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Thermoelectric Transport Driven by the Hilbert-Schmidt

Distance

Chang-geun Oh, Kun Woo Kim,* and Jun-Won Rhim*

The geometric characteristics of Bloch wavefunctions play crucial roles in the
properties of electronic transport. Within the Boltzmann equation framework,
we demonstrate that the thermoelectric performance of materials is
significantly influenced by the Hilbert—-Schmidt distance of Bloch
wavefunctions. The connection between the distribution of quantum distance
on the Fermi surface and the electronic transport scattering rate is established
in the presence of magnetic and nonmagnetic impurities. The general
formulation is applied to isotropic quadratic band-touching semimetals,

The Berry curvature, the imaginary part
of the quantum geometric tensor, acts as
an emergent magnetic field in the semiclas-
sical equation of motion of solids,! caus-
ing wave packets to move with an anoma-
lous velocity proportional to the Berry cur-
vature. This effect leads to various Hall ef-
fects, such as the anomalous Hall, valley
Hall, spin Hall, and anomalous phonon
Hall effects.[>10-1%]

where one can concentrate on the role of quantum geometric effects other The
than the Berry curvature. It is verified that the thermoelectric power factor can
be succinctly expressed in terms of the maximum quantum distance, d,

Specifically, when d

thermoelectric devices.

1. Introduction

In modern solid-state physics, the Berry curvaturel'"? has played
an essential role in understanding various anomalous transport
phenomenal®*! and the topological nature of solids.”~
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| ax feaches one, the power factor doubles compared to the
case with trivial geometry (d,,,,, = 0). These findings highlight the significance
of quantum geometry in understanding and improving the performance of

geometric  property of the
Bloch wavefunction also involves the
Hilbert-Schmidt  distance,  d} (k, k') =
max* 1-|{w (k) |w(K))|?>, which is associated
with the real part of the quantum geo-
metric tensor when the limit k' — k is
taken.[220-22]

Unlike the Berry curvature, the physi-
cal implications of the quantum metric ten-
sor and quantum distance have only re-
cently been explored in contexts such as
charge and spin Hall effects under an inhomogeneous electric
field,[23-26] current noise,?’! electron-phonon coupling,?®! super-
fluid weight |32 various magnetic responses,!**3¢ and bulk-
boundary correspondence.37:38]

In this paper, we explore the relationship between quantum
distance and thermoelectric properties, focusing on electronic
contributions. Thermoelectricity, the induction of electric current
by thermal gradient, has been studied extensively across various
disciplines due to its possible application to the eco-friendly en-
ergy generation.[3%+]

We begin by deriving the electronic scattering probability and
disorder-averaged transport scattering rate for a general two-band
Hamiltonian, showing that these quantities can be expressed in
terms of pseudospins of the Bloch eigenvectors and, therefore,
the quantum distance between Bloch states at k and k' on the
Fermi surface which are not necessarily close each other.

The transport scattering rate in the presence of nonmagnetic
and magnetic impurities is reduced to a simple form relying
only on the maximum quantum distance in the quadratic band-
touching models, which can be applied to graphene bilayer and
kagome-like flat band systems.

Since the Berry curvature vanishes in these models, they
are ideal platforms for investigating the role of the quantum
distance.

Along with well-known factors for thermoelectric perfor-
mances, such as phonon scatterings and material composi-
tions, we reveal that the geometric properties of Bloch wavefunc-
tions, hidden within the band structures, can also play a crucial
role.
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2. The Figure of Merit in Thermoelectrics

A temperature gradient in a system induces the diffusion of
charged particles, resulting in an electrical current:

j==6VV—06SVT (1)

where the Seebeck coefficient (S) converts the temperature gra-
dient (VT) to an effective electric field. For a system in thermal
equilibrium with no electric current ( = 0) and no electric po-
tential (VV = 0), introducing a small temperature gradient §(VT)
induces an electric current given by 6j° = —oS§(VT).

Consequently, the change in the electric field across the device
is §(VV) = —S5(VT), as defined by S = —dV/dT.

