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Abstract: In this study, we analyze metal–insulator–metal (MIM) capacitors with different thicknesses
of SixNy film (650 Å, 500 Å, and 400 Å) and varying levels of film quality to improve their capacitance
density. SixNy thicknesses of 650 Å, 500 Å, and 400 Å are used with four different conditions,
designated as MIM (N content 1.49), NEWMIM (N content 28.1), DAMANIT (N content 1.43), and
NIT (N content 0.30). We divide the C–V characteristics into two categories: voltage coefficient of
capacitance (VCC) and temperature coefficient of capacitance (TCC). There was an overall increase
in the VCC as the thickness of the SixNy film decreased, with some variation depending on the
condition. However, the TCC did not vary significantly with thickness, only with condition. At the
same thickness, the NIT condition yielded the highest capacitance density, while the MIM condition
showed the lowest capacitance density. This difference was due to the actual thickness of the film and
the variation in its k-value depending on the condition. The most influential factor for capacitance
uniformity was the thickness uniformity of the SixNy film.

Keywords: MIM; capacitors; metal–insulator–metal; electrical performance; SixNy; cap density;
VCC; TCC

1. Introduction

A metal–insulator–metal (MIM) capacitor is an analog integrated circuit (IC) configura-
tion device with the advantages of low electrode resistance and parasitic capacitance [1–4].
MIM capacitors have high charge mobility and burst power characteristics that make them
excellent energy-storage devices and potential auxiliary power sources.

IM capacitors have been applied to ICs such as high-power microprocessor units and
dynamic random-access memory. However, with the development of wireless communi-
cation, their application to radio frequency (RF) devices has been actively studied [5–7].
As current RF devices require high operating frequencies, MIM devices also require high
capacitance per unit area [8–11].

According to this demand, the design of the structure, thin-film deposition method,
selection of the bottom and top electrode materials, insulator material, thickness of the
electrode and insulator, dielectric constant of the insulator, and crystal structure of the
insulator must be considered in depth to produce a high-performance MIM capacitor with
a high capacitance [12–15]. In the evaluation of MIM capacitors, it is important to conduct
a comprehensive analysis considering factors such as capacitance density (CD), leakage
current density, charge storage density, and dielectric breakdown strength [16–19].

The choice of insulator material is a crucial factor in capacitors, and the CD relies
heavily on the dielectric constant and thickness of the insulator. According to Equation (1),
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the CD increases when the dielectric constant is higher, which is a natural property of the
insulator, and when the thickness is lower [1,20]:

C =
kε0 A

d
→ C

A
=

kε0

d
(1)

where C denotes the capacitance (F), k is the dielectric constant, ε0 is the permittivity of the
vacuum (8.854 × 10−12/m), and d is the thickness of the insulator (m).

Because of the abovementioned reasons, it is generally necessary to introduce a high-k
material to increase the dielectric constant [21,22], which entails considerable investment
and time because it requires equipment, facilities, and source replacement. In addition,
according to Natori et al., the relative permittivity of the material (k) decreases as the
insulator thickness of the capacitor decreases, and k tends to decrease significantly for
high-k materials [13,23]. Therefore, the introduction of high-k materials is subject to many
limitations. However, if the thickness of the currently used medium-k dielectric material,
SixNy (k = 7), can be reduced by considering the leakage aspect, the capacitance value can
be increased without using a high-k material [24–26]. Yu et al. explained the performance
of HfO2-based MIM capacitors deposited by the atomic layer deposition (ALD) method
with respect to the thickness of the dielectric [27]. As the thickness of the HfO2 insulator
layer decreased, the CD and voltage coefficient of capacitance (VCC) increased [28–31].
In practice, GaAs-based MIM capacitors have been used in the past. In fact, for GaAs-
based MIM capacitors, SixNy is the most commonly applied material owing to its excellent
electrical properties, compliant dielectric constant, high dielectric breakdown voltage, and
low leakage current [28,32,33]. Moreover, the electrical properties can be improved by
optimizing the deposition condition of SixNy, which has the greatest effect on the electrical
properties of MIM capacitors. Yota et al. confirmed that the stress, CD, breakdown voltage,
and performance of MIM capacitors exhibited significant differences in each insulator layer,
with a single layer or multiple layers of silicon nitride formed depending on the deposition
conditions [34]. Therefore, the electrical properties of MIM capacitors can be improved by
optimizing the deposition condition of SixNy.

