gain, transmit power, and subchannel
allocation. Despite the limitations in information availability,
this predictive capability provided each agent with critical
knowledge for decision-making. Finally, we simulate our
proposed decentralized DRL framework with LSTM by
comparing its performance with the gradient search (GS) and
exhaustive search (ES). Results indicate that our proposed
method significantly improved the performance in terms
of optimality (energy efficiency and PF) and real time
implementation (low computation complexity) for SWIPT-
based D2D networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this study, we consider a D2D communication network
consisting of D transmitter (Tx) and receiver (Rx) pairs with
index i ∈ D = {1, 2, . . . ,D} , where all D2D pairs are
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deployed randomly within the coverage area of a base station
(BS), as shown in Fig. 1. The effective channel between Tx

i and Rx j at time slot t is denoted as
∣∣∣hti,j∣∣∣2, and the channel

gain hti,j is assumed to be an independently and identically
distributed (i.i.d.) Rician random variable with meanµi,j. The
communication channel is divided into L equally distributed
subchannels with index l ∈ L = {1, 2, . . . ,L}, and qti,l is the
channel allocation indicator where qti,l = 1 if the subchannel
l is allocated to the Tx i at time slot t , and qti,l = 0 otherwise.
Let B and pti denote the maximum battery capacity, and the

transmitted power of Tx i at time slot t , respectively. Then, the
received signal to noise ratio (SINR) for D2D pair i is given as

0t
i =

ρpti

∣∣∣hti,i∣∣∣2
σ 2 + ρ

(
σ 2
A + I ti′,i

) , (1)

where σ 2 and σ 2
A represent the antenna noise and base-band

noise power at the Rx, respectively. And, ρ is the energy
conversion ratio. Here, I ti′,i represents the interference from
other Tx i′ during time slot t , and it is expressed as

I ti′,i =

∑
l∈L

∑
i′∈D∖{i}

qti′,lp
t
i′

∣∣∣hti′,i∣∣∣2 . (2)

By using the Shannon capacity, the data rate of D2D pair i
during time slot t can be written as

DRti =

∑
l∈L

qti,l log2
(
1 + 0t

i
)
. (3)

Furthermore, the average data rate of D2D pair i during time
window T is expressed as

DR
t
i =


1

t − 1

∑t−1

τ=1
DRτ

i , t < T ,

1
T

∑t−1

τ=t−T
DRτ

i , t ≥ T .

(4)

To ensure network fairness, we formulate the PF schedul-
ing function so that user fairness is built into the objective
function using a sum-of-logarithmic [4]. The logarithmic
function prioritizes equitable resource distribution by adjust-
ing user throughput or data rates, balancing total network
throughput with user fairness, and aligning with the principle
of proportional fairness in network resource allocation
algorithms. The PF scheduling function can be formulated as
follows:

PFt =

∑
i∈D

log2 DR
t
i . (5)

The energy consumption of D2D Tx i during time window
T is given by

ECti =

t∑
τ=1

PC + pτ
i , (6)

where PC is the power consumption in the circuit. The total
energy harvested at Rx i from all Txs during time window T

is given by

EHt
i =

t∑
τ=1

∑
j∈D

(1 − ρ) ηpτ
j

∣∣∣hτ
j,i

∣∣∣2 . (7)

Then, the residual energy of D2D pair i at the time slot t can
be calculated as

ERti = min
(
max

(
ERt−1

i − ECt−1
i , 0

)
+ EHt−1

i ,B
)

. (8)

Finally, we can calculate the total residual energy of the
system at time slot t as following

ERTt =

∑
i∈D

ERti . (9)

B. PROBLEM FORMULATION
From the definitions of PFt and ERTt ,we define the objective
function so that it considers both proportional fairness and
energy efficiency with the residual battery, which is given by

f
(
pt , qt

)
=

PFt
(
pt , qt

)
B− ERTt (pt , qt)

, (10)

where the transmitted power vector is pt =
{
pt1, p

t
2, . . . , p

t
D

}
.

The subchannel allocation indicator qt is defined by the
following matrix:

qt =

 qt1,1 · · · qt1,L
...

