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Abstract
Recently, deep-learning-based models have achieved impressive performance on tasks that were previously considered to be 
extremely challenging. However, recent works have shown that various deep learning models are susceptible to adversarial 
data samples. In this paper, we propose the sliced Wasserstein adversarial training method to encourage the logit distribu-
tions of clean and adversarial data to be similar to each other. We capture the dissimilarity between two distributions using 
the Wasserstein metric and then align distributions using an end-to-end training process. We present the theoretical back-
ground of the motivation for our study by providing generalization error bounds for adversarial data samples. We performed 
experiments on three standard datasets and the results demonstrate that our method is more robust against white box attacks 
compared to previous methods.
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1  Introduction

Deep learning models have made significant strides in a 
variety of fields. Yet, their sensitivity to subtle perturbations 
has been exposed by the presence of adversarial examples, 
which typically remain undetected by human observation. 
(Szegedy et al. 2013; Shaham et al. 2018; Li et al. 2018; 
Kim et  al. 2023b). Adversarial examples, generated by 
introducing subtle distortions to original inputs, can 

significantly alter the output of deep learning models. These 
examples differ minimally from the original images, yet 
these small variances are amplified in the results of deep 
learning models. Since these perturbations are unnoticed by 
humans, they pose security risks in practical applications of 
deep learning technologies. Consequently, crafting defensive 
algorithms to counteract these adversarial attacks is crucial 
for the safe deployment of deep artificial intelligence 
systems.

Adversarial samples are generated by solving 
optimization problems. Since the first appearance of 
adversarial samples, many attack methods have been 
proposed, including the fast gradient sign method (FGSM) 
(Goodfellow et al. 2014), iterative FGSM (Kurakin et al. 
2016), deep fool (Moosavi-Dezfooli et al. 2016), Carlini 
and Wagner (C &W) attack (Carlini and Wagner 2017), 
and projected gradient descent (PGD) (Madry et al. 2017). 
Based on their simple formulations, adversarial attacks are 
feasible in many tasks, including face recognition (Sharif 
et al. 2016), reinforcement learning (Huang et al. 2017), 
audio classification (Kim et al. 2023d), object detection 
(Wang et al. 2020), and medical imaging (Li et al. 2020).

Therefore, many defense mechanisms for handling such 
adversarial attacks have been proposed. Some mechanisms 
exploit additional heuristics, such as test-time randomness 
(Guo et al. 2017; Dhillon et al. 2018), non-differentiable 
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preprocessors (Xie et al. 2017; Samangouei et al. 2018), 
or detection of attacks (Martin and Elster 2020). Although 
these additional heuristics can defeat simple optimization-
based attacks, recent studies have shown that such defenses 
can be easily defeated by stronger adversaries (Athalye 
et al. 2018). Recently, there have been works related to the 
smoothness of the deep learning models (Kim et al. 2023c; 
Lee et al. 2021a; Kim et al. 2023b; Stutz et al. 2021)

Another widely used approach is adversarial training 
(Goodfellow et al. 2014; Madry et al. 2017; Liu and Chan 
2022), where adversarial samples generated intentionally 
during training are used as training inputs. Adversarial train-
ing is easy to implement and has not yet been completely 
defeated. However, adversarial training requires a specific 
attack algorithm (e.g., FGSM) to generate adversarial train-
ing samples and may exhibit weak generalization ability for 
other adversarial samples. Despite the passage of years since 
the proposal of PGD-based adversarial training, as refer-
enced in Madry et al. (2017), Croce et al. (2020), it remains 
the leading method of defense, albeit with less than optimal 
performance.

Recently, many studies have attempted to improve the per-
formance of adversarial training by introducing additional 
regularizers, such as the L2 loss between logits for a pair of 
clean and adversarial examples (Kannan et al. 2018), rectified 
linear unit (ReLU) stability regularizers (Xiao et al. 2018), 
and domain adaptation loss (Song et al. 2018).

In this paper, we consider the problem of adversarial 
attacks from the perspective of domain adaptation. Domain 
adaptation is an aspect of transfer learning that attempts 
to train a model using labeled source domain data that 
performs well on a given set of target data. It assumes 
that two domains are defined for the same task, but with 
different distributions. Because domain adaptation handles 
the problem of two domains with different distributions, it 
is closely related to adversarial robustness. Even though 

adversarial noise is typically imperceptible to humans, 
the distributions of adversarial samples in a high-level 
representation space differ significantly from those of 
original images (Fig. 1). To construct a model robust against 
adversarial attacks, it is important to handle distribution 
distances in a high-level representation space.

Domain adaptation attempts to resolve the issue of dif-
ferent distributions between domains by using transferable 
representations, which cannot be distinguished by the rep-
resentations of the source and target domains. By learning a 
representation that reduces the distance between two differ-
ent domains, domain adaptation can construct a model that 
can be applied to two different domains. There are various 
approaches to minimizing the distance between two domains, 
such as maximum mean discrepancy (Long et al. 2017), H
-divergence (Ganin et al. 2016), KL divergence (Lee et al. 
2021b), Wasserstein distance (Yoon et al. 2020)and Jensen 
Shannon divergence (Tzeng et al. 2017).

Inspired by the domain adaptation approach, we aimed to 
construct a model that can reduce the differences between 
distributions in a high-level representation space for original 
and adversarial images. As shown in Fig. 1, designing a clas-
sifier that can reduce the differences between logit distribu-
tions can suppress the influence of adversarial perturbations, 
leading to a model robust against adversarial attacks.

In this paper, we propose the sliced Wasserstein 
adversarial training (SWAT) method to design a classifier 
that provides consistent performance on clean and 
adversarial samples. We make the output logit distributions 
of clean and adversarial samples more similar by minimizing 
the Wasserstein metric (Redko et al. 2017; Frogner et al. 
2015), which is a meaningful notion of dissimilarity between 
probability distributions. Although calculating Wasserstein 
distance can be computationally expensive, our approach 
based on sliced Wasserstein distance (SWD) uses a simple 
numerical solution to handle this problem. Recently, several 

Fig. 1   Illustration of the differences between an adversarial image 
and an original image. Adversarial perturbations are so small that 
they are often imperceptible to humans. However, adversarial noise 
is amplified through the layers of a network, which maximizes the 
distance between an original sample and an adversarial sample 

in high-level representations (logits). As a result, the network 
incorrectly classifies the adversarial image “Panda" as “Boxer”. 
We reduce the differences between the distributions of high-level 
representations to construct a model that is robust against adversarial 
attacks



3231Sliced Wasserstein adversarial training for improving adversarial robustness﻿	

studies have used SWD in various applications (Wu et al. 
2019; Lee et al. 2019; Kolouri et al. 2018; Kim et al. 2023a). 
We also present new generalization bounds for adversarial 
samples that illustrate the need to reduce the Wasserstein 
distances between the logit distributions of clean and 
adversarial samples during adversarial training. The main 
contributions of this paper can be summarized as follows. 