In this study, to develop an optimal condition for the deposition conditions of SixNy
that improves the insulator properties of MIM capacitors and secures feasibility, we fabri-
cated MIM capacitors with different thicknesses of SixNy and deposition conditions on M4
wiring and then evaluated the capacitance–voltage (C–V) characteristics, focusing on the
evaluation of cap density uniformity, the dielectric temperature coefficient of capacitance
(TCC), and the VCC.

2. Materials and Methods

Patterned 200 mm Si (100) wafers were used to measure the integration process
steps. Several different cap dielectrics were investigated and deposited by PE-ALD. An
Applied Materials MIRRA tool(Applied Materials, Gloucester, MA, USA) was used for the
blanket. In this study, the density of MIM capacitors was considered to be 8 fF/m2, and
the capacitors were fully integrated using the 0.15 m Al interconnect processes. The first
single MIM capacitor was formed using metal 3 and metal 4 to minimize the effect of the
parasitic coupling of the silicon substrates. In addition, the second single MIM capacitor
was formed using metal 5 and metal 6. It is crucial for MIM capacitors to have a symmetric
structure by having identical boundary conditions on both sides of the dielectric [8,35,36].

The bottom electrode of the MIM capacitor was prepared using Ti (100 Å)/Al–Cu (4500
Å)/Ti (50 Å)/TiN (600 Å) wiring, and the top electrode was prepared using TiN (1500 Å).
The insulator was SixNy. The capacitor fabrication process was as follows: bottom electrode
deposition → bottom electrode scrub → insulator deposition → top metal deposition →
MIM PH → MIM → TOP METAL etching → ((CH3)4NOH:H2O) cleaning 1 → MIM asher
→ ((CH3)4NOH:H2O) cleaning 2 → insulator etching → ACT 935 (wet PR strip solution
including amine) →UVAS. MIM ET was performed using the endpoint detection method.
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The top electrode layer was connected to the upper metal layer through a dense matrix
of vias. All wafers mentioned in this paper were passivated using PE-ALD nitride and
were annealed below 450 ◦C. To improve the voltage linearity, Interface plasma treatment
was administered before and after the PE-ALD dielectrics. Further details of the interface
plasma treatment and thickness ratio in each stack layer are listed in Table 1. The blanket
film characteristics of PE-ALD dielectrics were evaluated by using an ellipsometer at 673 nm
to measure the thickness, refractive index, and uniformity of the PE-ALD dielectrics. A Hg
probe was used to measure the dielectric constant, and the deposition rate was calculated
according to the thickness slope as a function of the cycle times [4].

Table 1. (a) SixNy film properties and (b) corresponding process conditions.

(a) MIM NEW MIM 650 DAMA NIT NIT

Dep. rate ~149 Å/s ~29 Å/s ~59 Å/s 88 Å/s
Within W/F unit (1σ) 1.14% 1.90% 2.34% 2.77%
W/F to W/F unit (1σ) 1.58% 2.21% 1.05% 2.30%

Stress −2.23 × 109 −1.75 × 1010 −2.34 × 109

H content (N-H: Si-H) 12.7%: 8.5% 22.5%: 0.8% 10.5%: 7.3% 4.4%: 14.8%
N content (N-H/Si-H) 1.49 28.1 1.43 0.30

(b) MIM 650 NEW MIM 650 DAMA NIT NIT 650

Step end control By time By time By time By time
Maximum step time 4.4 s 22.8 s 11.0 s
Endpoint selection No endpoint No endpoint No endpoint No endpoint

Pressure Servo 4.25 Torr Servo 4.25 Torr Servo 4.2 Torr Servo 4.5 Torr
RF power 690 W 690 W 420 W 425 W

Susc. temperature 400 ◦C 400 ◦C 400 ◦C 400 ◦C
Susceptor spacing 620 mils 620 mils 550 mils 475 mils

N2 3800 sccm 3800 sccm 2500 sccm 4000 sccm
NH3 130 sccm 50 sccm 38 sccm 60 sccm
SiH4 260 sccm 100 sccm 110 sccm 170 sccm