. . .
...

qtD,1 · · · qtD,L

 . (11)

Then, our target becomes to find pt and qt that maximize the
objective function. Therefore, the optimization problem can
be formulated as

max
pt ,qt

f
(
pt , qt

)
s.t. C1 : 0 ≤ pti ≤ Pmax,

C2 : qti,l ∈ {0, 1} ,

C3 : DR
t
i ≥ DRmin,

C4 : ERti ≤ B,

for i ∈ D, and l ∈ L, (12)

where Pmax is the maximum transmission power and DRmin
is the minimum data rate for guaranteeing the QoS.

III. PROPOSED MULTI-AGENT DRL WITH LSTM
In real-world implementation, centralized control would be
impractical due to environmental scale or privacy concerns.
Therefore, we propose a multi-agent DRL model, as illus-
trated in Fig. 2, to determine the optimal variables p and q.
The proposed multi-agent DRL model’s decentralized design
makes it more scalable, adaptable to network changes, and
practical for real-world use. It is noticed that all agents in
our proposed multi-agent DRL are processing in parallel.
In the context of multi-agent DRL, the optimization problem
can be formulated as a Markov decision process (MDP).
As defined in [14], the MDP is represented by the tuple
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FIGURE 2. The proposed Multi-Agent DRL model.

⟨S,A,R,P⟩, where S, A, and R respectively denote the
finite sets of states, actions, and reward functions for each
agent, and P represents the transition probability from the
current state S ti ∈ S to the next state S ti ∈ S when following

the policy Pπ
(
S t+1
i | S ti

)
. Specifically, P

(
S t+1
i | S ti ,A

t
i

)
signifies the transition probability from the current state S ti
to the subsequent state S t+1

i given action Ati , and π
(
Ati | S ti

)
represents a mapping (or policy) from the current state S ti
to the action Ati . Therefore, P

π
(
S t+1
i | S ti

)
is essentially

the transition probability P
(
S t+1
i | S ti ,A

t
i

)
weighted by the

policy π
(
Ati | S ti

)
. The primary goal of theMDP is to identify

the optimal policy π∗ that maximizes the reward functionR.

A. MULTI-AGENT DRL DESIGN
In the proposed algorithm, each D2D pair is assumed to
be adapted with an agent; therefore, the system consists
of D agents, and each agent is required to observe the
information required to take an action by controlling the
transmit power and subchannel allocation. Subsequently,
the agent is rewarded from the objective function obtained
by the channel conditions, interference levels, and QoS
specifications of the D2D pairs. The actions of an agent
may influence the decisions of other agents, resulting in
the coordinated and efficient operation of the overall system
in real time. The state, action, and reward of the proposed
multi-agent DRL model are designed as following.

- State: The state space of agent i at time slot t is defined
as

S ti =

{
gti , ê

t
i ,DR

t
i

}
, (13)

where gti =

∣∣∣hti,i∣∣∣2 is the channel gain of D2D pair i, DR
t
i is

the average data rate of D2D pair i at time slot t during time
window T , and êti =

{
êtj,k

}
j,k ̸=i

is the estimated channel gain

information of the other D2D pairs.

- Action: To optimize the objective function, each agent
needs to adjust its transmission power and the subchannel
allocation. The action space of agent i at time slot t is defined
as the set of the transmit power and subchannel allocation
indicator given by

Ati =
{
pti , q

t
i,l

}
. (14)

It is noted that pti ∈

{
0, pmax

M−1 ,
2pmax
M−1 , . . . , pmax

}
, where M is

the number of discrete levels of the maximum transmission
power, and qti,l ∈ {0, 1} , ∀l ∈ {1, 2, . . . ,L} in the subchannel
allocation indicator.

- Reward: In DRL, the reward function connects an
agent to its environment by evaluating its actions at each
step, helping it associate positive or negative outcomes, and
enabling better decision-making to achieve the maximum
accumulated reward. In this study, the reward function
is defined as the objective function while satisfying all
constraints. In this case, the reward function of agent i at time
slot t is given by

Rti = f
(
pt , qt

)
=

PFt
(
pt , qt

)
B− ERTt (pt , qt)

. (15)

When one or more constraints are not satisfied, the reward
given is negative.

