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Automated eyeball volume 
measurement based on CT images 
using neural network‑based 
segmentation and simple 
estimation
Sujeong Han 1, Jeong Kyu Lee 2,4*, Daewon Lee 3,4* & Jaesung Lee 1,4*

With the increase in the dependency on digital devices, the incidence of myopia, a precursor of various 
ocular diseases, has risen significantly. Because myopia and eyeball volume are related, myopia 
progression can be monitored through eyeball volume estimation. However, existing methods are 
limited because the eyeball shape is disregarded during estimation. We propose an automated eyeball 
volume estimation method from computed tomography images that incorporates prior knowledge of 
the actual eyeball shape. This study involves data preprocessing, image segmentation, and volume 
estimation steps, which include the truncated cone formula and integral equation. We obtained 
eyeball image masks using U-Net, HFCN, DeepLab v3 +, SegNet, and HardNet-MSEG. Data from 
200 subjects were used for volume estimation, and manually extracted eyeball volumes were used 
for validation. U-Net outperformed among the segmentation models, and the proposed volume 
estimation method outperformed comparative methods on all evaluation metrics, with a correlation 
coefficient of 0.819, mean absolute error of 0.640, and mean squared error of 0.554. The proposed 
method surpasses existing methods, provides an accurate eyeball volume estimation for monitoring 
the progression of myopia, and could potentially aid in the diagnosis of ocular diseases. It could be 
extended to volume estimation of other ocular structures.

The rapid advancement of science and technology has led to the excessive use of digital devices, such as smart-
phones and computers. This phenomenon has accelerated the aging of the eyes and resulted in a significant 
increase in the incidence of ocular disorders1–3. Myopia is the most common ocular disorder and is often charac-
terized by excessive elongation of the eyeball axial length4–6. Because axial length and eyeball volume estimation 
are correlated, calculating the axial length using eyeball volume estimation can provide valuable information 
for tracking the progression of myopia. Various ocular complications are associated with myopia, including 
retinal detachment, glaucoma, cataracts, and macular degeneration, and are contingent upon the severity of 
progression7–9. The estimation of eyeball volume can provide useful information to clinicians in terms of ocular 
anomaly identification and ocular disease diagnosis. Moreover, it can provide valuable information for monitor-
ing the outbreak of eye-related complications and assist in planning treatment or surgery10–13. Therefore, eyeball 
volume estimation is essential for ocular health diagnosis and the prevention of ocular complications.

Traditionally, eyeball volume has been estimated using methods relying on intraocular pressure measurements 
or specialized software for medical imaging12,14,15. However, these methods rely on specialized equipment or 
invasive medical procedures and thus are not only time-consuming and costly but also pose a risk of infection. 
With the development of medical imaging techniques, measuring the eyeball volume using various medical 
imaging techniques such as radiography, ultrasound, computed tomography (CT), magnetic resonance imag-
ing, and photography have been researched for a long time. However, these methods face limitations such as 
time-consuming manual procedures and accuracy dependent on the expertise of clinicians and have not been 
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widely applied clinically16–19. Recent advancements in artificial intelligence have prompted attempts to estimate 
eyeball volume based on medical imaging using deep learning20. However, limitations to accurately estimating 
eyeball volume remain because the shape of the eyeball is ignored during the estimation process. In this study, 
we propose an eyeball volume estimation template that incorporates prior information to reflect the actual shape 
of the eyeball.

Results
The performance of each image segmentation model is shown in Table 1. As a result of the eyeball segmenta-
tion experiment, all segmentation models showed reasonable performance. This can be interpreted because the 
position of the eyeball on the CT image is consistent, and in the data processing, we selectively used only slices 
where the boundary of eyeball was clearly visible. Finally, we selected U-Net as the segmentation model owing 
to its highest performance with mean Dice score of 0.952 and mean IoU of 0.912. Most of the mask images from 
the segmentation model were circular. (See Fig. S1).

The performance of each eyeball volume estimation method is presented in Table 2. Three metrics were 
determined to evaluate the similarity between each method and the manually calculated volume. The proposed 
method performed better than the comparative models in all metrics, with a Corr of 0.819, MAE of 0.640, and 
MSE of 0.554 for the eyeball volume estimation. These experimental results demonstrate the effectiveness of fully 
considering the eyeball shape in terms of estimation performance.