Thus, the electric power generated per unit length by the tem-
perature gradient is:

8P, = 6/°6(VV) = 6S5(VT)S5(VT) 2)

Simultaneously, the rate of entropy production is given by

do 1
22 = Zx8(VT) (3)

where « is thermal conductivity, ¥6(VT) is the heat flux Q, and
entropy change £ = Q/T.

Conventionally, the figure of merit (ZT) and the power factor
(PF) quantify the thermoelectric efficiency. ZT is defined as the
ratio of the electric power to the entropy production per §(VT):

6P 2
_ 1 T _ cS‘T (4
5(VT) = K

Here, ¢ S? in the numerator is the power factor, and we show be-
low that it is sensitive to the distribution of the quantum distance
of Bloch wavefunctions on the Fermi surface.

Under the relaxation time approximation, the tilting of the
Fermi surface due to a temperature gradient and electric field (E)
is described by:

(h/Tnk

f(n,k,r)—fo—m[E+k sTV,E] - V& (5)

where & = (¢, — 4)/k; T, 7, is the mean scattering time of n-
th band, and f0 (expl(€,x — #)/kpT] + 1)7! is the Fermi-Dirac
distribution, where y is the chemical potential. The charge and
thermal current densities are

C 1
F=% Zk v f(nkr),

1
== 2lew 1)
nk

Vo f (n, k. 1) (©)

where L% is the volume of the system. The power factor and the
figure of merit associated with electronic transport can be directly
computed using Equations (5) and (6).
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3. Quantum Distance, Pseudospin, and Transport
Scattering Rate

Consider an N-dimensional Hilbert space described by the eigen-
states |y, (A)), that smoothly depend on a set of real parameters
A = (A, A,,...), where n € {1,..., N} denotes the band index.

The Hilbert-Schmidt distance for nth band is defined as
follows:1201

@ (AN)=1= | (w, (M), (A) |2 (7

-

which quantifies the distance between quantum states.

This distance reaches unity when the states are orthogonal and
zero when parallel up to a global phase.

In systems with discrete translation symmetry, the crystal mo-
mentum k takes the role of A.

From the series expansion of the quantum distance, one can
define the essential quantum geometric notions, such as quan-
tum metric and Berry curvature, as described in Supporting In-
formation Section I.

In a two-band system the generic form of the Hamiltonian is
given by

Hy =hgy00+hy -0 (8)

where ¢ = (0, 0,, 0,) are the Pauli matrices in the (pseudo-)spin
basis and b, is a real-valued function of momentum.

The pseudospin textures visualize the geometric properties of
the Bloch eigenvectors, as illustrated in Figure 1a—c.

In graphene, the texture can be described by designating two
of its sublattices as the pseudospin components.

Near the linear band-touching of graphene, the average pseu-
dospin vectors exhibit a chiral structure with winding number
one, as illustrated in Figure la.

This winding structure is closely linked to unconventional
transport properties, such as the halfiinteger quantum Hall
effect,[*®*] the absence of back-scattering processes,>**! Klein
tunneling,®>>%) and the weak anti-localization phenomena.[54%]

Recently, it was reported**] that semimetals with a quadratic
band-touching point can exhibit a canted structure in their pseu-
dospin texture without a quantized winding number.

Focusing on the upper band, the pseudospin on the Fermi
surface is s, = (+k| S |+k) = h/|h|.>*] The quantum distance be-
tween states can be read out from the pseudospin structure illus-
trated in Figure la—c through the following relation:>’]

1
G = 5 [1 =50 5v] )

indicating that d,y = 0 (dy = 1) when pseudospin vectors are
(anti-)parallel.

The transport scattering rate for a state |k) = |+k) in the upper
band, due to a perturbative potential U,,,,(r) that breaks the trans-
lation symmetry, typically from material imperfections, is given

by:

Tl = Z Py (1 — cosbyy) (10)
ko Wers
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Geometrically nontrivial Geometrically trivial

(a) linear band touching (b) quadratic band touching (C) quadratic band touching

(d)

Heat Heat
source sink

Figure 1. Schematic representations of the low-energy band structure and
of the pseudospins (s, (k), s, (k)) for a) linear band-touching system d,.,,
=1, b) quadratic band-touching with d,,, = 1, and c) quadratic band-
touching with d,,, = 0, respectively. d) Schematic illustration of meso-
scopic thermoelectric device under a temperature gradient.

where Py, represents the scattering probability per unit time, de-
fined as:

Py = —I (k| Upern (1) IK') I’y — €0) (11)

and 6, = cos™ (k- Ig) is the scattering angle, with k=k/|k|.