The C–V characteristics were measured manually using an LCR meter (HP4284A,
Agilent, Santa Clara, CA, USA) under the conditions given in Table 2. The VRDB was
performed based on the JESD35-A standard. The thickness analysis of SixNy per condition
was performed using transmission electron microscopy (CM200FEGTEM)/scanning trans-
mission electron microscopy (STEMoperated at 300 keV with an energy-dispersive X-ray
spectroscopy (EDS) SUTW-SiLi X-ray detector and a Gatan 666 parallel electron energy loss
spectroscopy (PEELS) spectrometer (Philips, Eindhoven, Netherlands), and a focused ion
beam (FIB). The via resistance and via chain yields were measured in dual-damascene struc-
tures. A wafer-level bias thermal stress (BTS) test was performed under different conditions
to verify the effectiveness of the barrier layers. Failures were analyzed by scanning electron
microscopy (SEM) and X-ray spectroscopy (EDX).(SIGMA, Carl Zeiss, Jena, Germany)

Table 2. C–V characterization measurement conditions.

Parameter Setting

Display mode Cp (parallel capacitor), D (dissipation factor)
Sweep voltage (V) −5~5
Step (V) 0.5
Oscillation 0.025
Frequency (kHz) 100
Capacitor size (µm2) 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30, 50 × 50
Measurement points Three points (top, center, and bottom)
Temperature (◦C) 25, 50, 75, 100, 125
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3. Results and Discussion

To understand the wafer-wide trend in CD, PCM measurements were performed with
the split conditions given in Table 1; the corresponding results for a 25 × 25 cap size are
presented in Figure 1.
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ness, the following values were observed for thicknesses of 650, 500, and 400 Å, respec-
tively: 0.983–1.1, 1.24–1.4, and 1.57–1.79 fF/μm2. The difference in capacitance densities 
between conditions at the same thickness can be considered to be the difference between 
the actual thickness of the SixNy film and the target thickness and the difference in the k-
value of the deposited film by condition. To confirm this, 500 Å thick SixNy films deposited 
under the different conditions were analyzed by TEM; the corresponding results are 
shown in Figure 2. 

Figure 1. Accumulation curves for CD obtained from different thicknesses and conditions of SixNy
films for MIM capacitors.

The CD varied depending on the split condition but was uniform within the wafer.
For all conditions, the CD increased with decreasing thickness, and at the same thickness, it
varied slightly between conditions. By examining the range of CD in relation to thickness,
the following values were observed for thicknesses of 650, 500, and 400 Å, respectively:
0.983–1.1, 1.24–1.4, and 1.57–1.79 fF/µm2. The difference in capacitance densities between
conditions at the same thickness can be considered to be the difference between the actual
thickness of the SixNy film and the target thickness and the difference in the k-value of
the deposited film by condition. To confirm this, 500 Å thick SixNy films deposited under
the different conditions were analyzed by TEM; the corresponding results are shown in
Figure 2.
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Figure 2a–d depict the cross-sectional TEM images of SixNy films deposited under
MIM, NEWMIM, DAMANIT, and NIT conditions, respectively, and Figure 2e shows a
barplot of the thickness of SixNy films obtained from the TEM images. The NIT condition
showed the lowest thickness, while the NEWMIM condition showed the highest thickness.
For accurate analysis, the k-value was calculated after matching the TEM analysis die and
the PCM measurement die; the corresponding results are presented in Table 3.

Table 3. The k-values of the MIM capacitor with SixNy conditions of MIM, NEWMIM, DAMANIT,
and NIT.

Deposition Condition MIM NEWMIM DAMANIT NIT

CD (fF/µm2) 1.3256 1.3203 1.3103 1.3606
Thickness (TEM, Å) 453 473 457 422

k-value (ε0·ε) 6.00 × 10−17 6.25 × 10−17 5.99 × 10−17 5.74 × 10−17

In this experiment, we compared the capacitance densities of four materials with the
same thickness (500 Å) and found that NIT afforded the highest CD, followed by NEWMIM,
DAMANIT, and MIM. However, we noticed that the deposited thickness did not follow
this trend. This indicates that thickness alone is not the only factor that affects the CD.
The difference in the k-value according to the condition also appears to play a significant
role in determining the CD. In general, the k-value is influenced by two primary factors,
namely, the macroscopic electric field and the dipole moment per unit volume, as given by
Equation (2) [2]:

K = 1 +
4πP

E
(2)

where P is the dipole moment per unit volume and E is the macroscopic electric field.
Because the p-value is dependent on the electronic polarizability, it is affected by the

bond conformation and bond strength [21]. The SixNy films had different dipole moments
due to the different values of Si-H/N-H (Table 4) depending on the deposition condition;
therefore, the k-value was different for each condition.