Materials and methods
This study is a retrospective comparative effectiveness research study. The protocol was approved by the insti-
tutional review board of the Chung-Ang University Hospital (IRB No. 2311-017-19498) and complies with the 
tenets of the Declaration of Helsinki. The requirement for informed consent was waived by the institutional 
review board because of the retrospective nature of the study.

Existing methods for estimating eyeball volume have relied on specialized equipment or invasive medical pro-
cedures. However, these approaches are constrained not only in terms of time and cost but also pose limitations 
in patient comfort and carry the risk of infection. To address this issue, there have been efforts to estimate volume 
using a deep learning-based approach utilizing CT image segmentation. While this overcomes the limitations of 
traditional methods, it is significantly influenced by the performance of the segmentation model. Although these 
methods overcome the limitations of traditional methods, it is significantly influenced by the performance of 
the segmentation model. These methods rely heavily on pixel-based estimations of the eyeball volume, making 
it challenging to accurately reflect the actual shape of the eyeball. This leads to an increase in volume estimation 
errors. However, incorporating a template that reflects the actual shape of eyeball, it can effectively reduce the 
margin of error in volume estimation.

Image preprocessing
Figure 1 shows the image segmentation framework with preprocessing. In this study, we constructed a CT image 
dataset and extracted metadata from the Digital Imaging and Communications in Medicine (DICOM) files. 
DICOM is a data storage format used in the medical field to store medical images such as CT and MRI along 
with image information and patient data. CT images were quantified in Hounsfield units (HU), which indicate 
the degree of X-ray absorption in the body. Hence, by adjusting the HU values using two parameters, one can 
emphasize specific regions of interest. Among the two parameters for HU value adjustment, window center 
focuses on the HU value to be targeted, while window width indicates the range of HU values to be observed 
around the window center. Through empirical studies, we determined the optimal values for HU adjustment to 
effectively identify the eyeball in CT slices. Following the above procedure, we manually selected CT slices with 

Table 1.   Performance of segmentation models.

Model IoU Dice

U-Net 0.912 ± 0.033 0.952 ± 0.020

HFCN 0.909 ± 0.030 0.940 ± 0.019

DeepLab V3 +  0.911 ± 0.033 0.951 ± 0.020

SegNet 0.906 ± 0.035 0.947 ± 0.021

HardNet-MSEG 0.906 ± 0.031 0.948 ± 0.019

Table 2.   Performance of volume estimation methods.

Corr MAE MSE

Proposed method 0.819 0.640 0.554

Fangzhou et al.(2019) 0.769 0.684 0.710

Pixel Count 0.763 0.693 0.729
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distinctly visible eyeball to ensure good image segmentation performance. This step is essential to use only the 
images where the eyeball is clearly visible for training and prediction of the segmentation model.

Image segmentation
We conducted a comparative experiment by implementing five segmentation models: U-Net21, HFCN22, Dee-
pLab v3+23, SegNet24, and HardNet-MSEG25. For detailed information on the segmentation models used in the 
experiment, please refer to the supplementary information. Throughout the entire training process, we ensured 
reasonable performance through iterative training of the segmentation models. Among several segmentation 
models, we selected the model demonstrating the best performance. Ultimately, we leveraged the best-performing 
image segmentation model to obtain mask images for CT images of all patients, thereby enabling the construc-
tion of the final mask image dataset.

Volume estimation
Image segmentation is essential for identifying the boundaries of complex biological structures such as the 
eyeball. The precise boundaries of these structures obtained through segmentation are important for increasing 
the accuracy of volume estimation. Please refer to the supplementary information for studies related to volume 
estimation.

