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A B S T R A C T

Sleep disturbance is associated with the development of neurodegenerative disease. We aimed to address the 
effects of sleep quality on brain glucose metabolism measured by 18F-Fl uorodeoxyglucose (18F-FDG) positron 
emission tomography (PET) in healthy middle-aged adults. A total of 378 healthy men (mean age: 42.8±3.6 
years) were included in this study. Participants underwent brain 18F-FDG PET and completed the Korean version 
of the Pittsburgh Sleep Quality Index (PSQI-K). Additionally, anthropometric measurements were obtained. PETs 
were spatially normalized to MNI space using PET templates from SPM5 with PMOD. The Automated Anatomical 
Labeling 2 atlas was used to define regions of interest (ROIs). The mean uptake of each ROI was scaled to the 
mean of the global cortical uptake of each individual and defined as the standardized uptake value ratio (SUVR). 
After the logarithmic transformation of the regional SUVR, the effects of the PSQI-K on the regional SUVR were 
investigated using Bayesian hierarchical modeling. Brain glucose metabolism of the posterior cingulate, pre
cuneus, and thalamus showed a negative association with total PSQI-K scores in the Bayesian model ROI-based 
analysis. Voxel-based analysis using statistical parametric mapping revealed a negative association between the 
total PSQI-K scores and brain glucose metabolism of the precuneus, postcentral gyrus, posterior cingulate, and 
thalamus. Poor sleep quality is negatively associated with brain glucose metabolism in the precuneus, posterior 
cingulate, and thalamus. Therefore, the importance of sleep should not be overlooked, even in healthy middle- 
aged adults.

1. Introduction

The average person spends more than 25 years sleeping in their 
lifetime. Insufficient sleep is associated with obesity, diabetes, depres
sion, memory, and learning difficulty (Albakri et al., 2021), and higher 
sleep quality is associated with increased cognitive test performance 
(Gildner et al., 2014). Moreover, sleep disturbance increases the risk of 
dementia (Sabia et al., 2021; Shi et al., 2018) and is frequent in 
neurodegenerative diseases, including Alzheimer’s disease (AD) (Pak 
et al., 2020). Thus, sleep disturbance is not only a symptom of under
lying neurodegenerative disease but is also a contributing factor in the 
development and progression of neurodegenerative disease (Abbott and 

Videnovic, 2016). Sleeplessness causes metabolic byproducts to accu
mulate, and the amyloid beta (Aβ), the pathologic hallmark of AD 
(Brown et al., 2014), is cleared by the glymphatic pathway during sleep 
(Pak et al., 2020). Even one night of sleep deprivation can lead to 
increased amyloid deposition in the human brain, as confirmed by 
amyloid measurements using positron emission tomography/computed 
tomography (PET/CT) (Shokri-Kojori et al., 2018).

The human brain utilizes glucose as its primary source of energy; 
thus, brain glucose metabolism, assessed by PET with 18F-Fluorodeox
yglucose (FDG), can be utilized for quantifying neuronal activity in the 
human brain (de Leon et al., 2001). 18F-FDG PET/CT is a useful imaging 
modality for the diagnosis, differentiation of dementia, and prediction of 
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mild cognitive impairment leading to AD (Brown et al., 2014). Several 
studies with inconsistent results investigated the association between 
sleep quality and brain glucose metabolism in late adulthood (Branger 
et al., 2016; Kimura et al., 2020; Stankeviciute et al., 2023). Stankevi
ciute et al. reported negative associations between the Pittsburgh Sleep 
Quality Index (PSQI), a measure of sleep quality, higher scores indi
cating worse sleep quality, and brain glucose metabolism in the right 
temporal pole, right paracingulate gyrus, right cerebellum exterior, and 
right frontal orbital cortex (Stankeviciute et al., 2023). No association 
between PSQI and brain glucose metabolism was observed in a study by 
Branger et al. (Branger et al., 2016). Kimura et al. demonstrated that 
total sleep time was inversely associated with brain glucose metabolism 
but not sleep efficiency (Kimura et al., 2020). These studies enrolled 
older adults with or without cognitive impairment. Aging was found to 
be associated with decreased brain glucose metabolism and increased 
amyloid burden (Pourhassan Shamchi et al., 2018; Rodrigue et al., 
2012). A longitudinal study reported that decreased brain glucose 
metabolism was associated with aging by identifying this trend in 
cognitively normal older adults (Ishibashi et al., 2018). Moreover, 
several studies reported that brain glucose metabolism interacted with 
Aβ and tau protein in older adults (Crook et al., 2021; Hanseeuw et al., 
2017). Thus, aging, Aβ, and tau protein could interfere with the effect of 
sleep disturbance on brain glucose metabolism in older adults. If the 
effect of sleep quality on the brain is present, this would be identified 
even in middle-aged adults without the effect of aging, Aβ, and tau 
protein.