- Deep Q-Network (DQN): A common strategy in DRL
is to employ a Q-value function, that estimates the expected
cumulative reward for taking a specific action in a given state.
And, the updated Q-value function can be expressed as, [15],

Qnew (
S ti ,A

t
i
)

= (1 − α)Qold (
S ti ,A

t
i
)

+ α

[
Rti + γ max

Ai∈A
Qold

(
S t+1
i ,Ai

)]
, (16)

where α > 0 is the learning rate, and 0 ≤ γ ≤ 1 is
the discount factor. Owing to the large size of the state
space, DQN are used to estimate the Q-value function.
Furthermore, when the replay memory is full, the data will
be split into multiple minibatch samples to train a DQN so
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as to ensure diverse, representative, and efficiently processed
training data.

- Policy: The ϵ-greedy policy is a strategy for selecting
actions based on Q-values to improve the balance between
exploration and exploitation during the decision-making
process for each agent. The action selection mechanism,
which is based on a DQN with weights θ to approximate the
Q-value function, can be defined as follows:

At+1
i =

 argmax
a

Q
(
S ti , a, θ

)
, with Prob. 1 − ϵ,

Random action, with Prob. ϵ.
(17)

This approach ensures that while the algorithm primarily
exploits known information about the environment to make
decisions that maximize immediate rewards, it also explores
alternative actions with a probability (Prob.) of ϵ, thereby
avoiding convergence to sub-optimal solutions.

B. THE PROPOSED MULTI-AGENT DRL WITH LSTM
In the proposed multi-agent DRL, a D2D pair cannot easily
obtain channel information of other D2D pairs in real
time, making multi-agent DRL decision-making challenging.
To address this issue, we apply LSTM algorithm, a type
of recurrent neural network (RNN) architecture, to estimate
long-term dependencies in the sequence data of channel gains
in the other D2D pairs. Here, RNN is particularly useful
in situations where past information needs to be remembered
and taken into account when making predictions or decisions.
The architecture of the proposed multi-agent DRL algorithm
with LSTM is illustrated in Fig. 2. The number of inputs in
the sequence layer is equal to the number of input data, and
the size of the fully connected layer is equal to the number
of responses. Moreover, the number of outputs in the output
layer is equal to the total number of channel gains from other
D2D pairs, êti =

{
êtj,k

}
j,k ̸=i

.

Results in Figs. 3 and 4 validate the LSTM’s effectiveness
in accurately predicting transmit power and subchannel
allocation. These graphs demonstrate the LSTM’s ability
to estimate the transmit power and subchannel allocation
for an agent based on the observed data from a previous
time slot related to other agents. This similarity in pattern
changes between the LSTM’s predictions and the actual
data indicates the model’s accuracy in estimating transmit
power and subchannel allocation. This indicates that the
LSTMmodel is effective in capturing the underlying patterns
and dynamics of the system, making it a reliable tool for
optimizing resource allocation in wireless communication
networks.

The operational procedure of the proposed multi-agent
DRL algorithm with LSTM is as follows. Each D2D pair
(i.e., an agent) controls the current transmission power
p⃗(tC ), and current subchannel allocation s(tC ) of the D2D
transmitter. Each agent is assumed to send information
necessary for distributed computing, including the transmit
power, subchannel allocation, data rate, and channel gain
between the D2D transmitter and D2D receiver with the

FIGURE 3. Transmit power prediction.

FIGURE 4. Subchannel allocation prediction.

BS during time window T . Then, the BS broadcasts this
information to all D2D agents. Because an agent cannot
obtain the necessary information for every time slot t but
just one time slot during time window T , the channel
gains of other D2D pairs are estimated in each D2D agent
by using LSTM. Then, each agent calculates the reward
and determines its own transmission power p⃗(tC+1) and
subchannel allocation s(tC+1) in every time t by using the
estimated state information of other D2D pairs obtained from
LSTM. At the next time slot t + 1, each agent observes
the new state and reward from the environment and then
takes an action (control transmission power and subchannel
allocation) by using the ϵ-greedy policy.