Figure 1.   Procedure of image segmentation framework with data preprocessing.
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Figure 2 shows the volume estimation framework. We derived the eyeball area in each slice by implementing 
binarization and mean, considering the established pixel resolution and dimensions (See Fig. S2a). The entire 
process is formulated as follows: where I is the input eyeball region of interest (RoI), fB is the binarization func-
tion, pw is the physical width of a pixel, ph is the physical height of a pixel, and S is the physical area of the RoI. 
As the eyeball occupied only a small part of the CT image, we cropped the RoI corresponding to the eyeball 
from the mask image. By applying a known pixel resolution and image dimensions, we accurately estimated the 
eyeball area. Eq. (1) represents the function fB applied to image I, resulting in B being the binary mask of the RoI.

Next, Eq. (2) represents the conversion of pixel area A to physical area S, using pixel height ph and pixel width 
pw to manually calculate the eyeball area.

where A = mean(B) is the average value of B, which represents the eyeball area in pixels.

(1)B = f _B(I)

(2)S = A · pk · pw

Figure 2.   Procedure of the volume estimation framework.
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We then calculated the radius of the circle that approximates the manually calculated inferred area of each 
eyeball (See Fig. S2b). Next, we approximated the eyeball area, S, for satisfying the area formula of the circle as 
S ≈ π ∗ r2 with an approximated radius r ≈

√
π
S  from approximated area S. We argue that this is a reasonable 

approximation for central cross-sections perpendicular to the eyeball, which are typically nearly circular in shape.
Next, we stacked the mask images of each patient in the z-axis direction to estimate the eyeball volume. 

To accurately estimate the eyeball volume, we utilized both the eyeball area and the spacing between adjacent 
image slices. Existing pixel-based methods simply use the truncated cylinder formula to stack mask images (See 
Fig. S2c). The volume estimation process using this formula is as follows.

where

As shown in Eq. (3), Vi represents the volume of ith slice using the truncated cylinder formula. ri is the radii 
estimated from the ith slice areas, and hi is the gap between the ith and i + 1th consecutive slices. As shown in 
Eq. (4), the final volume Vˆ is calculated by accumulating the estimated volumes for all slices N.

However, these pixel-based methods do not reflect the curvature of an actual eyeball. It is difficult to accurately 
estimate eyeball volume because there is no one-to-one correspondence between the points when the top and 
bottom sides of the slice are connected by a straight line. To overcome these limitations, we propose an eyeball 
template-based approach to volume estimation that considers the curvature of an actual eyeball using a truncated 
cone formula (See Fig. S2d). The volume estimation process using this formula is as follows.

where

In Eq. (5), the volume Vi of the ith slice is computed by the formula for a truncated cone, considering ri and 
ri+1 to be the radii calculated from the adjacent slices and hi the interslice interval. Next, the overall volume was 
determined using Eq. (6) by accumulating the volumes from all slices. Due to the limitations of the segmentation 
model, the volume at the end of the eyeball was not considered. We uses an integral equation reflecting prior 
knowledge of the eyeball shape to calculate the volume of both ends of the eyeball. (See Fig. S2e) The volume 
estimation method for both ends of the eyeball is as follows.

We derived Eq. (7) from the formula used to calculate the volume of a sphere, which involves the stacking 
of small cylinders along both ends of the sphere. We obtained the smallest radius x1 and the largest radius m 
among all slices from both ends and the central part of the eyeball. To determine the volume Vk at both ends 
of the eyeball, we integrated them from the smallest to the largest radius of the eyeball. The volumes of the two 
ends of the eyeball were estimated using integral equations, based on the assumption that the eyeball is spherical.

There are two main reasons the eyeball volume estimation performance can be improved using our method. 
First, we effectively reflected the eyeball shape using a truncated cone formula with the prior knowledge that the 
eyeball is spherical. Because the estimated eyeball volume is larger when the truncated cone method is used than 
when the truncated cylinder method is used, the errors can be reduced. This is because the estimated volume 
is always smaller than the manually calculated volume because the existing process uses only slices in which 
the eyeball is clearly visible on the CT image. Second, volume estimation errors occur because the ends of the 
eyeball are not considered. For example, there are 15 CT images of the eyeballs of the patient; however, owing 
to the limitations of segmentation, only 10 images were used for volume estimation (See Fig. S3). To overcome 
this limitation, the volumes at both ends of the eyeball were estimated using integral equations considering the 
eyeball shape. Thus, we can reduce the volume estimation errors. We compared simplified volume estimation of 
the pixel-based and proposed methods, respectively (See Fig. S4a and b).