As the risk of AD increases, especially after the age of 65 years, the 
importance of sleep is overlooked in middle adulthood. In addition, 
aging itself leads to the decline of brain glucose metabolism in the 
caudate, cingulate, frontal, and parietal lobes, according to our previous 
study with 18F-FDG PET (Pak et al., 2023). The lack of consistent results 
in neuroimaging studies has become a significant concern (Poldrack 
et al., 2017). Issues such as small sample sizes (Button et al., 2013), 
ubiquitous ‘researcher degrees of freedom’ (Simmons et al., 2011), 
inappropriate correction for multiple comparisons (Eklund et al., 2016), 
and uncertainties in measurements (Loken and Gelman, 2017) have 
been identified as key factors contributing to this problem. To address 
these issues, some propose employing Bayesian hierarchical modeling to 
limit the number of paths a researcher can take in their analyses 
(Lindquist and Gelman, 2009) and to eliminate the need for multiple 
comparison corrections, potentially enhancing the reproducibility of 
research (Gelman et al., 2012). Therefore, to address the effects of sleep 
quality on brain glucose metabolism, we analyzed a large cohort of 
healthy middle-aged adults who underwent brain 18F-FDG PET and 
completed a sleep quality questionnaire. We used Bayesian hierarchical 
modeling to estimate the effects of sleep quality on brain glucose 
metabolism and hypothesized that poor sleep quality is negatively 
associated with brain glucose metabolism.

2. Materials and methods

2.1. Participants

We retrospectively analyzed data from 473 healthy men who 
participated in the health checkup program at the Samsung Changwon 
Hospital Health Promotion Center in 2013. After excluding individuals 
with neuropsychiatric disorders (n=5) or malignancies (n=3), those 
with missing data from the Korean version of PSQI (PSQI-K) (n=87) 
(Sohn et al., 2012), 378 healthy men were included. The health checkup 
program included 1) brain 18F-FDG PET, 2) anthropometric measure
ments, and 3) completion of the PSQI-K. Participants in this study were 
included in a previous study on the effect of aging on brain glucose 
metabolism (Pak et al., 2023). The study protocol was approved by the 
Institutional Review Board of Changwon Samsung Hospital. The 
requirement for informed consent was waived owing to the retrospec
tive study design.

2.2. Brain 18F-FDG PET and image analysis

The participants were asked to avoid strenuous exercise for 24 hours 
and to fast for at least 6 hours before the PET study. PET/CT was per
formed 60 mins after injection of 18F-FDG (3.7 MBq/kg) with the Dis
covery 710 PET/CT scanner (GE Healthcare, Waukesha, WI, USA). 
Continuous spiral CT was obtained with a tube voltage of 120 kVp and 
tube current of 30–180 mAs. PET was obtained in three-dimensional 
mode with full width at half maximum of 5.6 mm and reconstructed 
using an ordered-subset expectation maximization algorithm. PETs were 
spatially normalized to MNI space using PET templates from SPM5 
(University College of London, UK) with PMOD version 3.6 (PMOD 
Technologies LLC, Zurich, Switzerland). Automated Anatomical Label
ing 2 atlas (Rolls et al., 2015) was used to define regions of interest 
(ROIs): caudate, putamen, thalamus, cingulate (anterior, middle, pos
terior), frontal (middle, superior), hippocampus, parietal (inferior, su
perior), postcentral, precuneus, temporal (inferior, middle, superior) 
gyri, and cerebellum. The mean uptake of each ROI was scaled to the 
mean of the global cortical uptake of each individual and defined as the 
standardized uptake value ratio (SUVR). For a full-volume analysis, the 
statistical threshold was set at a cluster level and corrected with a false 
discovery rate with p < 0.05 in a regression model (correction with age) 
after smoothing SUVR images with a Gaussian kernel of full width at half 
maximum 8mm (Statistical Parametric Mapping 12, Wellcome Centre 
for Human Neuroimaging, UCL, London, UK).

2.3. PSQI-K

All participants completed the PSQI-K to assess subjective quality 
and sleep patterns (Sohn et al., 2012). The PSQI-K consists of 19 
self-reported items with seven subcategories: 1) subjective sleep quality, 
2) sleep latency, 3) sleep duration, 4) habitual sleep efficiency, 5) sleep 
disturbances, 6) use of sleep medication, and 7) daytime dysfunction. 
Scores for each subcategory range between 0 and 3, with higher scores 
indicating worse sleep quality; total scores can range from 0 to 21.