Table 4. Properties of SixNy films according to different conditions.

MIM 650 DEP NEW MIM 650 DEP DAMA NIT 650 DEP NIT 650 DEP

Deposition rate (Å/s) ~149 ~29 ~59 88
Within W/F unit (1σ, %) 1.14 1.90 2.34 2.77
W/F to W/F unit (1σ, %) 1.58 2.21 1.05 2.30

Stress −2.23 × 109 −1.75 × 1010 −2.34 × 109 -
H content (N-H:Si-H) 12.7%:8.5% 22.5%:0.8% 10.5%:7.3% 4.4%:14.8%

To check the variation in CD according to capacitor size, the capacitor density by
thickness and condition was measured for 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30, and
50 × 50 µm2 samples; it is plotted in Figure 3. In this case, the CD according to size was
taken as the average value within the wafer.

It can be observed that the CD decreases as the size of the capacitor increases, re-
gardless of the thickness and condition of SixNy. After a certain point, the CD remains
constant. This phenomenon can be attributed to the effect of fringe capacitance due to the
perimeter/area ratio and the variation in fringe impedance CD (FICD) with respect to size.
The difference between capacitor sizes of 10 × 10 and 20 × 20 µm2 is more pronounced in
the case of FICD variation, as it has a greater impact on smaller sizes [37].

In terms of device fabrication, the uniformity of the CD is closely related to the process
capability index (Cp, Cpk), with SixNy thickness uniformity being the most important factor.



Micromachines 2024, 15, 1204 6 of 11

Micromachines 2024, 15, 1204 6 of 12 
 

 

Stress −2.23 × 109 −1.75 × 1010 −2.34 × 109 - 
H content (N-H:Si-H) 12.7%:8.5% 22.5%:0.8% 10.5%:7.3% 4.4%:14.8% 

To check the variation in CD according to capacitor size, the capacitor density by 
thickness and condition was measured for 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30, and 50 
× 50 μm2 samples; it is plotted in Figure 3. In this case, the CD according to size was taken 
as the average value within the wafer. 

It can be observed that the CD decreases as the size of the capacitor increases, regard-
less of the thickness and condition of SixNy. After a certain point, the CD remains constant. 
This phenomenon can be attributed to the effect of fringe capacitance due to the perime-
ter/area ratio and the variation in fringe impedance CD (FICD) with respect to size. The 
difference between capacitor sizes of 10 × 10 and 20 × 20 μm2 is more pronounced in the 
case of FICD variation, as it has a greater impact on smaller sizes [37]. 

In terms of device fabrication, the uniformity of the CD is closely related to the pro-
cess capability index (Cp, Cpk), with SixNy thickness uniformity being the most important 
factor. 

As depicted in Figure 4, although there are a few points that deviate from the linear 
trend, a proportional relationship exists between SixNy thickness nonuniformity and CD 
nonuniformity, with a slope of 1.04. 

10 20 30 40 50

1.0f

1.2f

1.4f

1.6f

1.8f

2.0f

 MIM650
 MIM500
 MIM400
 NEWMIM650
 NEWMIM500
 NEWMIM400
 DAMANIT500
 DAMANIT400
 NIT650
 NIT500
 NIT400C

ap
 d

en
sit

y 
(F

/m
m

2 )

Unit Cap size in X (mm)  
Figure 3. Effect of capacitor size on MIM CD with different SixNy thicknesses and conditions. 

 

Figure 3. Effect of capacitor size on MIM CD with different SixNy thicknesses and conditions.

As depicted in Figure 4, although there are a few points that deviate from the linear
trend, a proportional relationship exists between SixNy thickness nonuniformity and CD
nonuniformity, with a slope of 1.04.
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Improving the uniformity of SixNy thickness can result in an improvement in CD uni-
formity, which, in turn, can increase the values of Cp and Cpk on the device manufacturing
side to 1.33 or above.

To measure the VCC, an index indicating the degree of change in capacitance with
respect to voltage variations, measurements were taken at the top, center, and bottom of
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the wafers according to the thickness of SixNy and the conditions. The VCC is denoted by
Vcc1 (ppm/dV) and Vcc2 (ppm/dV2), as expressed by Equation (3) [38]:

C(V)− C(0)
C(0)

= Vcc2V2 + Vcc1V + C (3)

where C(V) is the capacitance under variable voltage, C(0) is the capacitance at 0 V, Vcc1
and Vcc2 are the VCCs, and C is a constant value.