The generic form of the scattering potential is expressed
as Upew = Xy, Ui(r)o;, where it can cause both momen-
tum transfer and a (pseudo-)spin rotation. Employing the Fermi

Golden rule, the scattering probability is

2r 1—s,-sy
L R e
+ Y s gse)|Sler — &) (12)
1,j=0,x,y,2

where v, is a four-component vector with components given by
v, =L [d'r Uyr)e ™" (i=0, x,y, 2), and g = k' — k is the mo-
mentum transfer. Here, we denote s, ; = (s;); and (s;);—, = 1.

This formulation shows that the scattering probability depends
on the pseudospins of the eigenstates and the properties of the
extrinsic scattering potential. The relation highlights the role of
both intrinsic geometric properties of material and external per-
turbations in determining the transport characteristics.

The Fermi Golden rule, including the higher order corrections,
is in Supporting Information Section VI, and one can verify that
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scattering probability is a function of the pseudospin and scatter-
ing potential, even when higher order corrections are included.

The distribution of the scattering potential is information spe-
cific to material and growth processes. Equation (10) and Equa-
tion (12) can be employed to compute an average transport scat-
tering rate for any material conditions. To clarify the major rela-
tionship between the quantum distance and the scattering rate,
we consider a Gaussian-distributed scattering potential. This is
to keep the primary role of disorder, breaking the translation
or spin rotation symmetry of an underlying system and, at the
same time, allowing further analytic manipulation. Upon aver-
aging over the Gaussian disorder ensemble, the crossing terms
containing pairs of uncorrelated scattering potential ((v,v_,)i4)
vanish. Consequently, the transport scattering rate is simplified
to

(1)-2 3 [p0-g+ 2o

K eFs
X (1 — cosby) (13)

where y; = (|v,|?) and y = (|v,;|*) are the averaged strengths
of the scalar and vector components of the scattering potential, re-
spectively.

This result explicitly shows that the distribution of the quan-
tum distance d, across the Fermi surface is the critical factor in
determining the transport coefficients.

Specifically, the presence of nontrivial quantum geometry in
a system can reduce (increase) the scattering rate when the scat-
tering originates from spin-independent (spin-dependent) poten-
tials.

In the following, we demonstrate this relationship using a 2D
isotropic model. 3D examples, where we apply this geometric for-
mula of the scattering rate, are included in Supporting Informa-
tion Section IX.

4. Application to 2D Isotropic Band Model

We consider a 2D isotropic system, where not only the magnitude
of the Fermi velocity v, = |d,¢,| remains constant on the Fermi
surface, but also the pseudospin vector rotates uniformly with a
constant angular velocity with respect to 6, on the Fermi surface.

That is, we consider a system with spatial rotation combined
with spin rotation symmetry in the Hamiltonian, [H,, U¢'W] =0
where

U¢,w — eiq&iz/h ® ¢ Wooo)/h (14)

implying that when the momentum angle 6, changes by ¢, the
pseudospin vector rotates around 3, by an angle W¢. The cases
illustrated in Figure la—c correspond to W =1, 2, and 0, respec-
tively. The trajectory of the pseudospin vector can be parameter-
ized by 6,:

S, =Sy + 5., cos(Wb,) + 5, sin(Wo,) (15)

where s, s,,, and s, ; are mutually orthogonal, [sy|=4/1—d2_,

and |SJ_01 |= | sl/] |=dmax
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Figure 2. a,b) The maximum quantum distance d,,,, dependence of scat-
tering rate 1/ with a) W= 1and b) W > 2. The red, orange, purple, and
black lines represent (yg, l71?) = ¢(1,0),¢(1,2),¢(1,5) and ¢(0, 1), where
¢ is a positive constant. c) Scattering probability Py with |k’| = |k| and
pseudospin structure as a function of scattering angle 6y, for W = 1
(black) and 2 (red). d) Scattering probability Py,s with [k’| = |k| and pseu-
dospin structure as a function of scattering angle ;s for the isotropic
quadratic band-touching. The blue, green, and red plots represent d,,, =