1.	 First, we propose a novel approach to aligning the output 
probability distributions of clean and adversarial data 
using the Wasserstein metric. We also present the SWAT 
method, which is a computationally efficient end-to-end 
network training method using SWD.

2.	 Second, we present the theoretical background motivat-
ing the SWAT method by providing generalization upper 
bounds for adversarial samples.

3.	 Third, we present empirical evaluations that demonstrate 
the robustness and accuracy of our method under various 
white box attacks.

2 � Related work

2.1 � Adversarial attack methods

Szegedy et al. (2013) demonstrated that small perturba-
tions in original images can easily fool neural network 
models. In a follow-up paper (Goodfellow et al. 2014), a 
novel attack method called FGSM was proposed, which 
significantly reduced the computational time required 
to generate adversarial images using simple one-step 
back-propagation.

The symbols x, y, � and L represent an input image, input 
label, network weights, and loss function, respectively. 
Using the above algorithm, one can obtain adversarial 
images that are denoted as xadv within the �-norm area sur-
rounding x.

One of the strongest types of adversarial attacks is PGD 
(Madry et al. 2017), which projects adversarial examples 
with a step size � onto a set of allowable perturbations S in 
every iteration. This attack often reduces the accuracy of 
normal models to nearly zero.

where ΠB(x,�) refers the projection to the �-ball B(x, �).

2.2 � Adversarial training

Various defense methods have been proposed to preserve the 
stability of deep learning models under the types of attacks 

(1)xadv = x + �sign(∇xL(�, x, y))

(2)xt+1 = ΠB(x,�)(x
t + �sign(∇xL(�, x, y))),

described above. The most widely used defense method 
is adversarial training, which simply includes adversarial 
examples when training a model. The two most popular 
adversarial training methods use FGSM (Goodfellow et al. 
2014), and PGD (Madry et al. 2017), respectively. The first 
method uses FGSM because it can generate adversarial sam-
ples quickly (Goodfellow et al. 2014). The second method 
formulates the empirical adversarial risk minimization prob-
lem as the following minimax problem (Madry et al. 2017):

The inner maximization is approximated by a PGD attack 
with random restarts. In many previous studies, this method 
was determined to be effective, but it cannot defend against 
all adversarial samples. Above all, because adversarial train-
ing uses specific attack methods, the choice of which attack 
method to use is very important. We also attempt to use 
clean samples in addition to PGD adversarial training, as 
recommended in Kurakin et al. (2016). However, since PGD 
based adversarial training requires multiple steps of gradi-
ents, it suffers from computational burden.

Recently, many studies have focused on improving 
robustness (Madry et al. 2017; Ye et al. 2020; Drewek-Osso-
wicka et al. 2021; Cao et al. 2019). One such study resulted 
in a method called adversarial training domain adaptation 
(ATDA) (Song et al. 2018). The main concept of this method 
is to use an FGSM adversary as a target domain. Addition-
ally, the authors exploit three types of loss to construct logit 
vectors from original images �(x) and adversarial images 
�(xadv) . The three types of loss are covariance distance, 
maximum mean discrepancy (MMD) of mean vectors, and 
supervised domain adaptation loss, which consists of the 
intra-class variations and inter-class similarities of �(x) and 
�(xadv) . Adversarial training attempts to assign clean and 
corresponding adversarial samples to the same class, but 
Kannan et al. (2018) proposed a method called adversar-
ial logit pairing (ALP), which encourages logits from two 
images to be similar. Moreover, there have been approaches 
that tried to improve the adversarial training by redundant 
batches and cumulative perturbations (Shafahi et al. 2019), 
or uniform random initialization (Wong et al. 2020), or by 
avoiding catastrophic overfitting problems in single-step 
adversarial training (Kim et al. 2021). There has also been 
a trend of analyzing the smoothness of adversarial attacks 
(Lee et al. 2021a; Kim et al. 2023c; Liu and Chan 2022). 
However, there has not been a significant improvement in 
the performance of defense mechanisms yet.

To extend these adversarial-training-based approaches, 
we propose a novel design for distribution-matching 
adversarial training. The method in Song et  al. (2018) 
requires calculating the covariance distance and MMD 
of each data pair and the optimization of three different 

(3)min
�

�(x,y)∼D[ max
�∈B(x,�)

L(�, x + �, y)]
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complicated loss functions. In contrast, our approach is 
computationally efficient and easily converges. Both the 
method in Kannan et al. (2018) and our method attempt to 
minimize the distance between between two logits, but our 
method provides a tighter error bound.

3 � Wasserstein distance in robust training

3.1 � Notations

We consider classification tasks in which X  is an input space 
and Y = {0,… , c − 1} is an output space. Given a hypoth-
esis set H = {h ∶ X → ℝ

|Y|} , we define a classification net-
work Q� ∈ H with parameters � that outputs logits Q�(x) . 
We denote DS = ⟨DX

S
, c∗⟩ and DA = ⟨DX

A
, c∗⟩ be the clean 

source and adversarial domains with the true concept (labe-
ling function) c∗ ∶ X → Y , a clean source distribution as 
x ∼ DX

S
 and adversarial distribution xadv ∼ DX

A
.

3.2 � Wasserstein distance

For  any  p ≥ 1 ,  t he  p -Wasse r s t e in  d i s t ance 
between probabili ty measures � and �  where 
�, � ∈ {� ∶ ∫ d(x, y)pd� ≤ ∞,∀y ∈ Z} , is the p-th root of

where Π(�, �) is the set of all joint distribution whose mar-
ginals are � and � . According to the Kantorovich duality 
theorem, the 1-Wasserstein distance can be simplified as

where Lip1 i s  the set  of  real-valued 1-Lip-
s c h i t z  c o n t i n u o u s  f u n c t i o n s  o n  Z  ,  i . e . 
Lip1 ≡ {f ∶ Z → ℝ ∶ |f (x) − f (y)| ≤ d(x, y),∀x, y ∈ Z}.

We propose to minimize the Wasserstein distance 
between two logit distributions Q�#D

X

S
 and Q�#D

X

A
 , to build 

a robust model, respectively. We use the push-forward nota-
tion # for transferring measures DX

S
 and DX

A
 on input space 

X  toward logit space Z by using parametrized network Q� . 
Then the Wasserstein distance between two logit distribu-
tions can be written as

Wasserstein distance is weaker than many other dis-
tance metrics between probability distributions, such as 
Jensen–Shannon divergence and total variation distance. 