2.4. Statistical analysis

Normality was tested with the Shapiro–Wilk test. After the loga
rithmic transformation of the regional SUVR, the effects of the PSQI-K on 
the regional SUVR were investigated using Bayesian hierarchical 
modeling with brms (Bürkner, 2017, 2018, 2021) that applies the 
Markov–Chain Monte Carlo sampling tools of RStan (Stan Development 
Team, 2022). We set up models separately for total PSQI-K scores and 
subcategories with the regional SUVR as a dependent variable and 
PSQI-K scores as predictors adjusting for age. These fixed effects (PSQI-K 
and age) were calculated individually, and participants and ROI were 
added as random intercepts to allow the SUVR to vary between partic
ipants and ROIs. Bayesian models were estimated using four Markov 
chains, each with 4,000 iterations, including 1,000 warm-ups, thus 
totaling 12,000 post-warm-up samples. The sampling parameters were 
slightly modified to facilitate convergence (max treedepth = 20). Sta
tistical analysis was performed in R Statistical Software version 4.3.1 
(The R Foundation for Statistical Computing).

3. Results

3.1. Participant characteristics

A total of 378 healthy men (mean age: 42.8±3.6 years) were 
included in this study. The mean and standard deviation of the total 
score of the PSQI-K was 4.0±2.2, ranging from 0 to 12. The mean and 
standard deviation of the scores of the seven PSQI-K subcategories are as 
follows: 1) subjective sleep quality; 1.0±0.6, 2) sleep latency; 0.8±0.8, 
3) sleep duration; 0.9±0.7, 4) habitual sleep efficiency; 0.2±0.4, 5) 
sleep disturbances; 0.6±0.5, 6) use of sleep medication; 0±0.1, 7) 
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daytime dysfunction; 0.6±0.6 (Table 1).

3.2. Sleep quality and brain glucose metabolism

The distribution of brain glucose metabolism and total PSQI-K score 
is shown in scatterplot (Fig. 1). Brain glucose metabolism of the poste
rior cingulate, precuneus, and thalamus showed a negative association 
with total PSQI-K scores (Fig. 2). Full-volume analysis revealed a 
consistent negative association of total PSQI-K scores with brain glucose 
metabolism of the precuneus, postcentral gyrus, posterior cingulate, and 
thalamus (Fig. 3). No area positively correlated with total PSQI-K scores 
from ROI- and voxel-based analyses.

In Bayesian models with PSQI-K subcategories, brain glucose meta
bolism of the posterior cingulate and precuneus showed a negative as
sociation with the scores of PSQI subcategories (subjective sleep quality, 
sleep latency, sleep duration, use of sleep medication, and daytime 
dysfunction) with some of their 95% posterior intervals overlapping 
with zero. In models using sleep medication and daytime dysfunction, 
poor sleep quality was associated with decreased brain glucose meta
bolism across the regions, with some of their 95% posterior intervals 
overlapping with zero (Fig. 4).

4. Discussion

Our main finding was that poor sleep quality measured by the PSQI-K 
of 378 middle-aged men (mean age: 42.8±3.6 years) was negatively 
associated with brain glucose metabolism in the precuneus, posterior 
cingulate, and thalamus in ROI- and voxel-based analyses.

AD is the most common cause of dementia and a slowly progressive 
neurodegenerative disease (Abubakar et al., 2022). Cognitive decline in 
AD is associated with the accumulation of the Aβ (Abubakar et al., 
2022), and this is associated with an imbalance between Aβ neuronal 
production and extracellular clearance of Aβ (Hampel et al., 2021). Aβ is 
identified by a cerebrospinal fluid Aβ42 assay and amyloid PET before 
the onset of clinical symptoms (Hampel et al., 2021). Also, brain 
18F-FDG PET can demonstrate a decrease in brain glucose metabolism, 
indicative of synaptic dysfunction, in the parietotemporal cortex, pos
terior cingulate, and precuneus in the early stages of AD (Hampel et al., 
2021).

Sleep disturbance increases the risk of dementia (Sabia et al., 2021; 
Shi et al., 2018) and is frequent in neurodegenerative diseases, including 
AD (Pak et al., 2020). One night of sleep deprivation can cause increased 
amyloid burden in healthy adults, according to amyloid PET studies 
(Shokri-Kojori et al., 2018). Sleep disturbance and short sleep duration 
are also associated with poorer cognitive function (Behrens et al., 2023; 
Lo et al., 2016). The classic AD pattern in brain 18F-FDG PET is hypo
metabolism in the parietotemporal cortex, posterior cingulate, and 
precuneus (Brown et al., 2014), which are associated with cognitive 
decline, including memory and attention (Cavanna and Trimble, 2006; 
Leech and Sharp, 2014). Those regions are central hubs of the brain’s 
default mode network (Fransson and Marrelec, 2008). Also, abnormal 

mitochondrial metabolism in those regions is involved in the patho
genesis of AD (Peng et al., 2020). Thus, the association between the 
PSQI-K and brain glucose metabolism may indicate a link between poor 
sleep quality and AD, even in middle adulthood.