The VCC graph was plotted by performing a polynomial fit with the voltage on the
X-axis and the normalized ∆C on the y-axis, as described in Equation (3). As an example,
the VCC graph for the SixNy film processed with the NEWMIM condition at a thickness of
500 Å is depicted in Figure 5.
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thickness of the SixNy film are NEWMIM and 500 Ǻ, respectively.

The VCC graph results for the SixNy films, which vary in thickness (650 Å, 500 Å, and
400 Å) and condition (MIM, NEWMIM, DAMANIT, and NIT), are summarized in Figure 6.
Figure 6a displays the Vcc1 values according to thickness, while Figure 6b illustrates the Vcc2
values as a function of thickness. Both the Vcc1 and Vcc2 values showed an increasing trend
as the thickness decreased, with the initial level and degree of increase varying according
to the condition.

In the case of Vcc1, all conditions showed values below 60 ppm/dV at 650 Ǻ, but they
values increased as the thickness decreased, and only the MIM and NEWMIM conditions
showed values over 60 ppm/V. Vcc2 tended to increase as the thickness decreased; however,
all other conditions except NIT could satisfy the value of 100 ppm/dV2 or less when
implementing a 2-fF/µm2 MIM capacitor.

To investigate the TCC characteristics of the MIM capacitors, the capacitance was
measured at the center of the wafers with varying thicknesses and conditions of the SixNy
films while incrementally raising the temperature to 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, and
125 ◦C. The TCC was calculated using Equation (4) [39]:

C(T)− C(25)
C(25)

= TccT + C (4)
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where C(T) is the capacitance under variable temperature, C(25) is the capacitance at 25 ◦C,
TCC is the TCC, and C is a constant value.
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Figure 6. Graphs of (a) VCC1 and (b) VCC2 vs. thickness with SixNy conditions.

The TCC serves as an indicator of the degree of change in capacitance in response
to temperature variations. Unlike the VCC, the TCC exhibits a linear relationship with
temperature. Therefore, when the temperature is plotted on the X-axis and the normalized
∆C on the Y-axis, the slope value corresponds to the TCC value.

As an illustration, a TCC graph for SixNy films fabricated with the NEWMIM condition
at thicknesses of 650, 500, and 400 Å is presented in Figure 7. Additionally, the results for
the other conditions are presented to depict the variation in the TCC values according to
thickness in Figure 8. Except for the NIT condition, the remaining conditions exhibited
values below 50 ppm/dT, even as the thickness decreased. Moreover, the TCC values
varied according to the condition at identical thicknesses.
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As revealed by Table 4, the differences in SixNy conditions are attributed to the N-
H/Si-H ratio. To depict the changes in the TCC due to film quality, the N-H/Si-H vs. TCC
values are plotted in Figure 9. The results indicate that as the N-H/Si-H ratio increased,
the TCC values exhibited an exponential decay trend, confirming that the TCC values are
influenced by the quality of the SixNy film.
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4. Conclusions

An evaluation of the C–V characteristics was conducted for MIM capacitors based
on the insulator (SixNy) deposition thickness and deposition conditions. The CD values
were in the ranges of 0.983–1.1, 1.24–1.4, and 1.57–1.79 fF/µm2 for 650, 500, and 400 Å,
respectively. Further, the CD increased as the thickness decreased, with variations across
different conditions.

At the same thickness, the NIT condition exhibited the highest CD, while the MIM con-
dition showed the lowest. This discrepancy is attributed to the effect of the actual thickness
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and the difference in the k-value of the SixNy film according to the condition. Addition-
ally, the CD was observed to decrease with increasing capacitor size, possibly due to the
influence of fringe capacitance, which increased in proportion to the perimeter/area ratio.

The thickness uniformity of SixNy was found to be the most significant factor affecting
capacitance uniformity. Improvements in thickness uniformity can enhance Cp and Cpk on
the device side. Across all conditions, a general increase was observed in the VCC as the
thickness decreased, although there were some variations between conditions. However,
the TCC showed no significant difference with thickness, indicating that the variations
were mainly due to the conditions.

In summary, from the perspective of C–V analysis, all conditions, except NIT, demon-
strated superior characteristics. Implementing thin SixNy film depositions with stable
uniformity using conditions other than NIT could potentially provide MIM capacitors with
CD values of less than 100 ppm/dV2, aiming for the achievement of 2 fF/µm2.
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