Experiment
Dataset
We used a CT image dataset comprising orbital CT scans obtained from patients who visited a research coopera-
tive at a university hospital. CT slices in which the eyeball was clearly discernible were selected for each patient, 
and a 2D CT image dataset of 200 patients was constructed. The dataset comprised 15,818 images with a size 
of 512 × 512 pixels. The 2D CT image dataset was used to evaluate the performance of the proposed method.

The dataset involves the demographic statistics of the patients whose CT images were collected (see Table S1). 
The average age of the patients was 35.06 years (range: 10–67 years), with an average age of 34.28 (± 12.54) years 
for the 65 male subjects and an average age of 35.44 (± 11.35) years for the 135 female subjects.

(3)Vi = π ∗ r2i ∗ hi

(4)V̂ =

N−1∑

i=1

Vi

(5)Vi =
1

3
π ∗ hi

(
r2i + ri ∗ ri+1 + r2i+1

)

(6)V̂ =

N−1∑

i=1

Vi .

(7)Vk = π

∫ m

x1
m2

− x2dx
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Experimental detail
To obtain the eyeball mask images, we selected various comparative models: U-Net, HFCN, DeepLab v3+, 
SegNet, and HardNet-MSEG. The hyperparameters were set as follows: batch size of 64, 50 epochs, AdamW 
optimization algorithm, and learning rate of 1e-4. In the volume estimation step, data from the 200 subjects in 
the CT image dataset were used. For validation, eyeball volumes were manually calculated from CT images by 
experienced ophthalmologists using TeraRecon software26. The performance of the image segmentation models 
was evaluated using commonly employed metrics in image segmentation: the intersection over union and the 
Dice coefficient. Various eyeball volume estimation methods, including the proposed method, were evaluated 
using three evaluation metrics: correlation coefficient (Corr), mean absolute error (MAE), and mean squared 
error (MSE).

Discussion
Figure 3a–c show scatter plots of the manually calculated eyeball volume and the eyeball volumes estimated by 
all comparative methods, respectively. The x-axis of the scatter plot is the eyeball volume predicted by the each 
method, and the y-axis is the manually calculated eyeball volume. In particular, we can see the linear shape of 
the scatter plot about the proposed method. It indicates that the proposed method performed well in estimating 
the eyeball volume.

Figure 4a–c show the Bland–Altman plots of the manually calculated eyeball volume and the eyeball volume 
estimated by all comparative methods, respectively. The Bland–Altman plot shows the extent to which the esti-
mated value differed from the measured value. The degree of discrepancy is indicated by three horizontal lines 
parallel to the X-axis. The center line represents the mean difference, the top line represents the upper 95% limits 
of agreement, calculated as the sum of the mean and 1.96*standard deviation, and the bottom line represents the 
lower 95% limits of agreement, calculated as the sum of the mean and −1.96*standard deviation. The plot of the 
proposed method does not deviate from the upper and lower limits unlike the other methods, which can be inter-
preted as the smallest volume estimation error of the proposed method. We observe that the proposed method 
has a mean difference closer to zero compared to the other methods, indicating a smaller volumetric error. The 
range of limits of agreement for the proposed method is slightly narrower, suggesting a smaller volumetric error. 
Additionally, the scatter of points within the limits of agreement for the proposed method (Fig. 4c) appears more 
concentrated around the mean difference line compared to the other methods. This indicates fewer significant 

(a) (b) 

(c) 

Figure 3.   Scatter plot of volume estimation methods. (a) Pixel-based method, (b) Conventional method, (c) 
Proposed method.
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discrepancies in volume estimation. Although the difference is marginal, based on the three perspectives men-
tioned earlier, we interpreted that our proposed method exhibits the least volumetric measurement error.

Figure 5a shows a box plot of the volume errors between the manually calculated eyeball volume and the 
estimated eyeball volume for all the comparative methods. The box plot is a figure that allows you to easily 
understand the distribution shape, symmetry, extreme values, etc. of data using quartile values. It is widely used 
in statistics because it provides an overall view of the data. The median also determines the position of the line 
in the middle of the box. The box plot of the proposed method can be interpreted as having the best volume 
estimation because it has the smallest median value and box size.