(4)Wp(�, �)
p = inf

�∈Π(�,�)
�(x,y)∼�[d(x, y)

p],

(5)W1(�, �) = sup
f∈Lip1

�z∼�[f (z)] − �z∼�[f (z)]

(6)

W1(Q�#D
X

S
,Q�#D

X

A
)

= sup
f∈Lip1

�z∼Q�#D
X

S
[f (z)] − �z∼Q�#D

X

A
[f (z)]

= sup
f∈Lip1

�x∼DX

S
[f (Q�(x))] − �x∼DX

A
[f (Q�(x))]

Furthermore, convergence with respect to the topology 
induced by Wasserstein distance is equivalent to conver-
gence in a distribution. Therefore, it is not only an appro-
priate metric for the distribution space, but also has better 
convergence properties, particularly for distributions with 
low-dimensional supports (Arjovsky and Bottou 2017).

3.3 � Upper bound on robust training

In this section, we present an upper bound on objective of 
robust training. Adversarial risk of a hypothesis h ∈ H in a 
domain DS = ⟨DX

S
, c∗⟩ is defined as follows:

We implicitly use y as a label of the input x, i.e., y = c∗(x) . 
The goal of robust training is to minimize the worst mis-
classification rate on the data domain DS , using (7) with 
the 0 − 1 loss, i.e., l(ŷ, y) = 1{argmaxiŷi ≠ y} . However, 
in training phase, we instead use the cross-entropy loss 
as a surrogate since the 0 − 1 loss is intractable (Hoffgen 
et al. 1995). Recent work on over-parameterized neural 
networks (Allen-Zhu et al. 2019) have shown that the loss 
function ly◦h ≡ l(h(⋅), y) is Lipschitz-smooth for all y, i.e., 
|ly◦h(x) − ly◦h(x′) − ∇xly◦h(x)T (x′ − x)| ≤ 1

2
L‖x′ − x‖22,∀x

′, x ∈  for some 
constants L, and called ly◦h is L-smooth. The following theo-
rem provides a new upper bound based on the combination 
of clean source data and the first-order adversarial data.

Theorem  1  Given a hypothesis h ∈ H = {h ∶ X → ℝ
c} 

satisfying that ly◦h is �-smooth. Let DS and DA|h be the clean 
source and the first-order adversarial domains with respect 
to the hypothesis h, respectively, and � be an adversarial 
perturbation, the following inequality holds:

where S(h) ≡ �S [l(h(x), y)] and A|h(h) ≡ �(x̃,y)∼A|h
[l(h(x̃), y)].

As a result, the upper bound on the adversarial risk can be 
decomposed into four parts. The first two terms are derived 
from the first-order adversarial samples and the source clean 
samples, respectively. The third term is the Wasserstein dis-
tance between logit distributions of the source and adversar-
ial domains. As will be discussed later, our proposed method 
tries to minimized the terms in the upper bound. To compute 
the Wasserstein distance in the third term, we use SWD for 
computational efficiency.

(7)Rrobust(h;DS) = �(x,y)∼DS
[ max
x�∈�(x)

l(h(x�), y)].

(8)

Rrobust(h;DS)

≤ 1

2
(RS(h) +RA�h(h)

+

�
c

c − 1
W1(h#D

X

A�h, h#D
X

S
) + �‖�‖2

2
),
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3.4 � Advantage of Wasserstein distance

In this section, we provide an analysis of using Wasser-
stein distance between normal logits and adversarial logits. 
To minimize the adversarial risk in our upper bound it is 
required to reduce the Wasserstein distance between logit 
distributions, which is the third term of the Theorem 1. From 
the perspective of matching two logit distributions, there 
were approaches (Kannan et al. 2018; Pang et al. 2020) that 
applied L2 distances with the paired logits, such as ALP. 
However in this paper, our suggested upper bound reduces 
the optimal transport cost rather than the paired L2 distance.

The L2 regularizer minimizes the (expected) difference 
between a pair of logits z (normal example) and z∗ (corre-
sponding adversarial example) as follows:

The Wasserstein distance regularizer minimizes the optimal 
transport cost between two distributions of logits, where

where �z and �z∗ are the measure for normal logits and 
adversarial logits, and 𝜋̃ is an optimal plan for the transport 
between �z and �z∗ . The difference is which transport plan 
is used between �z and �z∗ . Therefore, W1(�z,�z∗ ) ≤ LALP 
holds, implying that the Wasserstein regularizer has a tighter 
bound than that of paired L2 regularizer.

From more intuitive perspective, paired L2 regularizer 
tries to match the Q�(x

adv
i

) to the corresponding normal log-
its Q�(xi) . On the other hand, since our upper bound tries to 
find the optimal plan between �z and �z∗ , it tries to match the 
samples Q�(x

adv
i

) to the nearest normal logits Q�(xj).
Comparison between paired L2 regularizer and our upper 

bound is illustrated in Fig. 2. The left figure visualizes the 
training procedure of paired L2 regularizer while the right 
figure shows our Wasserstein based upper bound. The black 
points represent the logits of normal samples while the red 
points are the logits of adversarial samples. In Fig. 2, we can 

(9)LALP = �D

[
d(z, z∗)

]
= ∫ d(z, z∗)dp(z, z∗),

(10)W1(𝜇z,𝜇z∗ ) = inf
𝜋∈Π

�𝜋

[
d(z, z∗)

]
= ∫ d(z, z∗)d𝜋̃(z, z∗)

find that ALP focuses on matching the paired sample zi and 
z′
i
 , while our upper bound focuses on matching the global dis-

tribution of �z and �z∗ by minimizing the optimal transport.
Since our proposed method tries to reduce the optimal 

transport between �z and �z∗ , it can prevent the over-
regularization. For example, in Fig. 2, the logits of adversarial 
sample z′

1
 can be robust if it can be embedded near the normal 

logit distribution �z . In this case, paired L2 regularizer tries to 
reduce the distance between z′

1
 and z1 and our proposed method 

reduces the distance between z′
1
 and z2 . If the label of z1 and z2 

is identical, reducing d(z�
1
, z2) can be easier to learn a robust 

embedding, and prevent over-regularization. We provide more 
analysis on this on real datasets in Sect. 5.2.

4 � Proposed method

4.1 � Sliced Wasserstein distance

To minimize the upper bound of robust training in Theorem 1, 
we need to compute the optimal transport between adversarial 
and normal logits, which is computationally expensive. In this 
paper, we propose using sliced Wasserstein distance (SWD) 
to approximate Wasserstein distance between two different 
distributions. SWD shares similar properties to the original 
Wasserstein distance, but easier to compute (Kolouri et al. 
2018). It projects the higher-dimensional densities into set 
of one-dimensional distributions and compares the projected 
distributions via Wasserstein distance. Since SWD shares the 
same topology with Wasserstein distance in a compact set 
(Bonnotte 2013), for example, in the logit image space h(X) 
for a bounded domain X = [0, 1]n , we used SWD to empiri-
cally calculate the Wasserstein distance in Theorem 1.