In addition, a structural magnetic resonance imaging (MRI) study 
revealed that poor sleep quality was associated with reduced volume of 
the right superior frontal cortex and increased rate of atrophy of the 
frontal, temporal, and parietal lobes in individuals over 60 years (Sexton 
et al., 2014). Other MRI studies also demonstrated the association be
tween sleep disturbance and decreased gray matter volume (Alperin 
et al., 2019; Branger et al., 2016; Chao et al., 2014; Li et al., 2019; Park 
et al., 2020; Stankeviciute et al., 2023). Therefore, these results may also 
reflect the association between sleep quality and structural changes in 
brain regions. Sleeplessness can cause metabolic byproducts to accu
mulate, and the Aβ, the pathologic hallmark of AD (Brown et al., 2014), 
is cleared by the glymphatic pathway during sleep (Pak et al., 2020). 
Even one night of sleep deprivation leads to increased amyloid deposi
tion in the hippocampal, parahippocampal, and thalamic regions of the 
human brain, according to amyloid PET studies (Shokri-Kojori et al., 
2018; Spira et al., 2013). Also, shorter sleep duration was associated 
with higher amyloid burden in the bilateral putamen, parahippocampus, 
and right precuneus after sleep (Shokri-Kojori et al., 2018).

Patients with primary insomnia had lower brain glucose metabolism 
in the precuneus, posterior cingulate cortex, anterior cingulate, medial 
frontal cortex, right hippocampus/amygdala, and right fusiform gyrus 
(Kay et al., 2016). Patients with sleep apnea, associated with sleep 
fragmentation and risk of cognitive impairment, had lower brain glucose 
metabolism in the precuneus, posterior cingulate cortex, and frontal 
area, probably due to nocturnal hypoxia and sleep fragmentation 
(Fernandes et al., 2022). Recently, a negative association between the 
PSQI and brain glucose metabolism in the right temporal pole, right 
paracingulate gyrus, right cerebellum exterior, and right frontal orbital 
cortex was reported in a study with participants with an average age of 
61.2 years (Stankeviciute et al., 2023). However, another study showed 
no association between sleep quality and brain glucose metabolism in 
participants with an average of 64.1 years of age (Branger et al., 2016).

This study included 378 healthy men with a mean age of 42.8 years. 
Even in middle adulthood, sleep quality was negatively associated with 
brain glucose metabolism of the precuneus, posterior cingulate, and 
thalamus. In an MRI study including adults with a mean age of 46.4 
years, no association was observed between sleep quality and grey 
matter volume (Hidese et al., 2023). Sleep quality was associated with a 
decline in grey matter volume of the frontal, temporal, and parietal lobes 
in participants over 60 but not in those under 60 years (Sexton et al., 
2014). Therefore, the decline of brain glucose metabolism associated 
with sleep quality may be dependent on age and further accelerated in 
the older population.

This study has several limitations. First, only men were included in 
this study; therefore, the results may not be generalizable and directly 
applicable to women. Second, the participants underwent 18F-FDG PET 
for the purpose of health checkup. The average of PSQI-K was 4.0 with a 
relatively good quality of sleep. Therefore, this result may not be 
generalized in the subjects with poor sleep quality. However, these 
participants might represent the general demographics of middle-aged 
adults. Third, static PET/CT was acquired 60 mins after injection of 
18F-FDG, therefore, we could not measure the metabolic rate of glucose. 
Fourth, as a brain MRI was not included in the program, MRI-based 
coregistration and partial volume correction of PETs could not be 
done, and the results could not be compared with MR-based indices of 
atrophy.

5. Conclusion

Sleep quality is negatively associated with brain glucose metabolism 
in the precuneus, posterior cingulate, and thalamus. Therefore, the 
importance of sleep should not be overlooked in middle-aged healthy 

Table 1 
Participant characteristics.

Mean±standard deviation

Age (years) 42.8±3.6
Body mass index (kg/m2) 24.7±2.9
Total PSQI-K 4.0±2.2
1) subjective sleep quality 1.0±0.6
2) sleep latency 0.8±0.8
3) sleep duration 0.9±0.7
4) habitual sleep efficiency 0.2±0.4
5) sleep disturbances 0.6±0.5
6) use of sleep medication 0±0.1
7) daytime dysfunction 0.6±0.6

*PSQI-K, Pittsburgh Sleep Quality Index-Korean version.
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