Figure 5b and c show box plots of the volume errors according to gender and age between the manually 
calculated eyeball volume and the eyeball volume estimated using the proposed method, respectively. In the 
case of gender, the margin of error was larger for women than for men. In the case of age, the patterns of the box 
plots were very different. The smallest error was observed in the eyeball volume estimation of patients aged 60 
years and older and the largest error in that of patients aged 50–59 years. This phenomenon is likely related to 
eye disease and eyeball shape. In fact, Ocular diseases can cause anatomical changes in the eyeball27. Abnormal 
eyeball shapes are likely to increase segmentation errors. According to research on thyroid eye disease (TED), 
the highest number of patients is in their 50s, rapidly decreasing after the age of 6028. Therefore, we consider 
that people in their 50s have an increased probability of various anatomical changes, which may have resulted 
in greater eyeball volume estimation errors. On the other hand, it seems that the incidence of ocular diseases 
decreases after the age of 60, and thus, the estimation error also decreases.

Finally, Fig. 5d shows a box plot of the volume errors according to pathological conditions between the manu-
ally calculated eyeball volume and the eyeball volume estimated using the proposed method. This suggests that 
the proposed eyeball volume measurement method works consistently regardless of group.

(a) (b) 

(c) 

Figure 4.   Bland–Altman plot of volume estimation methods. (a) Pixel-based method, (b) Conventional 
method, (c) Proposed method.
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Figure 6 shows an example of a volume estimate for comparing the pixel-based and proposed methods. The 
volume estimated for the pixel-based method is 6.158cc. In addition, the volume estimated for the middle part 
through the truncated cone formula of the proposed method is 6.954cc, and the volume estimated for both ends 
through the integral equation is 0.663cc, for a total of 7.617cc. The manually calculated volume of the patient is 
7.657cc, and the error with the pixel-based method is 1.499cc and the error with the proposed method is 0.04cc. 
In the overlay, the red area represents the part where the volume that the pixel-based method could not estimate 
was supplemented with the proposed method. This indicates that the proposed method overcomes the limitations 
of the pixel-based method and enables more accurate volume estimation.

In conclusion, eyeball volume estimation is essential in ophthalmology because of its clinical significance. 
Despite its importance, this field has received relatively low attention, as it does not directly impact human 
health. Existing methods are unable to provide one-to-one correspondence for all points between consecutive 
slices; therefore, their volume estimation performance is limited owing to information loss between slices. To 
overcome this problem, we propose a novel method for eyeball volume estimation that uses a template that incor-
porates information regarding the actual shape of the eyeball. We used truncated cone and integral formulas to 
minimize information loss by reflecting the actual shape and curvature of the eyeball. Ultimately, the proposed 
method exhibited superior performance in terms of eyeball volume estimation across all metrics compared with 
existing methods.

However, there are still several limitations to the eyeball volume estimation method. First, most of the stud-
ies included ours utilized only the slices where the eyeball was clearly visible. We consider that performance 
errors arising from this exclusion of slices are inevitable. If image segmentation performance improves, it may 
encompass slices previously excluded from volume estimation. Next, since the volume estimation process of the 
proposed method involves stacking mask images to estimate the volume, there is a possibility that small errors 
are accumulated during the stacking process, resulting in performance degradation. Therefore, developing an 
end-to-end model for direct volume prediction could enable more precise volume estimation. This approach 
holds the potential for achieving a more accurate estimation by omitting the stacking process, thus mitigating 

)a( (b) 

(c)                                                                (d

Figure 5.   Box plot of volume estimation methods. (a) All methods, (b) Proposed method by gender, (c) 
Proposed method by age, (d) Proposed method by pathological condition.
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the risk of cumulative errors. We will extend the proposed method to estimate the volumes of other ocular struc-
tures in the future and this will potentially aid clinicians in diagnosing thyroid-related ophthalmic conditions.

Data availability
Datasets used and analyzed during the current study are available from the corresponding author upon reason-
able request.

Received: 28 December 2023; Accepted: 14 June 2024
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