IV. TIME COMPLEXITY ANALYSIS
In this study, we employ the following two existing
iterative-based optimization algorithms, such as ES and
GS, in order to compare the performance of the proposed
multi-agent DRL algorithm. The following represents the
time complexity analysis for ES, GS, and the proposed multi-
agent DRL.

• Exhaustive search (ES) is a type of global optimization
algorithm that identifies the global solution by exam-
ining every possible case. In employing ES algorithm
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to tackle a given problem, quantizing the control
variables is essential. This process enables a thorough
exploration of all potential variable permutations. In our
study, the transmit power p, is quantized into M equal
levels, and the subchannel allocation indicator q, into
L equal levels, with both p and q operating within a
D-dimensional space. Consequently, the total number
of viable combinations for evaluation is O

(
(M × L)D

)
,

which represents the computational complexity of the
ES algorithm.

• Gradient search (GS) is a technique for discovering
locally optimal solutions. In GS algorithm, solutions
are iteratively approached by advancing in increments
defined by the learning rate, which are in turn directed
by the gradient of the objective function. This process
continues until the magnitude of the error is reduced
to less than a specified error tolerance, denoted as ϵ.
According to the studying in [16], the computational
complexity of the GS algorithm can be analytically
expressed as O

(
ϵ−2

)
. This denotes that the complexity

increases inversely with the square of the error tolerance,
highlighting a fundamental trade-off between computa-
tional demand and the precision of the solution obtained.

• Proposed multi-agent DRL algorithm: In the pro-
posed multi-agent DRL algorithm, each agent is
equipped with a DQN designed to approximate the Q-
value function. The architecture of DQN consists of an
input layer, H hidden layers forming a fully connected
network, and an output layer, employing the ReLU
activation function. The number of neurons in the input
layer corresponds to the dimensionality of the state
space, while the number of neurons in each hidden layer
is equal to the number of neurons in the output layer. The
dimensionality of this output layer is determined by the
number of quantized actions (M × L) available to each
agent. Given that the neuron count in the output layer
exceeds that of the input layer, the time complexity of the
proposed multi-agent DRL algorithm can be articulated
as O (H ×M × L), [17]. It is noted that this time com-
plexity is calculated for the deployment phase of the pro-
posed multi-agent DRL (not the training phase), where
the processing of computing the LSTM is constant.

In general, the ES algorithm can achieve the global optimal
result because it exhaustively searches all possible solutions;
however, the complexity rises exponentially as level D is
quantized. Furthermore, the GS algorithm complexity is
small due to the square of the tolerable ϵ; however, it does
not guarantee the global optimal. On the other hand, our
proposedmulti-agent DRL only requires deep neural network
computation, which is very time-consuming and suitable for
real-time implementation. As shown in Table 1, the time
complexity analysis of our proposed multi-agent DRL is
more efficient and scalable compared to ES and GS. This
makes it a promising approach for real-time applications
where computational resources are limited. Additionally, the

TABLE 1. Computational complexity comparison.

TABLE 2. Simulation parameters.

multi-agent aspect of the DRL can lead to more robust and
efficient solutions compared to single-agent algorithms.

V. PERFORMANCE EVALUATION
For performance evaluation, we consider a scenario with
three subchannels and six D2D pairs. The energy conversion
efficiency η is set to 0.5, [18]. D2D pairs are spatially dis-
tributed according to a normal distribution, with an average
direct link distance of 10m and an interference link distance
of 20m. The constants for the energy consumption of the
circuit, baseband noise power spectrum, and additive white
Gaussian noise power spectrum are set to 20dBm, −70dBm,
and −100dBm, respectively. The path loss and Rician
small-scale fading gain are 3.6 dB and 5dB, respectively.
The power-splitting ratio and battery size are held constant
at 0.5 dB and 10 dB, respectively. The simulation parameters
are summarized in Table 2.
Fig. 5 illustrates the optimized system data rate and

