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Abstract: The development of metal–insulator–semiconductor (MIS) capacitors requires device
miniaturization and excellent electrical properties. Traditional SiO2 gate dielectrics have reached
their physical limits. In this context, high-k materials such as TiO2 are emerging as promising
alternatives to SiO2. However, the deposition of dielectric layers in MIS capacitors typically requires
high-vacuum equipment and challenging processing conditions. Therefore, in this study, we present
a new method to effectively fabricate a poly(vinylidene fluoride) (PVDF)-based TiO2 dielectric layer
via electrospinning. Nano-microscale layers were formed via electrospinning by applying a high
voltage to a polymer solution, and electrical properties were analyzed as a function of the TiO2

crystalline phase and residual amount of PVDF at different annealing temperatures. Improved
electrical properties were observed with increasing TiO2 anatase content, and the residual amount
of PVDF decreased with increasing annealing temperature. The sample annealed at 600 ◦C showed
a lower leakage current than those annealed at 300 and 450 ◦C, with a leakage current density of
7.5 × 10−13 A/cm2 when Vg = 0 V. Thus, electrospinning-based coating is a cost-effective method to
fabricate dielectric thin films. Further studies will show that it is flexible and dielectric tunable, thus
contributing to improve the performance of next-generation electronic devices.

Keywords: MIS; electrospinning; TiO2; leakage current; electrospun dielectric layer

1. Introduction

In recent decades, the advancement of memory device structures, particularly in gate
and capacitor dielectrics, has driven significant innovation. As device dimensions continue
to scale down, high-k dielectric materials, such as titanium dioxide (TiO2) [1,2], hafnium
dioxide (HfO2) [3], and zirconium dioxide (ZrO2) [4], have been increasingly integrated
into cutting-edge technologies like FinFETs and high-k metal gate (HKMG) structures to
mitigate leakage current and short-channel effects [5].

Among these materials, TiO2 stands out due to its exceptionally high dielectric con-
stant, ranging between 80 and 120, depending on whether it crystallizes in the anatase
or rutile phase [6]. However, despite its high dielectric constant, TiO2 struggles with
controlling leakage currents, primarily due to its relatively narrow band offset. To en-
hance its electrical properties, reducing oxygen vacancies and improving structural order
through annealing processes are critical, as the phase transformation from anatase to rutile
significantly impacts both its dielectric behavior and leakage characteristics [7–10].

While these high-k materials deliver superior performance, they have deposition meth-
ods such as physical vapor deposition (PVD) [11], chemical vapor deposition (CVD) [12],
plasma-enhanced CVD (PECVD) [13], and atomic layer deposition (ALD) [10,14–16]. How-
ever, these deposition methods involve long processing times and high costs, owing to
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the use of ultrahigh vacuum systems, and they are limited by equipment space require-
ments [17]. Therefore, it is crucial to identify novel techniques that can significantly reduce
the deposition time and cost, while also enabling deposition at the nano- and microscale
under room temperature and atmospheric pressure conditions.

In the electrospinning process, nanoscale fibers are fabricated by applying a high volt-
age to a polymer solution [18,19]. In general, electrospun one-dimensional fibers are formed
when the solution concentration is above the critical point; however, when the concentra-
tion is below the critical point, a porous film ranging from tens of nanometers to hundreds
of micrometers can be formed by changing from electrospinning to electrospraying. In
addition, depending on the metal nozzle type, it is possible to produce fibers with hollow,
core–shell, and porous structures. Also, the deposition method using electrospinning does
not use vacuum equipment and the equipment itself is inexpensive, so the process cost
difference is about 5–10 times compared to the conventional method. The advantages of
electrospinning are not the only ones. The film adhesion can be adjusted according to the
type of organic material, and the dielectric constant can be controlled by tuning the doping
material; hence, this approach can be developed into a coating technology with unlimited
potential [20–24].

In this paper, an anatase TiO2 dielectric layer was deposited on a p-type (100)-oriented
bare wafer using a simple, fast, and low-cost PVDF-based electrospinning method. To
investigate the dependence of the MIS capacitor performance on the residual PVDF and
the TiO2 phase, the annealing process was optimized at rapid thermal annealing (RTA)
temperatures of 300, 450, and 600 ◦C. Then, a Ti metal layer was deposited by sputtering
using a Ti target to fabricate an anatase TiO2-based heterostructured MIS capacitor. The
electrospinning method provides a new way to tailor the electrical properties of MIS capac-
itors by controlling various parameters, in order to form films with the desired structure
according to the target application. This paper highlights that electrospinning can be
performed without vacuum equipment, making the process very low cost and applicable to
semiconductor applications. However, further research is required for nanoscale processing
of semiconductors.