The sliced Wasserstein distance between � and � can be 
defined as follows:

where �Ω is a uniform measure on the unit sphere Ω such that 
∫
Ω
d�Ω(w) = 1 , and the measures �w = wT� and �w = wT� 

are one-dimensional projections of the measure � and � onto 

(11)SWD(�, �) ≡ �Ω

W(�w, �w)d�Ω(w),

Fig. 2   Illustration of paired L
2
 regularizer and our proposed upper bound ( Wp ). Black points represent logits of normal samples while the red 

points represent the logits of adversarial samples. Left: effect of paired L
2
 regularizer, Right: effect of our upper bound (color figure online)
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the direction w ∈ Ω . Then we extend the definition to finite 
sets S  and T  as SWD(S, T) ≡ SWD(�S,�T) where 
�S =

1

�S�
∑

s∈S �s and �T =
1

�T�
∑

t∈T �t with the Dirac measure 
�x centered on a point x.

The integration (11) for the finite set S, T ∈ ℝ
p with 

the same cardinality |S| = |T| = n can be approximated as 
follows:

where Ω̂ = {wj} is a finite set of uniform samples from the 
(p − 1)-dimensional unit sphere Ω , si, ti are elements of S, T  , 
respectively, and the si,w, ti,w are the rearrangement of si, ti 
such that wTsi,w ≤ wTsi′,w and wTti,w ≤ wTti′,w for all i ≤ i′ 
and w ∈ Ω̂.

Unlike the original Wasserstein distance W(�S,�T) 
between high-dimensional datasets S and T  , SWD uses 
one-dimensional linear projections �w

S
 and �w

T
 to measure 

distance. Because the computation of one-dimensional 
Wasserstein distance only requires sorting and computing 
the absolute distances between sorted pairs, SWD has a 
significantly lower computational cost than original Was-
serstein distance and it enables end-to-end learning using 
a single deep learning classifier network. In our experi-
ments, we used a number of projection samples |Ω̂| = 10.

Therefore, since SWD has the same topology with 
Wasserstein distance in a compact set, we can provide 
a new upper bound using SWD. Using the inequality in 
Theorem 5.1.5 of Bonnotte (2013), the upper bound on 
the objective of robust training using SWD becomes the 
following corollary.

Corollary 4.1  Under the same condition with Theorem 1, for 
a constant Cc the following inequality holds:

Recently there have been concerns about SWD since it 
might not approximate the true Wasserstein distance as the 
dimension increases. However, since we have matched the 
distribution between two logit distributions, which is not 

(12)

SWD(S, T) = SWD(𝜇S,𝜇T) ≈
1

|Ω̂|

∑

w∈Ω̂

W(𝜇w
S
,𝜇w

T
)

=
1

|Ω̂|

∑

w∈Ω̂

n∑

i=1

|wTsi,w − wTti,w|2,

(13)

R
robust

(h;D
S
)

≤ 1

2

�
R

S
(h) +R

A�h(h)

+ C
c

�
c

c − 1
SWD(h#DX

A�h, h#D
X

S
)1∕(c+1) + �‖�‖2

2

�
.

high-dimensional, SWD could successfully approximate 
the true distribution. In Sect. 5.4, we provide more details 
related to the approximation.

4.2 � Sliced Wasserstein adversarial training (SWAT)

In this section, we introduce how we trained the sug-
gested model empirically in real dataset. At the begin-
ning of training, we sample a mini batch of data 
B = {xi, yi}

m
i=1

, (BX = {xi}
m
i=1

) and from a clean dataset where 
m is the size of the batch and define the corresponding set as 
{X} . Using an adversarial attack, we generate adversarial data 
Badv = {xadv

i
, yi}

m
i=1

, (BX
adv

= {xi}
m
i=1

) in each epoch. In this 
paper, we used FGSM method to generate adversarial samples.

Initially, we apply the supervised loss function for both 
clean data {xi, yi} and adversarial data {xadv

i
, yi} for classifier 

Q� , and define the loss function as

Next, we attempt to minimize the Wasserstein distance 
between probability distributions of the logit Q�(B

X) and 
Q�(B

X
adv

) in order to design a classifier that can perform con-
sistently on both adversarial data and clean data. We formu-
late the loss function using SWD as follows:

During the optimization phase, we combine the adversarial 
training loss function and SWD loss function as follows:

where � is a hyperparameter for balancing the regularization 
term. The first and second term in Eq. (15) is supervised 
loss function on clean dataset and adversarial dataset that 
is corresponding to the first two terms of Theorem 1. We 
optimized the classifier Q� by minimizing the loss function 
LS and LA in the single batches B and Badv iteratively. The 
third term of equation (15) is the sliced Wasserstein distance 
between logit distributions of clean and adversarial datasets 
that is related to third term in our Theorem 1. We summa-
rize our framework in Algorithm 1 and illustrate its overall 
architecture in Fig. 3.

LS =
1

m

m∑

i=1

l(Q�(xi), yi)

LA =
1

m

m∑

i=1

l(Q�(x
adv
i

), yi).

(14)

LSWD = SWD(𝜇BX ,𝜇BX
adv
)

=
1

|Ω̂|

∑

w∈Ω̂

n∑

i=1

|wTQ𝜃(xi,w) − wTQ𝜃(x
adv
i,w

)|2,

(15)Ltotal = LS + Ladv + �LSWD
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Algorithm  1   SWAT(Sliced Wasserstein Adversarial 
Training)

Require: Labeled dataset D, an adversarial
attack method FGSM(ε, α), and a randomly
initialized classifier Qθ

Ensure: Trained classifier Qθ.
for Mini-batch B where |B| = m do

Generate adversarial dataset Badv with
FGSM

Calculate adversarial training loss
LS =

∑
(xi,yi)∈B l(xi, yi)

Ladv =
∑

(xadv
i ,yi)∈Badv

l(xadv
i , yi)

Calculate sliced wasserstein distance loss
Draw a sample vector set Ω̂ = {wk} from

unit sphere Ω
Project Qθ(BX) and Qθ(BX

adv) on w,
then rearrange them with a sorting function ρ
respectively

Qθ(BX)w = ρ(wTQθ(BX))
Qθ(BX

adv)
w = ρ(wTQθ(BX

adv))
LSWD = 1

|Ω̂|

∑
w∈Ω̂ |Qθ(x1...m)w −

Qθ(xadv
1...m)w|2

Calculate total loss
Ltotal = LS + Ladv + λLSWD

Update θ with stochastic gradient descent
θ ← θ −∇θLtotal

end for

5 � Experiments

5.1 � Dataset and model architecture

In this section, we evaluate our method using three standard 
classification benchmark datasets. The CIFAR-10 dataset 
(Krizhevsky and Hinton 2009) consists of 50,000 training 
images and 10,000 testing images. The size of each image 
is 32 × 32 × 3 and the dataset contains 10 classes. SVHN 