0, 0.5, and 1, respectively. In (c,d), we consider y = 0 and eryg/h =1

i

H*..‘HH“.”H

RN TR

Then, the quantum distance is given by

1 —cos W@
2 _ 71 kk'
&, =&, ——— (16)
whered, . = max, ycps [dy | represents the maximum quantum

distance between all the possible pairs of Bloch eigenvectors on
the Fermi surface. The scattering probability in Equation (12) is
strongly influenced by W and d,,,, as shown in Figure 2a,b. Av-
eraging over the disorder ensemble, the transport scattering rate
from Equation (13) becomes

1\ 2z plep) | 5 _n ﬂ 2
< iso>_ ho2 [70(2 dmax)+ 3 (2+dmax)

Tk

2 2
2 2 |7| - 37/0
+ dma,(?l’(elf) 1 0w

(17)
where p(e;) is the density of states at the Fermi level and the last
term (~8y, ;) is nonzero for W= 1.

Details of the derivations are included in Supporting Informa-
tion Section IV.
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This expression shows that the transport scattering rate de-
pends solely on the maximum quantum distance between pos-
sible scattering states and the disorder strength (y, and |y|).

When y; > |y12/3 (v} < y|?/3), increasing d,,,, decreases (in-
creases) the scattering rate, as shown in Figure 2a,b. Notably, the
winding number W only impacts the scattering rate for W= 1.

Since the power factor is proportional to the inverse of the
transport scattering rate, PFx(1/7%°), the maximum quantum
distance plays a crucial role in determining the thermoelectric
performance of the isotropic model.

5. Application to 2D Quadratic Isotropic
Band-Touching Model

The quadratic isotropic band-touching semimetals with symme-
try an:z provide an ideal platform to study the quantum dis-
tance and quantum metric. This model allows for the manipu-
lation of the geometric structure of wavefunctions while keeping
the band structure constant. Additionally, in this model, the Berry
curvature is absent.[3%]

The model is characterized by three parameters: the mass of
the upper (lower) band m, (m_) and the maximum quantum dis-
tance d,

max”*

The Hamiltonian is given by H,(k) = h, + h - o, where

h/Ihl = 2d,,1/1—d2_ sin’@,

h,/|h| = 24, sin 6, cos 0y,

h./Ih| = (1-2d>_ sin®6,) (18)

where 6, = tan ' (k,/k,) is the polar angle in momentum space
and |h|=|k|*(m;'=m~")/4 and hy=|k|*(m '+m~")/4 assuming
m'>m7".

The dispersion relations for the two bands are e, = |k|%/2m,,.
Thus, d,,, can be controlled without altering the band structure
(See Supporting Information Section II for details).

The pseudospin textures for the cases d,,, =1andd =0
are illustrated in Figure 1b,c, respectively.

The foregoing analysis clearly indicates the anti-symmetric be-
havior in the transport scattering rate by pseudo-spin indepen-
dent and dependent impurities with respect to y2 = [y|*/3, as
shown in Figure 2a,b. Let us thus focus on U, = Uyo,, ie.,
ly| =0.

In Figure 2¢,d, the lower panels show the rotation of s, follow-
ing the Fermi surface 6, € [0, 2x] for W =1 (black) and W = 2
withd,, =0, 0.5, 1 (blue, green, red). The scattering probability
W, plotted in Figure 2¢,d oscillates W-times with an amplitude
proportional to the d2 _ .