2. Experimental Section

First, the solution was prepared to fabricate the TiO2 dielectric layer, followed by the
electrospinning process

2.1. Materials and Solution Preparation

Titanium(IV) oxide (TiO2, anatase form, JUNSEI, Tokyo, Japan) and PVDF (Mw~534,000,
Sigma Aldrich, Seoul, Republic of Korea), acting as binder, were mixed in a 94:6 (4.7 g of
TiO2, 0.3 g of PVDF) mass ratio; then, N-methyl-2-pyrrolidone (NMP, 99.7%, JKC, Cheonan,
Republic of Korea), used as solvent, was added at about 7 mL to obtain the appropriate
viscosity. The solution was stirred at 800 rpm for 24 h (magnetic stirrer, WISD, Seoul,
Republic of Korea). Additionally, sonication and stirring were repeated several times
in an ultrasonic cleaner (DAIHAN Scientific, Seoul, Republic of Korea) to disperse the
TiO2 phase.

2.2. Electrospinning

In general, the electrospinning process is used to produce nano–microscale fibers;
however, in order to prepare a relatively uniform film and increase the adhesion between
the silicon wafer and the dielectric layer, PVDF-based electrospraying was performed with
the concentration of the electrospinning solution reduced to ~3–4 wt.%. In this experiment,
PVDF was used for the electrospinning polymer solution. PVDF has various advantages
such as high production stability and abundant green resources, and the PVDF phase can be
controlled by electrospinning, which makes it a promising electrode material. PVDF is also
used as an anode binder in lithium-ion batteries and is often used to improve the structural
stability, so it was also used in this experiment [25–27]. Electrospinning was performed
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using a single nozzle (nozzle adaptor, NanoNC, Seoul, Republic of Korea) and a constant
flow rate of 2 mL/h using a syringe pump (Fusion 100-X precision dosing two-channel
syringe pump, Chemyx, Stafford, TX, USA). To improve the uniformity of the dielectric
layer, a drum-type collector (NNC-DC90H, NanoNC, Seoul, Republic of Korea) was used as
a spin coater, and the wafer was spun in place at 200 rpm. The distance between the drum
collector and the syringe tip was set to 17 cm, and a high voltage of 8–10 kV was applied.
Finally, a 23-gauge plastic nozzle (inner diameter: 0.33 mm, outer diameter: 0.63 mm,
NanoNC, Seoul, Republic of Korea) was used to prevent clogging at the tip when TiO2
particles flowed through the syringe at a constant rate.

2.3. Fabrication of MIS Capacitor

In this experiment, rapid thermal process (RTP) annealing (KVR-2000, Korea Vacuum
Tech, Goyang, Republic of Korea) was used to anneal the TiO2 dielectric layer at RTA
temperatures of 300, 450, and 600 ◦C to observe changes in crystallinity and electrical
properties with the annealing temperature. In the RTP, the N2 gas was flowed at 500 sccm
under vacuum conditions. Afterward, the sputtering device (RF magnetron sputtering
system KVS-2004, Korea Vacuum Tech) was used to deposit the metal layer. Using a Ti
target, the Ar gas was flowed inside the chamber at 18 sccm under high vacuum conditions.
After adjusting the pressure inside the chamber to 2.2 × 10−2 torr, the Ar plasma was
formed with an RF power of 200 mW to deposit Ti for 120 min; finally, the MIS Ti–TiO2–Si
heterostructure was successfully fabricated (Figure 1).
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Figure 1. Schematic illustration of the fabrication of the electrospun TiO2 dielectric layer and Ti-
sputtered metal layer.

2.4. Analysis

Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman
spectroscopy were used to evaluate the surface state, roughness, adhesion force, and com-
position of the electrospun MIS capacitor (see Table S1). X-ray diffraction (XRD) analysis
was performed to determine crystalline phase changes with the annealing temperature.
Finally, a probe station was used to evaluate the electrical properties.