(Netzer et al. 2011), which was obtained from house numbers 
in Google Street View images, is a digit classification dataset 
with an image dimension of 30 × 30 × 3. It contains 73,257 
images for training and 26,032 images for testing with 10 
classes (one class for each digit). Fashion-MNIST (Xiao 
et al. 2017) contains 28 × 28 grayscale images with 10 label 
classes, where each class denotes one fashion item category, 
such as “t-shirt” or “sneakers.” This dataset contains 60,000 
images for training and 10,000 images for testing. We have 
summarized the structure of our deep learning structure 
in Table  1. For each dataset, we constructed different 
architectures to ease comparisons to other state-of-the-art 
methods as follows:

5.2 � Comparison methods

We compared our method to the following six baseline 
methods. (1) Normal: Basic model that uses only clean 
training data with a classification loss function. (2) AT 
(PGD): adversarial training using PGD adversarial samples 
(Madry et al. 2017). (3) ATDA: ATDA training (Song et al. 
2018), with a regularization hyperparameter of 1

3
 . (4) ALP: 

ALP training (Kannan et  al. 2018) with the same logit 
pairing weight of 0.5 for all data. (5) Free: Free single step 
adversarial training (Shafahi et al. 2019). (6) Fast: Fast 
adversarial training (Wong et al. 2020) (7) SSAT: Single step 
adversarial training (Kim et al. 2021). (8) Ours: the proposed 
method using sliced Wasserstein distance. (9) Ours∗ : Our 
proposed model with additional labeling information.

To push further, we also consider an additional modified 
version of the proposed method, Ours∗ . In Fig. 6, we have 
shown the projected normal logits Q�(xi)

w in the bottom and 
the projected adversarial logits Q�(x

adv
i

)w in the top, where the 
colors of each points represents the label. The black line links 
between the paired samples in ALP (left), and the optimal 
transport in Ours (right). Compared to ALP, which tries to 
reduce distance even if the corresponding sample is far, our 
method reduces the distance of the adversarial samples to the 
nearest normal sample. Moreover, from Fig. 6 we can find 
that most of the samples in a single batch have been matched 
with the samples that have the same label. However, in some 

Fig. 3   Illustration of the 
architecture of our proposed 
method. Our method is designed 
to reduce the SWD between two 
logits Q�(x) and Q�(x

adv) . By 
using SWD, we can reduce the 
Wasserstein distance between 
two measures based on linear 
projections with uniform 
measures on a unit sphere to 
perform end-to-end training
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settings, SWAT might suffer from matching the different 
labeled samples during training. Therefore, to remove 
the possibility that the samples can be matched with other 
samples with a different label, we suggest a variation of our 
proposed method. Ours ∗ also reduces the sliced Wasserstein 
distance between �z and �z∗ , however when finding the optimal 
transport plan, Ours∗ considers label information. Therefore, 
it always matches the normal sample and adversarial sample 
that has the same label.

In our proposed method, we use � = 1 for the CIFAR 
10 dataset and � = 0.5 for the SVHN and Fashion-MNIST 
datasets. For the CIFAR-10 dataset, we generated adversarial 
images using FGSM with � = 8∕255, � = �∕4 in the train-
ing phase. For PGD, we used seven iterations with a single 
random restart. For the SVHN dataset, we used FGSM with 
� = 0.02 , � = �∕10 and PGD with 20 iterations and single 
random restart. Finally, we set � = 0.1 , � = �∕10 and used 40 
iteration steps with a single random restart for the Fashion-
MNIST dataset.

5.3 � Results

5.3.1 � Classification performance under white box attacks

To evaluate the robustness of our method against adversar-
ial attacks, we measured its classification accuracy under 
various distortion levels. We evaluated classification perfor-
mance under three white box attacks: FGSM (Goodfellow 
et al. 2014), PGD (Madry et al. 2017), Carlini and Wag-
ner (C &W) (Carlini and Wagner 2017) attacks, and EAD 
attacks (Chen et al. 2018).

FGSM: CIFAR 10: Distortion levels ranging from 0 to 
10/255 with steps of 2/255. SVHN: � ∈ [0, 0.025, 0.005] . 
F-MNIST: � ∈ [0, 0.25, 0.05]

PGD: We used the same distortion levels as those used 
for FGSM for each dataset. CIFAR 10: � = �∕4 with 20 
iteration steps. SVHN & Fashion-MNIST: � = �∕10 with 20 
iteration steps.

C &W: We used constant c values ranging from 10−3 to 
102 on a log scale of 10 for every dataset with 100 optimiza-
tion steps.

EAD: We used nine binary search steps and run 1000 
iterations with initial learning rate 0.01.

The test results are presented in Fig. 4. In this figure, one 
can see that our method exhibits performance similar to that 
of the other models (Fig. 4a, d, g) for FGSM attacks. Because 
every compared method exhibits decent performance under 
FGSM attacks, which we mainly used as adversarial samples 
during the training phase, we can assume that all of the mod-
els converged during the training phase.

However, in Fig. 4b and e, one can see that our method 
exhibits the highest robustness against strong PGD attacks. 
The results of the C &W attacks also demonstrate the 

robustness of our model against different white box attacks 
that were not used during the training phase.

Compared to ALP (cyan line in Fig. 4), our method 
exhibits similar results for FGSM attacks. However, the 
model performances on PGD and C &W attacks indicate 
that our method is better at aligning logits in the presence 
of unknown adversarial attacks. Compared to the PGD 
training model (light blue line in Fig. 4), our model per-
forms better on the three datasets for strong PGD attacks. 
In Fig. 4h, the AT (PGD) model performs better than 
the other methods, but one can see that it fails on C &W 
attacks in Fig. 4i.

Empirical results demonstrate that while other models 
fail to construct a generalized defense model for adver-
sarial attacks that were not used in the training phase, 
our model exhibits consistent results for various types of 
attacks. One can conclude that our method may exhibit 
robustness against unknown future adversarial attacks.

We have measured the robustness against EAD attack 
(Chen et al. 2018). Since the attack success rate of EAD in 
all three datasets was close to 100%, we have measured the 
distance between the original image and the EAD attacked 
adversarial image to evaluate the robustness against EAD 
attacks. We call these as distortion metrics, and the larger 
the distortion metric, the more robust the model. In this 
paper, we have measured the distance in three different 
metrics ( L1 , L2 , and L∞ ). We have summarized the average 
distortion metrics over successful EAD adversarial 
examples in Table 2. It is observed that our method has 
shown the best results in seven out of nine metrics.

5.3.2 � Certified radius

While high classification accuracy under white box PGD 
attacks provides strong empirical evidence that the pro-
posed model is robust against many types of adversarial 
attacks, it cannot guarantee robustness to norm-bounded 
attacks. Therefore, it is necessary to compute certified 
accuracy metrics to determine the effect of SWD regu-
larization on the robustness of the classifier.