the energy harvesting in terms of increasing the maximum
transmit power. Here, Fig. 5a shows the optimal system
data rates with and without considering the PF scheduling
function as a function of the maximum transmit power.
When the PF scheduling function is not considered, the
numerator of the objective function becomes the sum of
the received data rate, and the system data rate increases as
the maximum transmit power increases. Moreover, we can
also verify the trade-off relation between fairness and data
rate; specifically, if a communication system prioritizes
fairness, the overall system data rate can be lower, and vice
versa. Additionally, Fig. 5b shows the total harvested energy
under the proposed algorithm as the transmission power
Pmax increases. This result shows that the harvested energy
increases exponentially as Pmax increases. Figs. 5a and 5b
show that as maximum transmit power increases, system
data rate increases logarithmically, and energy harvesting
increases exponentially. This result indicates a strategy to
limit the maximum transmission power of a D2D transmitter
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FIGURE 5. Performance results for various maximum transmit power
levels.

with a high residual battery to be determined only by its data
rate requirements.

Fig. 6 shows the objective function obtained by ES, the
proposed multi-agent DRL with and without LSTM, and GS.
The graph shows that our proposed multi-agent DRL with
LSTM achieves up to 98% of the global optimum that is
obtained by ES. It is noted that the overall performance of the
proposed algorithm is evaluated from both the performance of
ES as an upper bound and the performance of GS serving as a
benchmark for suboptimal performance. It also demonstrates
that the result obtained by the proposed multi-agent DRL is
very close to that obtained by ES, indicating that the former
achieves a near-global-optimal solution and outperforms the
optimization based iteration method obtained by GS. More-
over, we observe that the proposed multi-agent DRL with
LSTMobtains a higher performance than that of the proposed
multi-agent DRLwithout LSTM, thus verifying the effective-
ness of the LSTM network for estimating other D2D pairs.

Through the simulation, we also evaluated the energy
conservation for our objective function with and without
considering the residual battery of devices in the D2D
network, as shown in Fig. 7. It is notice that the average
residual battery without considering the residual battery is
obtained using the object function, which is given as follows:

f
(
pt , qt

)
=

PFt
(
pt , qt

)∑
i∈D ECti (p

t , qt) −
∑

i∈D EHt
i (p

t , qt)
. (18)

The graph in Fig. 7 shows that the average residual battery
of D2D pairs is enhanced if our proposed objective function
considering residual battery is used.

The result in Table 3 indicates that the average residual
battery of D2D pairs is prolonged when the proposed

FIGURE 6. Optimal objective function vs. maximum transmit power.

FIGURE 7. Average residual battery of D2D pairs with and without
considering residual battery in target function.

TABLE 3. Comparison for network lifetime with/without considering
residual battery.

TABLE 4. Standard deviation of residual battery of D2D pairs.

algorithm is applied, which shows the network lifetime
improvement. And Table 4 shows that the average standard
deviation of the data rate. It is seen that the average standard
deviation of data rate when considering the residual battery
is much smaller than that when not considering the residual
battery, thus indicating the fairness of the residual battery
among D2D pairs.

VI. CONCLUSION
In this study, we investigated an optimization problem by
considering PF scheduling and energy efficiency considering
residual batteries in SWIPT-based D2D networks. To solve
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this problem in a distributed manner, a multi-agent DRL
model that can determine the best transmission power and
subchannel allocation indicator in a way to maximize the
reward function is proposed. To enhance the performance of
the proposed algorithm, an LSTM network that estimates the
states of other agents is applied to the proposed multi-agent
DRL model. The use of LSTM was found to enhance the
performance of the proposed multi-agent DRL. Simulation
results showed that the proposed algorithm outperformed
GS and achieved a near-global optimal solution with lower
time complexity. In addition, the average residual battery of
D2D pairs and network lifetime increased, and the fairness
of the residual battery among D2D pairs was enhanced by
considering the residual battery in the optimization model.
For our future work, we plan to investigate our proposed
algorithm for the large scale of the network environment.
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