Raman spectroscopy measurements employed a XperRAM35V (NanoBase, Seoul,
Republic of Korea) instrument with a 532 nm laser and a 1800-lpmm grating. AFM experi-
ments were carried out with a NX-10 (ParkSystems, Suwon, Republic of Korea) instrument;
a Tap300Al-G cantilever (force constant 40 N/m, resonance frequency 300 kHz) was applied
for non-contact mode experiments, whereas a PPP-CONTSCR cantilever (force constant
40 N/m, resonance frequency 300 kHz) was used for measuring force–distance curves.
Field-emission SEM (FE-SEM, SIGMA300, Carl Zeiss, Oberkochen, Germany) was used
to analyse the deposition conditions, thickness, and interlayer separation of the film. Fi-
nally, the crystal structure of TiO2 was characterized by XRD using Cu Kα radiation (New
D8-Advance, Bruker-AXS, Karlsruhe, Germany).

3. Results and Discussion

Figure 2 shows SEM images of electrospun TiO2 samples annealed at RTA tempera-
tures of 300, 450, and 600 ◦C. The above samples were electrospun at 2 mL/h for a total of
5 min, and the dielectric layer had a thickness range of ~6–10 µm. A thinner film could be
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produced by reducing the electrospinning process time. Figure 2a shows the final electro-
spun MIS structure obtained in this study. Figure 2a is a cross-sectional SEM image of a
hetero-structured MIS capacitor with a TiO2 dielectric layer deposited by electrospinning
and a Ti metal layer deposited by sputtering after 600 ◦C RTA heat treatment. A Ti metal
layer was deposited on the electrospun TiO2 using a sputter, as shown in more detail in
Figure S1. Figure 2b shows the electrospun MIS structure of the sample annealed at an
RTA temperature of 300 ◦C for 10 min. A large amount of residual PVDF can be seen in the
figure. Moreover, Figure 2c shows the sample annealed at an RTA temperature of 450 ◦C
for 10 min; a small amount of PVDF was still present, although much smaller than that
of the 300 ◦C-annealed sample. Finally, Figure 2d shows the sample annealed at an RTA
temperature of 600 ◦C for 10 min: most PVDF was volatilized during the annealing process,
and no residual PVDF was visible under the optics. The amount of PVDF in the dielectric
layer affects the leakage current. In this experiment, PVDF was used to act as a binder for
TiO2. Although PVDF can improve the insulation properties, it exhibits polarization due
to the hysteresis effect in the electric field, which leads to energy loss [28]. Therefore, the
amount of residual PVDF will affect the leakage current. To confirm the morphology and
roughness of electrospun TiO2 as a function of temperature, the AFM data are shown in
detail in Figure S2.
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Figure 2. Cross-section of FE-SEM images of (a) electrospun porous TiO2 dielectric films in the Ti–
TiO2–Si heterostructure for MIS capacitors annealed at 600 ◦C, as well as electrospun TiO2 dielectric
films annealed at RTA temperatures of (b) 300 ◦C, (c) 450 ◦C, and (a,d) 600 ◦C.

The XRD patterns in Figure 3 show that the crystallinity of the TiO2 thin films improved
with increasing annealing temperature. The XRD analysis was performed before the Ti
electrode was deposited. TiO2 anatase phase peaks corresponding to (101), (103), (004),
(112), (200), (105), and (211) orientations were observed at 2θ = 25.7◦, 37.1◦, 38◦, 38.7◦, 48◦,
54◦, and 55◦, respectively [29]. More details of XRD patterns of the TiO2 electrospun thin
films are shown in Figure S3. The intensity of the (101) peak, representative of anatase
TiO2, increased with the RTA temperature. The anatase peak intensities of the 450 and
600 ◦C annealed samples increased by ~9.3% and 25.2%, respectively, compared to that