We evaluated certified accuracy by computing the cer-
tified radius proposed in Cohen et al. (2019). Certified 
accuracy is defined as the fraction of a test set in which 
no example is misclassified within the r-neighborhood. 
We used an induced randomized classifier g with normal 
noise with a variance of � = 2.0 for Fashion-MINST and 
� = 0.25 for the other methods. We selected 100 samples 
for classification and 105 samples for certified radius esti-
mation for each type of test sample. To reduce computa-
tion time, we used 1/100 samples from the testing set to 
evaluate robustness.
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(a) CIFAR 10 (FGSM) (b) CIFAR 10 (PGD) (c) CIFAR 10 (C&W)

(d) SVHN (FGSM) (e) SVHN (PGD) (f) SVHN (C&W)

(g) Fashion-MNIST (FGSM) (h) Fashion-MNIST (PGD) (i) Fashion-MNIST (C&W)

Fig. 4   Accuracy of white box attacks (FGSM, PGD, and C &W) in three standard dataset(CIFAR 10, SVHN, and Fashion-MNIST) in test set. X 
axis refers to perturbation level ( � ) and Y axis is accuracy (%) (Best viewed in color) (color figure online)

(a) CIFAR 10 (b) SVHN (c) Fashion-MNIST

Fig. 5   Certified Accuracy in l
2
 norm using randomized smoothing (Cohen et al. 2019) . We followed the color scale same as Fig. 4 (Best viewed 

in color) (color figure online)
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As shown in Fig. 5, SWD regularization (red) improves 
certified accuracy compared to ALP (cyan) regularization 
and achieves better results than the other methods.

5.4 � Approximation of Wasserstein distance

Recently, there have been concerns with sliced Wasserstein 
distance. In high dimensional settings, random projection 
might not capture the properties of the original distribution. 
In response, there was a research (Kolouri et al. 2019) that 
suggested generalized sliced Wasserstein distances (GSW) 
that uses an additional optimization that can better approxi-
mate the Wasserstein distance.

In this paper, we have used SWD between two logit 
distributions where the dimension is 10. Since it is not high-
dimensional, using SWD can be an appropriate approach for 
efficiently computing Wasserstein distance. To show that 
using SWD is enough for approximating the Wasserstein 
distance in 10-dimensional distribution, we have calculated 

Table 1   Architecture of our deep learning model

Model Classifier

IFAR-10 C96-C96-C96-D-C192-
C192-C192-D-C192-C192-
C100-AP

SVHN, Fashion-MNIST C16-C32-FC100-FC10

(a) ALP (b) OURS

Fig. 6   Visualization of normal samples and adversarial samples in CIFAR 10 dataset

Table 2   Average distortion 
metrics over successful 
adversarial examples generated 
by EAD attack. The distortion 
metrics are measured using 
three different metrics ( L

1
 , L

2
 , 

and L∞)

CIFAR-10 SVHN Fashion-MNIST

L
1

L
2

L∞ L
1

L
2

L∞ L
1

L
2

L∞

Normal 2.4975 0.2809 0.0899 4.3969 0.2930 0.0656 3.5603 0.4560 0.1749
AT(PGD) 7.4457 0.9185 0.2937 4.6486 0.5986 0.2021 6.9916 1.1426 0.5148
ALP 6.9727 0.8704 0.2710 6.868 0.4906 0.1124 3.5457 0.8071 0.4244
ATDA 8.5754 0.9178 0.2641 4.8633 0.6181 0.2010 2.9637 0.6737 0.3481
Free 6.3284 0.9134 0.2357 5.6187 0.6135 0.1934 6.9574 0.8745 0.3947
Fast 7.9215 0.8437 0.2986 5.9487 0.6381 0.1967 8.6197 0.9134 0.4887
SSAT 8.6157 0.9687 0.2687 4.5138 0.6311 0.1987 5.6137 1.2163 0.1340
Ours 8.9719 0.9785 0.2997 4.8726 0.6090 0.2025 6.0525 1.2214 0.5330
Ours∗ 9.8951 0.9932 0.2744 4.6794 0.5937 0.2086 13.0275 1.2674 0.4587

(a) CIFAR 10 (b) SVHN (c) Fashion-MNIST

Fig. 7   Approximation of Wasserstein distance with SWD and GSW
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the Wasserstein distance using three different methods 
during training.

In Fig. 7, we provide the actual values of Wasserstein dis-
tances that were approximated by using linear OT approach, 
SWD, and GSW. In this figure, the x-axis denotes distribu-
tion samples and the y-axis represents the distance. We can 
find that SWD and GSW both have successfully approxi-
mated the Wasserstein distance (LP). Considering that 
computing the distance with SWD and GSW takes 0.385 s 
and 6.276 s respectively, using SWD was appropriate in our 
settings.

6 � Conclusion

In this paper, we proposed a novel defense framework called 
SWAT that minimizes the Wasserstein distance between the 
logits of clean and adversarial data samples. We used SWD to 
design a computationally efficient end-to-end training frame-
work that is robust to adversarial attacks. Empirical results 

demonstrated that our model is more robust than previous 
defense models on three standard datasets in terms of four dif-
ferent adversarial attacks and certified accuracy. Our method 
significantly outperformed previous methods against adversarial 
attacks that were not used for adversarial training and achieved 
the highest certified accuracy. Visualizations of the logit spaces 
of clean and adversarial samples indicated that SWAT success-
fully aligns output distributions.

Appendix A: Proof of Theorem 1

We first define functions as follows:

shortly we call �∗(x) = �∗(x, y, h) and 𝛼̃(x) = 𝛼̃(x, y, h) . In the 
following we rewrite the adversarial risk:

(16)
𝛼∗(x, y, h) = argmax

x�∈�(x)

l(h(x�), y),

𝛼̃(x, y, h) = x + argmax
𝛿∈�(0)

𝛿T∇xl(h(x), y),

Table 3   t-SNE visualization for clean data x and white box adversarial 
data xadv the logit space for SVHN dataset. It shows representation of 
2000 clean examples and 2000 corresponding examples where each 

color represents different labels. We compared with four comparison 
models (Normal Training, Normal + AT (FGSM), ATDA, ALP) 
against three different adversarial attacks (FGSM, PGD, C &W)

Normal Normal + AT ATDA ALP Ours

FGSM Clean

White

PGD Clean

White

CW Clean

White
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Then for the first-order adversary x̃ , (17) can be decomposed 
as follows:

Since ly◦h is �-smooth,

and thus the first term in (A3) is upper bounded as follows:

Moreover, the third term is upper bounded as follows:

where Lip(l) ≡ maxy∈Y Lip(ly) . Combining all (18), (20), and 
(21) with rearrangement, we can upper bound the adversarial 
risk as follows:

(17)
Rrobust(h;DS) = �(x,y)∼DS

[ max
x�∈�(x)

l(h(x�), y)]

= �(x,y)∼DS
[l(h(�∗(x)), y)].