By integrating over states on the Fermi surface, the transport
scattering rate is evaluated as

1 2 2- drznax drznax
<k> = Zplerlr, [T ~ S =2 (19)

which highlights the significant role of d,, in the transport.
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PF(dy)
= PF(dy = 0)

0 1 Isotropic band touching model

dmax

Figure 3. a—d) Chemical potential u dependence of a) Ly, b) Ly, =L,5, €)
L,,, and d) PF for d,,,, = 0 (blue), 0.5 (green), and 0.9 (red). e) represents
the ratio between PF(d,.,) and PF(0). The solid lines represent the results
from the isotropic quadratic touching model in Equation (18) with m, =
—m_ = 1. The dotted plots represent the results that are calculated from
the lattice model Equation (22). f) Band structure of Equation (22) with
drmax = 0.9. In the calculation, we fix the parameters T=0.01, kg =h =¢
=1, 1/7(dpmax = 0) = 0.07, and yo = const. For the case of Coulomb-type
impurity potential y4, see Supporting Information Section VI.

Next, we consider the linear response function L; for electric
and thermal currents

FY_ (L Lo E )

()= () (5 @0
In Figure 3a—e (solid lines), we present the plots of L; and PF
as functions of chemical potential for various d,, values in the
2D isotropic band-touching model (See Supporting Information
Section III for details).

While L;’s are all monotonically increasing as a function of ,
PF exhibits a local maximum at a certain value of u.

This implies that there is an optimal filling factor for the most
efficient thermoelectric device.

The power factor can be expressed as

2
ma) = 5T

max

PF(d

max = 0) (21)
This indicates that PF increases with d,,,, potentially doubling
when d,_,, = 1 compared to the geometrically trivial case (d,,,, =
0), as shown in Figure 3e. This enhancement is attributed to the
influence of quantum geometry on the scattering rate, highlight-
ing that the manipulation of wavefunction geometry can signifi-
cantly improve PF. Note that the relation in Equation (21) holds
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even when we consider the Coulomb-type impurity potential (See
Supporting Information Section VI).

The thermoelectric behavior experimentally observed in
Bernal-stacked bilayer graphenel>>%°! supports our theory.

The effective Hamiltonian of the bilayer graphene belongs to
the category of the 2D quadratic isotropic band-touching model
withd ., =1.

In the studies, they demonstrated that the conventional Boltz-
mann transport theory works well and even becomes accurate
below 130K.[>%%0]

Based on the experimental works, we extract the PF of the bi-
layer graphene as a function of the gate voltage and show that it is
twice the PF of a simple (d,,., = 0) parabolic band with the same
effective mass, as expected from Equation (21).

Details on the thermoelectricity of the bilayer graphene are in-
cluded in Supporting Information Section X.

In addition to the distribution of quantum distance on the
Fermi surface, other factors also influence the performance of
thermoelectric devices.

Notably, variations in chemical potential (¢) and phonon scat-
tering are significant contributors.

The dependence on chemical potential is particularly impor-
tant, as transport properties are primarily dictated by carrier
charge density as well as the electronic structure near this po-
tential.

And, the anharmonicity of lattice vibration induces phonon-
phonon scatterings that lower the phonon contribution to ther-
mal conductivity. This will enhance the figure of merit (Z7)
while, as we explain below, the quantum distance effect on the
power factor may be weakened by electronic contribution to ther-
mal conductivity.

It is noteworthy that changes in the geometry of electronic
states also influence the electronic thermal conductivity (x,), as
shown in Supporting Information Section VIII. As a result, any
increase in PF due to changes in scattering time will also affect
k,. However, the total thermal conductivity (k) is not solely de-
termined by electronic contributions. It also includes contribu-
tions from other factors such as phonons (k,,). The geometry
of electronic wavefunctions does not alter these other contribu-
tions unless there is a strong interaction between the heat car-
riers, such as phonons and electrons. Therefore, changing the
quantum geometry of electric states to enhance PF will ultimately
lead to a better figure of merit (ZT = Z£T), enhancing the over-
all efficiency of the thermoelectric material. If we consider the
case where k = k, + &, the enhancement from controlling the
geometry will have a greater impact when «,,, is much larger
than «,. In general, phonons typically dominate heat transport in
semiconductors and semimetals.[®*%4] In impure metals or dis-
ordered alloys, the electron mean free path is reduced due to col-
lisions with impurities, making the phonon contribution compa-
rable to the electronic contribution.[®*! In pure metals with weak
phonon-phonon scattering, «,,, can be comparable to, or even ex-
ceed, the electronic contribution.[®®%”] In such materials, an in-
crease in PF would significantly enhance ZT. In Supporting In-
formation Section VIII, we discuss the effects of ,,, on ZT in
this model.