Micromachines 2024, 15, 1231 5 of 8

of the sample annealed at 300 ◦C. Kang et al. reported that, among the two main TiO2
phases, rutile showed a worse leakage current than anatase. It was also reported that the
leakage current decreased as the proportion of anatase phase increased, denoting better
electrical properties [30]. Therefore, the anatase peak ratio was expected to increase as
the annealing temperature increases from 300 to 450 and 600 ◦C, reflecting better leakage
current properties. As shown in Figure 3b, the peaks shifted toward lower 2θ values as the
annealing temperature increased. This was because, when the material was annealed, the
atoms underwent thermal expansion; this caused the lattice constant to increase, with a
corresponding shift of the XRD peaks toward lower angles [31].
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Raman spectroscopy can be used to qualitatively evaluate the percentage of residual
PVDF in the TiO2/PVDF composite thin film and the crystallinity of TiO2 particles. As
shown in Figures 4 and S4, TiO2 anatase peaks (144, 394, 514, 634 cm−1) were observed
for all samples at 300, 450, and 600 ◦C, and the peak intensity tended to increase as the
annealing temperature increased. In addition, the fluorescence caused by PVDF tended
to decrease with increasing annealing temperature. This matches the trend of the SEM
images, which indicates that the material composition ratio and thin film properties of the
TiO2/PVDF composite can be controlled by adjusting the annealing temperature conditions.
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The current–voltage characteristics were measured for MIS devices consisting of the
Ti–TiO2/PVDF composite and Si. The applied voltage range was −3 to 3 V. Figure 5a
shows the leakage current and Figure 5b is the leakage current density of each sample. The
asymmetric I–V relationship shown in Figure 5a is commonly observed in high-k dielectric
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materials. The asymmetry curve is correlated with the dielectric TiO2 thickness [32]. The
charge conduction under positive bias is believed to be dominated by the silicon/oxide
interface, while that under negative bias is controlled by the metal/oxide interface [13].
As the annealing temperature of the samples increased, the leakage current density at
Vg = 0 V decreased to 0.88 µA, 3.7 nA, and 2.0 pA for the 300, 450, and 600 ◦C samples in
Figure 5b, respectively. This is consistent with the XRD and Raman spectroscopy results
discussed above. The physical origin of this decrease in leakage current is the N2 gas
that flows during annealing. This is because, depending on the annealing temperature,
N2 is incorporated into the TiO2 film, which helps to densify it and reduce the bulk and
interfacial defect densities [33,34]. In particular, for the same thickness of the 600 ◦C sample,
the results of this work show better leakage current characteristics than those reported
in other studies [8,31]. These leakage current characteristics are related to the amount of
residual PVDF, variation in the anatase phase, and N2 incorporation as a function of heat
treatment temperature.
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Figure 5. I–V characteristics of Ti–TiO2/PVDF composite/Si MIS devices. (a) Current–voltage curve
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4. Conclusions

In this study, a dielectric thin film was fabricated on a Si wafer using a TiO2/PVDF
electrospinning solution with NMP as solvent. Generally, to fabricate MIS capacitors, each
layer is deposited by CVD, ALD, and other techniques; however, in this study we used
an electrospinning deposition method, which has never been reported before. Although
electrospinning is commonly used to produce polymer nanofibers, in this study the di-
electric layer was deposited by electrospraying. Compared to other deposition methods,
electrospinning provides various advantages, such as a significantly shorter processing
time, lower operating costs, and no requirement for vacuum equipment. In addition, the
desired film thickness can be achieved by adjusting the processing time and, in the case of
MIS capacitors, the optimal dielectric constant can be obtained by controlling the additive
in the electrospinning solution.

Raman spectroscopy and XRD measurements showed that the fabricated thin films
exhibited different leakage current characteristics depending on the annealing temperature,
indicating a reduction in the residual PVDF amount and activation of the TiO2 anatase
phase. Among the fabricated thin films, the sample annealed at 600 ◦C showed the best
leakage current (2.0 pA). This demonstrates the superior performance of TiO2/PVDF
composites as dielectric thin films. However, further research is needed to adjust the
surface roughness and develop a process to form thin films with nanoscale thickness. As
future work, we will also study the behavior of capacitance and cell potential of electrospun
TiO2 MIS.

To develop the next generation of capacitor devices, not only TiO2 but also high-k
materials such as HfO2 can be added to the electrospinning solution, or the dielectric layer
can be fabricated by mixing two or more materials with different k values, in order to match
the dielectric constant to the application. The electrospinning-based coating is also one of
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the best methods for producing flexible films, as polymer solutions are utilized in the era of
smaller scales and flexible electronic devices. Although electrospinning is still a process at
the hundreds of nano- to multi-micro-scale, it has many advantages, and further research
is required for its application in the semiconductor field.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/mi15101231/s1. Figure S1: SEM image of sputtered Ti on the
electrospun TiO2 dielectric layer. Figure S2: The 5 × 5 µm2 area AFM 3D topography (a) 300 °C,
(b) 450 ◦C, and (c) 600 °C annealed samples. Figure S3: XRD data of an electrospun TiO2 dielectric
layer annealed at RTA temperatures of 300, 450, and 600 ◦C. (a) shows 2theta from 20◦ to 65◦,
(b) shows 2theta from 36◦ to 40◦, (c) shows 2theta from 68.5◦ to 70.5◦, and (d) shows 2theta from 25◦

to 26◦. Figure S4: Raman data of an electrospun TiO2 dielectric layer annealed at RTA temperatures
of 300, 450, and 600 degrees. Table S1: Bond strength and surface roughness (Ra) as annealing
temperature varies.
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