(18)

�DS

[
l(h(𝛼∗(x)), y)

]

= �DS

[
l(h(𝛼∗(x)), y) − l(h(𝛼̃(x)), y)

]

+ �DS

[
l(h(𝛼̃(x)), y)

]

−
1

2
�DS

[l(h(x), y)] +
1

2
�DS

[
l(h(x), y)

]

= �DS
[ly◦h(𝛼

∗(x)) − ly◦h(𝛼̃(x))]

+
1

2
�DS

[l(h(𝛼̃(x)), y)] +
1

2
�DS

[ly◦h(𝛼̃(x))

− ly◦h(x)] +
1

2
RS(h)

= �DS
[ly◦h(𝛼

∗(x)) − ly◦h(𝛼̃(x))]

+
1

2
RA|h(h) +

1

2
�DS

[ly◦h(𝛼̃(x))

− ly◦h(x)] +
1

2
RS(h).

(19)

ly◦h(x + 𝜖) = ly◦h(x) + ∇xly◦h(x)
T𝜖 + 𝜌x(𝜖)

≤ ly◦h(x) + ∇xly◦h(x)
T𝜖

+
1

2
𝛽‖𝜖‖2 ≤ ly◦h(𝛼̃(x)) +

1

2
𝛽‖𝜖‖2

2

(20)�(x,y)∼DS

�
ly◦h(𝛼

∗(x)) − ly◦h(𝛼̃(x))
� ≤ 1

2
𝛽‖𝜖‖2

2
.

(21)

�(x,y)∼DS
[ly◦h(𝛼̃(x)) − ly◦h(x)]

= �(x̃,y)∼DA|h
[ly◦h(x̃)] − �(x,y)∼DS

[ly◦h(x)]

≤ max
y∈Y

Lip(ly) sup
f∈Lip1

[
�x̃∼DX

A|h
[f (h(x̃))] − �x∼DX

S
[f (h(x))]

]

= Lip(l) sup
f∈Lip1

[
�z̃∼h#DX

A|h
[f (z̃)] − �z∼h#DX

S
[f (z)]

]

= Lip(l)W1(h#D
X

A|h, h#D
X

S
)

=

√
c

c − 1
W1(h#D

X

A|h, h#D
X

S
),

A.0.1 Feature visualization

To perform qualitative analysis of how well the high-level rep-
resentations of two distributions are aligned by the proposed 
approach, we performed t-SNE visualization (Maaten and 
Hinton 2008). We visualized 2000 clean samples x with corre-
sponding adversarial examples xadv in two dimensions using the 
SVHN dataset, as shown in Table 3. We showed representations 
of five models: Normal, Normal + AT (FGSM), ATDA, ALP, 
and our suggested model (SWAT). For adversarial attacks, we 
used FGSM ( � = 8∕255,� = �∕4 ), PGD ( � = 8∕255,� = �∕10 
with 20 iteration steps), and C &W(c = 1).

In Table 3, if the logit space distributions of clean and white 
box attacks are similar to each other, the proposed model 
exhibits robust performance on both clean and adversarial 
samples. Regarding the results of FGSM attacks, (i.e., same 
adversarial attack setting used for adversarial training), one 
can see that the distributions of clean and adversarial samples 
are similar. This finding agrees with the results presented in 
Fig. 4d, where all five models exhibit robustness against FGSM 
attacks. However, the visualization results for PGD and C &W 
attacks demonstrate that the distributions of adversarial samples 
are significantly different from those of clean samples for the 
previously developed adversarial training models. In contrast, 
the overall distributions are very similar for our method.
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Rrobust(h;DS) ≤ 1

2
(RS(h) +RA�h(h)

+

�
c

c − 1
⋅W1(h#D

X

A�h, h#D
X

S
) + �‖�‖2

2
).
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as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Allen-Zhu Z, Li Y, Song Z (2019) A convergence theory for deep 
learning via over-parameterization. In: international conference 
on machine learning, pp 242–252

Arjovsky M, Bottou L (2017) Towards principled methods for training 
generative adversarial networks. arxiv e-prints, art. arXiv preprint 
arXiv:​1701.​04862

Athalye A, Carlini N, Wagner D (2018) Obfuscated gradients give 
a false sense of security: circumventing defenses to adversarial 
examples. In: International conference on machine learning, pp 
274–283

Bonnotte N (2013) Unidimensional and evolution methods for optimal 
transportation. Ph.D. Thesis, Paris 11

Cao N, Li G, Zhu P et al (2019) Handling the adversarial attacks. J 
Ambient Intell Humaniz Comput 10(8):2929–2943

Carlini N, Wagner D (2017) Towards evaluating the robustness of 
neural networks. In: 2017 IEEE symposium on security and 
privacy (SP), IEEE, pp 39–57

Chen PY, Sharma Y, Zhang H, et al (2018) Ead: elastic-net attacks to 
deep neural networks via adversarial examples. In: Proceedings of 
the AAAI conference on artificial intelligence, pp 1–19

Cohen J, Rosenfeld E, Kolter Z (2019) Certified adversarial robustness 
via randomized smoothing. In: International conference on 
machine learning, pp 1310–1320

Croce F, Andriushchenko M, Sehwag V et al (2020) Robustbench: a 
standardized adversarial robustness benchmark. arXiv preprint 
arXiv:​2010.​09670

Dhillon GS, Azizzadenesheli K, Lipton ZC et al (2018) Stochastic 
activation pruning for robust adversarial defense. arXiv preprint 
arXiv:​1803.​01442

Drewek-Ossowicka A, Pietrołaj M, Rumiński J (2021) A survey of 
neural networks usage for intrusion detection systems. J Ambient 
Intell Humaniz Comput 12(1):497–514

Frogner C, Zhang C, Mobahi H et al (2015) Learning with a wasserstein 
loss. Adv Neural Inf Process Syst 28:1–8

Ganin Y, Ustinova E, Ajakan H et  al (2016) Domain-adversarial 
training of neural networks. J Mach Learn Res 17(1):1–35

Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing 
adversarial examples. arXiv preprint arXiv:​1412.​6572

Guo C, Rana M, Cisse M et al (2017) Countering adversarial images 
using input transformations. arXiv preprint arXiv:​1711.​00117

Hoffgen KU, Simon HU, Vanhorn KS (1995) Robust trainability of 
single neurons. J Comput Syst Sci 50(1):114–125

Huang S, Papernot N, Goodfellow I et al (2017) Adversarial attacks on 
neural network policies. arXiv preprint arXiv:​1702.​02284

Kannan H, Kurakin A, Goodfellow I (2018) Adversarial logit pairing. 
arXiv preprint arXiv:​1803.​06373

Kim H, Lee W, Lee J (2021) Understanding catastrophic overfitting 
in single-step adversarial training. In: Proceedings of the AAAI 
conference on artificial intelligence, pp 8119–8127

Kim C, Choi J, Yoon J et  al (2023a) Fairness-aware multimodal 
learning in automatic video interview assessment. IEEE Access 
11:122677–122693

Kim H, Lee W, Lee S et al (2023b) Bridged adversarial training. Neural 
Netw 167:266–282