To verify the validity of the results obtained from the con-
tinuum model, we investigate the following lattice model:
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Hi (k) =Y h,(k)o,, where

a=xyz "«
h(k) = dyoyy/1—d2, (1 —cosk)),
h,(k) = d, sink,sink,

h(k)=2-2d’ —cosk, +(2d’ —1)cosk, (22)

max

For d,, <1, it has a band crossing point at I point, as shown in
Figure 3f. By taking the k-p expansion near the I point, we derive
the low energy effective model described in Equation (18) with
m;' = 1and m~' = —1. As demonstrated in Figure 3 (square, di-
amond, and circular symbols), the response functions derived
from the lattice model align well with those from the low energy
effective model, with minor shifts due to lattice effects at high
u. This consistency clearly supports that the transport properties
are primarily governed by d, ., thereby validating the geometric
transport formula based on d, .

6. Discussion

We establish a direct connection between the quantum distance
and the electronic scattering probability rate, which are essential
for the charge or heat transport.

Focusing on the electronic contributions, the maximum quan-
tum distance d_,, representing the intrinsic geometric property
of a system has been shown to determine extrinsic thermoelectric
transport coefficients averaged over an ensemble of disorder re-
alizations.

While the role of quantum metric tensor in thermoelectric ef-
fects, such as nonlinear Nernst and Seebeck effect!®®! and ther-
moelectric generation of orbital magnetization(®! are recently re-
ported, our work shows that the entire distribution of Hilbert-
Schmidt distances between Bloch states on the Fermi surface
plays a crucial role in the determination of the scattering rate,
which is often assumed to be an extrinsic factor in literature.

Recent theoretical and experimental research efforts have ex-
tensively focused on achieving a high ZT value.l%74]

Most theoretical works focus on cases beyond the Boltzmann
regime and can be broadly categorized into two groups: one ad-
dressing the SommerfeldBethe relation and the other exploring
contributions that do not satisfy the SommerfeldBethe relation.

Recently, the conditions of the Sommerfeld-Bethe relation
have been clarified.|”]

On the other hand, the SB relation can fail when the phonon
drag effect,[”?! electric flow generated by strong electron-phonon
interaction under a temperature gradient, is involved.

FeSb, is a representative example.l”274]

However, in this study, we focus on the effect of the quan-
tum geometry of wavefunction on transport properties within the
Boltzmann transport regime, where the SommerfeldBethe rela-
tion is applicable.

Although our findings highlight the role of quantum geometry
in enhancing the power factor, it is essential to acknowledge that
thermoelectric performance is also influenced by factors such as
phonon contributions and temperature. (In Supporting Informa-
tion Sections VII and VIII, we calculate the effects of phonon con-
tributions and temperature on the model used in Figure 3). These
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factors affect transport properties and, consequently, ZT. There-
fore, both quantum geometric properties and other factors must
be carefully considered when optimizing thermoelectric materi-
als.

Further investigations into various material systems, includ-
ing experimental validations, are essential to fully explore the
potential of geometric manipulation for enhancing thermoelec-
tric efficiency.

While the geometric scattering rate formula Equation (13) can
be used to investigate transport properties of any systems de-
scribed by a two-band Hamiltonian, the d_,-dependent formu-
las of the scattering rate Equation (17) and power factor Equa-
tion (21) can be applied to 2D materials with quadratic band-
crossing near the Fermi level, such as bilayer graphene and
kagome-like flat band materials.

However, the synthesis of materials hosting bands with con-
trollable d,,, is still elusive.

Lastly, extending this work to multi-terminal thermoelectric
devices and exploring extrinsic microscopic mechanisms for
generating spin current from a quantum geometric perspective
would be valuable directions for future research.
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