Kim H, Park J, Choi Y, et al (2023c) Fantastic robustness measures: 
the secrets of robust generalization. In: Thirty-seventh conference 
on neural information processing systems

Kim H, Park J, Lee J (2023d) Generating transferable adversarial 
examples for speech classification. Pattern Recogn 137(109):286

Kolouri S, Pope PE, Martin CE et al (2018) Sliced wasserstein auto-
encoders. In: International conference on learning representations, 
pp 1–19

Kolouri S, Nadjahi K, Simsekli U et al (2019) Generalized sliced 
wasserstein distances. In: NeurIPS 2019, pp 1–12

Krizhevsky A, Hinton G (2009) Learning multiple layers of features 
from tiny images. Tech. rep, Citeseer

Kurakin A, Goodfellow I, Bengio S (2016) Adversarial examples in the 
physical world. arXiv preprint arXiv:​1607.​02533

Lee CY, Batra T, Baig MH, et  al (2019) Sliced wasserstein 
discrepancy for unsupervised domain adaptation. In: 
Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 10,285–10,295

Lee S, Lee W, Park J et al (2021) Towards better understanding of 
training certifiably robust models against adversarial examples. 
Adv Neural Inf Process Syst 34:953–964

Lee W, Kim H, Lee J (2021) Compact class-conditional domain 
invariant learning for multi-class domain adaptation. Pattern 
Recogn 112(107):763

Li G, Zhu P, Li J, et  al (2018) Security matters: a survey on 
adversarial machine learning. arXiv preprint arXiv:​1810.​07339

Li Y, Zhang H, Bermudez C et  al (2020) Anatomical context 
protects deep learning from adversarial perturbations in medical 
imaging. Neurocomputing 379:370–378

Liu Z, Chan AB (2022) Boosting adversarial robustness from the 
perspective of effective margin regularization. arXiv preprint 
arXiv:​2210.​05118

Long M, Zhu H, Wang J, et  al (2017) Deep transfer learning 
with joint adaptation networks. In: Proceedings of the 34th 
international conference on machine learning-volume 70, 
JMLR. org, pp 2208–2217

Lvd Maaten, Hinton G (2008) Visualizing data using t-SNE. J Mach 
Learn Res 9(Nov):2579–2605

Madry A, Makelov A, Schmidt L et al (2017) Towards deep learning 
models resistant to adversarial attacks. arXiv preprint arXiv:​
1706.​06083

Martin J, Elster C (2020) Inspecting adversarial examples using the 
fisher information. Neurocomputing 382:80–86

Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a 
simple and accurate method to fool deep neural networks. In: 
Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 2574–2582

Netzer Y, Wang T, Coates A, et al (2011) Reading digits in natural 
images with unsupervised feature learning. NIPS workshop on 
deep learning and unsupervised feature learning 2011

Pang T, Yang X, Dong Y et al (2020) Boosting adversarial training 
with hypersphere embedding. arXiv preprint arXiv:​2002.​08619

Redko I, Habrard A, Sebban M (2017) Theoretical analysis of 
domain adaptation with optimal transport. In: Joint European 
conference on machine learning and knowledge discovery in 
databases. Springer, pp 737–753

Samangouei P, Kabkab M, Chellappa R (2018) Defense-GAN: 
protecting classifiers against adversarial attacks using generative 
models. arXiv preprint arXiv:​1805.​06605

Shafahi A, Najibi M, Ghiasi MA et al (2019) Adversarial training for 
free! Adv Neural Inf Process Syst 32:1–9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/2010.09670
http://arxiv.org/abs/1803.01442
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1711.00117
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1803.06373
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1810.07339
http://arxiv.org/abs/2210.05118
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/2002.08619
http://arxiv.org/abs/1805.06605


3242	 W. Lee et al.

Shaham U, Yamada Y, Negahban S (2018) Understanding adversarial 
training: increasing local stability of supervised models through 
robust optimization. Neurocomputing 307:195–204

Sharif M, Bhagavatula S, Bauer L et al (2016) Accessorize to a 
crime: Real and stealthy attacks on state-of-the-art face 
recognition. In: Proceedings of the 2016 ACM SIGSAC 
conference on computer and communications security. ACM, 
pp 1528–1540

Song C, He K, Wang L, et al (2018) Improving the generalization 
of adversarial training with domain adaptation. arXiv preprint 
arXiv:​1810.​00740

Stutz D, Hein M, Schiele B (2021) Relating adversarially robust 
generalization to flat minima. In: Proceedings of the IEEE/CVF 
international conference on computer vision, pp 7807–7817

Szegedy C, Zaremba W, Sutskever I, et  al (2013) Intriguing 
properties of neural networks. arXiv preprint arXiv:​1312.​6199

Tzeng E, Hoffman J, Saenko K, et  al (2017) Adversarial 
discriminative domain adaptation. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp 
7167–7176

Wang Y, Wang K, Zhu Z et al (2020) Adversarial attacks on faster 
r-cnn object detector. Neurocomputing 382:87–95

Wong E, Rice L, Kolter JZ (2020) Fast is better than free: revisiting 
adversarial training. arXiv preprint arXiv:​2001.​03994

Wu J, Huang Z, Acharya D, et al (2019) Sliced Wasserstein generative 
models. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp 3713–3722

Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image 
dataset for benchmarking machine learning algorithms. arXiv 
preprint arXiv:​1708.​07747

Xiao KY, Tjeng V, Shafiullah NM et al (2018) Training for faster 
adversarial robustness verification via inducing relu stability. 
arXiv preprint arXiv:​1809.​03008

Xie C, Wang J, Zhang Z et al (2017) Mitigating adversarial effects 
through randomization. arXiv preprint arXiv:​1711.​01991

Ye H, Liu X, Li C (2020) Dscae: a denoising sparse convolutional 
autoencoder defense against adversarial examples. J Ambient 
Intell Humaniz Comput 1–11

Yoon T, Lee J, Lee W (2020) Joint transfer of model knowledge and 
fairness over domains using wasserstein distance. IEEE Access 
8:123,783-123,798

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1810.00740
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1809.03008
http://arxiv.org/abs/1711.01991

	Sliced Wasserstein adversarial training for improving adversarial robustness
	Abstract
	1 Introduction
	2 Related work
	2.1 Adversarial attack methods
	2.2 Adversarial training

	3 Wasserstein distance in robust training
	3.1 Notations
	3.2 Wasserstein distance
	3.3 Upper bound on robust training
	3.4 Advantage of Wasserstein distance

	4 Proposed method
	4.1 Sliced Wasserstein distance
	4.2 Sliced Wasserstein adversarial training (SWAT)

	5 Experiments
	5.1 Dataset and model architecture
	5.2 Comparison methods
	5.3 Results
	5.3.1 Classification performance under white box attacks
	5.3.2 Certified radius

	5.4 Approximation of Wasserstein distance

	6 Conclusion
	Appendix A: Proof of Theorem 1
	A.0.1 Feature visualization

	Acknowledgements 
	References




